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Abstract. A number of initial boundary-value problems of classical mathematical physics is generally represented
in the linear operator equation and its well-posedness and causality in a Hilbert space setting was established. If
a problem has a unique solution and the solution continuously depends on given data, then the problem is called
well-posed. The independence of the future behavior of a solution until a certain time indicates the causality of
the solution. In this article, we established the well-posedness and causality of the solution of the evolutionary
problems with a perturbation, which is defined by a quadratic form. As an example, we considered the coupled
system of the heat and Maxwell’s equations (the microwave heating problem).
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1. Introduction

Here we consider a non-linear, coupled system in thermoelectricity. Thermoelectric effects are
viewed as the result of the mutual interference of heat flow and electric flow in a system. The
interaction of thermal and electric processes is modeled by the heat equation

𝜌𝐶𝜌𝜕0𝜗 + div𝑞 = 𝑄

and Maxwell’s equations

−curl𝐻 + 𝐽 + 𝜕0𝐷 = 𝐽1
curl𝐸 + 𝜕0𝐵 = 0.

Here 𝑞 is the thermal current flux, 𝜌 is the volumetric mass density, 𝐶𝜌 is the specific heat density, 𝜗
is the absolute temperature, 𝐽 is the electric current flux, 𝐸, 𝐻 are the electric and magnetic fields,
respectively, 𝐷 is the displacement current, 𝐵 is the magnetic induction and 𝐽1 is the given electric
source. 𝑄 describes the production of internal energy by various mechanisms, such as the Joule
heating, radioactive decay, etc. In our system the Joule heating 𝑄 = ⟨𝐸 ∣ 𝐽⟩ produces the internal
energy. This term governs the non-linearity in the system and, moreover, it couples the heat and
Maxwell’s equations. The system of these equations has to be supplemented by so-called constitutive
equations, which describe the material’s properties and effects. As constitutive equations, we deal
with the following thermoelectric material relations

𝐽 = 𝜎𝐸
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𝑞 = −𝜆grad𝜗
𝐷 = 𝜀𝐸
𝐵 = 𝜇𝐻.

Here 𝜎 is the electric conductivity, 𝜆 is the thermal conductivity, 𝜀 is the electric permittivity, 𝜇
is the magnetic permeability. The coupled system of the heat and Maxwell’s equations with these
constitutive equations becomes themicrowave heating problem. Themicrowave heating problemhas
wide industrial applications and it has been studied theoretically and numerically in various situations
(see e.g. [1–3] and the references therein). We study the coupled systems in the three-dimensional
case. Moreover, we consider this system with the physical coefficients defined as 3-by-3−matrix-
valued functions depending on the spatial variables only. We assume (homogeneous) Dirichlet
boundary conditions for 𝜗, (homogeneous) electric boundary conditions for 𝐸 and non-vanishing
initial values. We say that a problem iswell-posed if the problem has a unique solution and the solution
continuously depends on the given data. The independence of the future behavior of a solution until
a certain time indicates the causality of the solution. In our solution theory the well-posedness and
causality of a given problem are discussed.
The idea of tackling well-posedness and causality of the problem just discussed is to frame the

above system in the theory of evolutionary equations: In [4, 5] it has been found that a number of
initial boundary-value problems of classical mathematical physics is represented by the following
general form

(𝜕0𝑀(𝜕−10 ) + 𝐴) 𝑢 = 𝐹. (3)

Here 𝜕0 is the (continuously invertible) derivative with respect to time in a suitable weighted Hilbert
space,𝐴 is a skew-selfadjoint operator in a suitableHilbert space; themapping (𝑧 ↦ 𝑀(𝑧)) is bounded
operator valued and holomorphic in an open ball 𝐵ℂ (𝑟, 𝑟) with some positive radius 𝑟 centered at 𝑟.
The operator𝑀(𝜕−10 ) is interpreted in the sense of a function calculus by establishing 𝜕0 as a normal
operator in a suitable Hilbert space. The solution theory associated to (3) was established in [4, 5]
and many diverse problems were studied there. For applications, we focus on a particular case of
𝑀(𝜕−10 ), namely,

𝑀(𝜕−10 ) = 𝑀0 + 𝜕−10 𝑀1.

Here𝑀0 is a selfadjoint, bounded, linear operator with𝑀0|𝑁(𝑀0) ⩾ 𝑐0 > 0,𝑀1 is a bounded, linear
operator satisfying ℜ𝑀1|𝑅(𝑀0) ⩾ 𝑐1 > 0. In the next section we establish the solution theory of the
following problem

(𝜕0𝑀0 +𝑀1 + 𝐴) 𝑢 + ̃𝐹 (𝑢) = 𝐹, (4)

which covers the aforementioned non-linear coupled system. Here ̃𝐹 is a quadratic form. The non-
linear problem (1) yields a fixed point problem. In our approach the well-posedness of (4) is based
on the strict positive definiteness of the operators ℜ(𝜕0𝑀0 +𝑀1 + 𝐴) and ℜ(𝜕0𝑀0 +𝑀1 + 𝐴)∗ and
a Lipschitz continuous approximation of ̃𝐹. Due to the strict positive definiteness result, the inverse
operator (𝜕0𝑀0 +𝑀1 + 𝐴)−1 becomes Lipschitz continuous in a suitable Hilbert space. Thus, (4)
amounts to be an evolutionary problem in the sense of (3) with a Lipschitz continuous perturbation,
which is eventually solved by the contraction mapping principle. As an application we shall consider
the microwave heating problem in the third section.
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2. Solution theory

We start by establishing time differentiation 𝜕0 as a normal operator. It is initially considered on
∘
𝐶∞(ℝ), which is the set of infinitely often differentiable, complex-valued functions defined on the
real line ℝ having compact support. Hence 𝜕0 is a densely defined, closed linear operator on 𝐿2 (ℝ),
moreover, it is an essentially skew-selfadjoint operator on 𝐿2 (ℝ). We define the following weighted
𝐿2−space

𝐻𝜈,0 (ℝ) ∶= 𝐿2 (ℝ, exp (−2𝜈𝑥) 𝑑𝑥) ∶= {𝜑 ∈ 𝐿1𝑙𝑜𝑐 (ℝ) ∣ exp (−𝜈𝑚0) 𝜑 ∈ 𝐿2 (ℝ)}

equipped with the norm

|𝜑|𝜈,0 ∶= √
∫
ℝ
|𝜑 (𝑥)|2 exp (−2𝜈𝑥) 𝑑𝑥, 𝜑 ∈ 𝐻𝜈,0 (ℝ) .

Here𝑚0 is the closure of the following operator

∘
𝐶∞ (ℝ) ⊆ 𝐿2 (ℝ) → 𝐿2 (ℝ)

𝜑 ↦ (𝑥 ↦ 𝑥𝜑 (𝑥)) .

The operator𝑚0 is called themultiplication by argument operator and it is densely defined, Hermitian
and moreover, it is self-adjoint. Let 𝜈 ∈ ℝ. We also define the operator exp (−𝜈𝑚0) such that
exp (−𝜈𝑚0) 𝜑 ∶= (𝑥 ↦ exp (−𝜈𝑥) 𝜑 (𝑥)) for 𝜑∈𝐿1𝑙𝑜𝑐 (ℝ). Note that exp (−𝜈𝑚0) [

∘
𝐶∞ (ℝ)] =

∘
𝐶∞ (ℝ). Due

to the density of
∘
𝐶∞ (ℝ) in both the spaces 𝐿2 (ℝ) and𝐻𝜈,0 (ℝ), exp (−𝜈𝑚0) can be extended to a unitary

operator from 𝐿2 (ℝ) onto 𝐻𝜈,0 (ℝ) and the unitary extension is denoted again by exp (−𝜈𝑚0). The
inverse of exp (−𝜈𝑚0) is

exp (𝜈𝑚0) ∶ 𝐿2 (ℝ) → 𝐻𝜈,0 (ℝ) .

Note that we may utilize the notation 𝐻0,0 (ℝ) for the space 𝐿2 (ℝ) with the inner product ⟨⋅ ∣ ⋅⟩0,0 and
the norm |⋅|0,0. The following operator

𝜕𝜈 ∶= exp (𝜈𝑚0) 𝜕0 exp (−𝜈𝑚0)

is unitarily equivalent to 𝜕0 on 𝐻𝜈,0 (ℝ). The operator 𝜕𝜈 + 𝜈 is the time derivative on 𝐻𝜈,0 (ℝ) and we
denote it again by 𝜕0. Moreover, for all 𝜈 ∈ ℝ>0, 𝜕0 ∶ 𝐷 (𝜕0) ⊆ 𝐻𝜈,0 (ℝ) → 𝐻𝜈,0 (ℝ) is continuously
invertible on 𝐻𝜈,0 (ℝ), that is

‖
‖𝜕

−1
0
‖
‖𝐿(𝐻𝜈,0(ℝ))

≤ 1
𝜈

and a normal operator for all 𝜈 ∈ ℝ\ {0} on 𝐻𝜈,0 (ℝ). Furthermore, 𝜕−10 ∶ 𝐻𝜈,0 (ℝ) → 𝐻𝜈,0 (ℝ) is
a normal operator (see e.g. [6, Theorem 5.42]) and there is the Sobolev chain

𝐻𝜈,𝑘+1 (𝜕0) ↪ 𝐻𝜈,𝑘 (𝜕0) , 𝑘 ∈ ℕ

with respect to 𝜕0, where 𝐻𝜈,𝑘 (𝜕0) ∶= 𝐷 (𝜕𝑘0 ) is the Hilbert space with the norm

|⋅|𝜈,𝑘 = ||𝜕𝑘0 ⋅||𝜈,0

for each 𝑘 ∈ ℕ. Furthermore, we have

𝐻𝜈,−𝑘 (𝜕0) ↪ 𝐻𝜈,−𝑘−1 (𝜕0) , 𝑘 ∈ ℕ,
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where𝐻𝜈,−𝑘 (𝜕0) are completions of𝐻𝜈,0 (ℝ) for all 𝑘 ∈ ℕwith the norms |⋅|𝜈,−𝑘 ∶= ||𝜕−𝑘0 ⋅||𝜈,0. Note that
we can unitarily extend the following operator

𝐻𝜈,0 (ℝ) ⊆ 𝐻𝜈,−1 (𝜕0) → 𝐻𝜈,0 (ℝ)
𝜑 ↦ 𝜕−10 𝜑.

We denote its extension again by 𝜕−10 . This motivates the unitary extension of 𝜕0 from 𝐻𝜈,0 (ℝ) onto
𝐻𝜈,−1 (𝜕0) for each 𝜈 ∈ ℝ\ {0} and we denote the extension again by 𝜕0. In the same manner we obtain
unitary operators

𝐻𝜈,𝑘+1 (𝜕0) → 𝐻𝜈,𝑘 (𝜕0)
𝜑 ↦ 𝜕0𝜑

for 𝑘 ∈ ℤ, as appropriate unitary extension/restriction of the originally discussed operator 𝜕0 defined
on 𝐻𝜈,0 (ℝ).

2.1. On skew-selfadjoint operator

Let 𝐻1 and 𝐻2 be Hilbert spaces. For a densely defined, closed linear operator 𝐶 ∶ 𝐷 (𝐶) ⊆ 𝐻1 → 𝐻2
and a block operator matrix 𝐵 defined as follows

𝐵 = ( 0 −𝐶∗

𝐶 0
) (5)

is skew-selfadjoint and so is the following diagonal operator matrix

𝐴 =

⎛
⎜
⎜
⎜
⎜
⎝

𝐵1 0 ⋯ 0

0 ⋱ ⋮

⋮ ⋱ 0

0 ⋯ 0 𝐵𝑛

⎞
⎟
⎟
⎟
⎟
⎠

,

where each 𝐵𝑖, 𝑖 = 1.𝑛 is defined as in (5).
In a coupled system of the heat and Maxwell’s equations with Dirichlet boundary condition and

electric boundary condition 𝐴 has the following form

⎛
⎜
⎜
⎜
⎜
⎝

0 div 0 0
∘

grad 0 0 0

0 0 0 curl

0 0
∘

curl 0

⎞
⎟
⎟
⎟
⎟
⎠

where div,
∘

grad, curl and
∘

curl are defined as follows. Let 𝛺 ⊆ ℝ3 be an open set. Consider the
following vector analytical differential operators

grad𝑐 ∶
∘
𝐶∞ (𝛺) ⊆ 𝐿2 (𝛺) →

𝑛

⨁
𝑘=1

𝐿2 (𝛺)
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𝜙 ↦ (𝜕𝑘𝜙)𝑘∈{1,…,𝑛}

and

div𝑐 ∶
𝑛

⨁
𝑘=1

∘
𝐶∞ (𝛺) ⊆

𝑛

⨁
𝑘=1

𝐿2 (𝛺) → 𝐿2 (𝛺)

(𝜑𝑘)𝑘∈{1,…,𝑛} ↦
𝑛
∑
𝑘=1

𝜕𝑘𝜑𝑘.

The operators grad𝑐 and −div𝑐 are formally adjoint to each other and closable. Denoting

∘
grad ∶= grad𝑐,

∘
div ∶= div𝑐

and
grad ∶= (−div𝑐)

∗
, div ∶= (−grad𝑐)

∗
,

we can construct the following skew-selfadjoint operator

𝐴𝐷1 ∶= ( 0 div
∘

grad 0
) ,

where
∘

grad, div and grad,
∘
div are all together densely defined, closed linear operators. The operator

𝐴𝐷1 is not only skew-selfadjoint but also encode Dirichlet boundary condition, that is, 𝜑 being in

𝐷(
∘

grad)means that 𝜑 satisfies a generalized homogeneous Dirichlet boundary condition.

Due to the skew-selfadjointness of 𝐴, we have a long Sobolev chain with respect to 𝐴 + 1. Since
±1 ∈ 𝜌 (𝐴), the domains of the operators 𝐴 and 𝐴 + 1 coincide. There is the Sobolev chain

𝐻𝑘+1 (𝐴 + 1) ↪ 𝐻𝑘 (𝐴 + 1) for 𝑘 ∈ ℤ.

Here 𝐻 =∶ 𝐻0 (𝐴 + 1), 𝐻𝑘 (𝐴 + 1) is the domain of (𝐴 + 1)𝑘 and it is a Hilbert space with the norm
|⋅|𝑘 ∶= ||(𝐴 + 1)𝑘 ⋅||0,0 for each 𝑘 ∈ ℕ and 𝐻−𝑘 (𝐴 + 1) is the completion of 𝐻 for each 𝑘 ∈ ℕ under the

norm |⋅|−𝑘 ∶= ||(𝐴 + 1)−𝑘 ⋅||0,0. For the sake of brevity, we also denote 𝐻𝑘,𝐴 ∶= 𝐻𝑘 (𝐴 + 1). Now we are
in the position to construct the Sobolev lattices

(𝐻𝜈,𝑘 ⊗𝐻𝑛,𝐴)𝑘,𝑛∈ℤ

for the chains (𝐻𝜈,𝑘 (𝜕0))𝑘∈ℤ and (𝐻𝑛 (𝐴 + 1))𝑛∈ℤ with respect to the operators 𝜕0 ⊗ 𝐼𝐻 and 𝐼𝐻𝜈,0 ⊗𝐴.
Here 𝐼𝐻 ∶ 𝐻 → 𝐻 and 𝐼𝐻𝜈,0 ∶ 𝐻𝜈,0 (ℝ) → 𝐻𝜈,0 (ℝ) are the identity operators. Note that 𝐻𝜈,𝑘 ⊗𝐻 can
be interpreted as the completion of the linear space generated by 𝐻−valued functions of the special
form

𝑡 ↦ 𝜓 (𝑡)𝑤 =∶ (𝜓 ⊗ 𝑤) (𝑡)

for each 𝑘 ∈ ℕ, where 𝜓 ∈
∘
𝐶∞ (ℝ), 𝑤 ∈ 𝐻. In fact, 𝐻𝜈,𝑘 ⊗𝐻 is unitarily equivalent to 𝐻𝜈,𝑘 (ℝ,𝐻) for

each 𝑘 ∈ ℕ.
The operators 𝜕0 ⊗ 𝐼𝐻 and 𝐼𝐻𝜈,0 ⊗𝐴 are well-defined and have essentially the same properties as

the operators 𝜕0 and 𝐴, respectively. Therefore, we also write 𝐴 and 𝜕0 for their canonical extensions
𝐴⊗ 𝐼𝐻 and 𝐼𝐻𝜈,0 ⊗ 𝜕0 in 𝐻𝜈,0 (ℝ,𝐻).
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2.2. Thematerial law operator

The Fourier-Laplace transform

ℒ𝜈 ∶= ℱ exp (−𝜈𝑚0) ∶ 𝐻𝜈,0 (ℝ,𝐻) → 𝐿2 (ℝ,𝐻)

given as a composition of the (temporal) Fourier transform ℱ and the unitary weight operator
exp (−𝜈𝑚0), is a spectral representation associated with 𝜕0. It is

𝜕0 = ℒ∗
𝜈 (i𝑚0 + 𝜈)ℒ𝜈.

This observation allows us to consistently define an operator function calculus associated with 𝜕0 in
a standard way and we can even extend this calculus to operator-valued functions by letting

𝑀(𝜕−10 ) ∶= ℒ∗
𝜈𝑀( 1

i𝑚0 + 𝜈)ℒ𝜈.

Here the linear operator𝑀( 1
i𝑚0+𝜈

) ∶ 𝐿2 (ℝ,𝐻) → 𝐿2 (ℝ,𝐻) is determined uniquely via

(𝑀( 1
i𝑚0 + 𝜈)𝜑) (𝜆) ∶= 𝑀( 1

i𝑚0 + 𝜈)𝜑 (𝜆) in 𝐻

for every 𝜆 ∈ ℝ, 𝜑 ∈
∘
𝐶∞(ℝ,𝐻) by an operator-valued function𝑀. For a material law the operator-

valued function𝑀 needs to be bounded and an analytic function 𝑧 ↦ 𝑀(𝑧) in an open ball 𝐵ℂ(𝑟, 𝑟)
with some positive radius 𝑟 centered at 𝑟. Here we will concentrate on the following particular form
of the material law

𝑀(𝜕−10 ) = 𝑀0 + 𝜕−10 𝑀1,

where𝑀0 is selfadjoint, bounded linear and𝑀0 ⩾ 𝑐0 > 0 on the range𝑀0 [𝐻], the null space [{0}]𝑀0
is non-trivial and𝑀1 ∈ 𝐿 (𝐻) withℜ𝑀1 ⩾ 𝑐1 > 0 on [{0}]𝑀0.
This is not an artificial assumption, rather a necessary constraint enforced by the requirement of

causality and strictly positive definite condition

ℜ⟨𝑢 ∣ (𝜕0𝑀(𝜕−10 )) 𝑢⟩𝐻𝜈,0(ℝ,𝐻)
⩾ 𝑐 ⟨𝑢 ∣ 𝑢⟩𝐻𝜈,0(ℝ,𝐻)

for 𝑐 ∈ ℝ>0 and all sufficiently large 𝜈 ∈ ℝ>0 and all 𝑢 ∈ 𝐷 (𝜕0). The strict positive definite condition
implies

ℜ⟨𝑢 ∣ (𝜕0𝑀0 +𝑀1 + 𝐴) 𝑢⟩𝐻𝜈,0(ℝ,𝐻)
⩾ 𝑐 ⟨𝑢 ∣ 𝑢⟩𝐻𝜈,0(ℝ,𝐻)

for 𝑐 ∈ ℝ>0 and all sufficiently large 𝜈 ∈ ℝ>0 and all 𝑢 ∈ 𝐷 (𝜕0). Moreover,

𝜕0𝑀0 +𝑀1 + 𝐴

has dense range in 𝐻𝜈,0 (ℝ,𝐻). For all sufficiently large 𝜈 ∈ ℝ>0, we have

‖
‖‖(𝜕0𝑀0 +𝑀1 + 𝐴)

−1‖
‖‖𝐿(𝐻𝜈,0(ℝ,𝐻))

≤ 1
𝑐𝜈
, 0 < 𝑐𝜈 < 𝑐1

and this also implies the solution theory of the following evolutionary problems

(𝜕0𝑀0 +𝑀1 + 𝐴) 𝑢 = 𝑆 (𝑢) + 𝑓,

where 𝑆 is a suitable Lipschitz mapping.
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2.3. Well-posedness of evolutionary problems with a non-linear perturbation term

After making some reformulations in the microwave heating problem, the problem gets the following
shape

(𝜕0𝑀0 +𝑀1 + 𝐴) 𝑢 + ̃𝐹 (𝑢) = 𝐹,

where ̃𝐹 is a quadratic form and it is not Lipschitz continuous. For a Lipschitz continuous
approximation of the quadratic form we recall the following Lemma and Theorem in [7].

Lemma 1. Let 𝑓 ∶ ℝ≥0 → ℝ≥0 be differentiable, and such that (𝑧 ↦ ||√𝑧𝑓′ (𝑧)||) is bounded. Let
ℰ ∈ ℂ𝑛×𝑛 be selfadjoint with ℰ ≥ 0. Then there exists 𝐶 > 0 such that

||𝑓 (⟨𝑢 ∣ ℰ𝑢⟩ℂ𝑛) − 𝑓 (⟨𝑣 ∣ ℰ𝑣⟩ℂ𝑛)||ℝ ⩽ 𝐶 |𝑢 − 𝑣|ℂ𝑛

for all 𝑢, 𝑣 ∈ ℂ𝑛.

Theorem 4. Let (𝛺, 𝜇) be a 𝜎−finite measure space. Let ℰ ∈ (𝐿∞ (𝛺)) 𝑛×𝑛 and

̃𝐹 ∶ 𝐷 ( ̃𝐹) → 𝐻𝜈,0 (ℝ) ⊗ 𝐿2 (𝛺)
𝑢 ↦ (ℝ × 𝛺 ∋ (𝑡, 𝜔) ↦ ⟨𝑢 (𝑡, 𝜔) ∣ ℰ (𝜔) 𝑢 (𝑡, 𝜔)⟩ℂ𝑛)

with maximal domain. Here 𝐷 ( ̃𝐹) ⊆ 𝐻𝜈,0 (ℝ) ⊗ (𝐿2 (𝛺))𝑛. We assume that ℰ (𝜔) ∈ ℂ𝑛×𝑛 is selfadjoint and
positive for a.e. 𝜔 ∈ 𝛺. Let 𝑓 ∶ ℝ≥0 → ℝ≥0 be differentiable with 𝑓 (0) = 0 and such that

𝑧 ↦ ||√𝑧𝑓′ (𝑧)||

is bounded. Define

𝐹𝑓 ∶ 𝐷 (𝐹𝑓) ⊆ 𝐻𝜈,0 (ℝ) ⊗ (𝐿2 (𝛺))𝑛 → 𝐻𝜈,0 (ℝ) ⊗ 𝐿2 (𝛺)
𝑢 ↦ (ℝ × 𝛺 ∋ (𝑡, 𝜔) ↦ 𝑓 ( ̃𝐹 (𝑢) (𝑡, 𝜔)))

with maximal domain. Then 𝐷 (𝐹𝑓) = 𝐻𝜈,0 (ℝ) ⊗ (𝐿2 (𝛺))𝑛 and 𝐹𝑓 is Lipschitz continuous.

Hence, it suffices to find a specific function 𝑓 which satisfies all the assumptions in Lemma 1 and
approximates the quadratic form.

Example 1. We consider the following function

𝑓𝜉 ∶ ℝ≥0 → ℝ≥0

𝑥 ↦ 2
𝜉 (√1 + 𝜉𝑥 − 1)

for 𝜉 ∈ ℝ>0. The function is infinitely differentiable for all 𝑥 > − 1
𝜉
and as 𝜉 → 0+, it is approximated

by the argument, that is,
𝑓𝜉 (𝑥) ≈ 𝑥.

The mapping (𝑧 ↦ ||√𝑧𝑓′𝜉 (𝑧)||) is uniformly bounded. Indeed,

(𝑧 ↦ 𝑓′𝜉 (𝑧)√𝑧) = (𝑧 ↦
√𝑧

√1 + 𝜉𝑧
)
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⩽ 1
√𝜉

.

Let ℰ (𝜔) ∈ ℂ𝑛×𝑛 be selfadjoint and positive for a.e. 𝜔 ∈ 𝛺. By Lemma 1, the following holds

||𝑓𝜉 (⟨𝑢 ∣ ℰ𝑢⟩ℂ𝑛) − 𝑓𝜉 (⟨𝑣 ∣ ℰ𝑣⟩ℂ𝑛)|| ⩽ 𝐶 |𝑢 − 𝑣|ℂ𝑛

for 𝐶 ∈ ℝ>0. Since 𝑓𝜉 (0) = 0 for all 𝜉 ∈ ℝ>0, the mapping defined by

𝐹𝑓𝜉 ∶ 𝐻𝜈,0 (ℝ) ⊗ (𝐿2 (𝛺))𝑛 → 𝐻𝜈,0 (ℝ) ⊗ 𝐿2 (𝛺)

𝑢 ↦ ((𝑡, 𝜔) ↦ 𝑓𝜉 (⟨𝑢 (𝑡, 𝜔) ∣ ℰ (𝜔) 𝑢 (𝑡, 𝜔)⟩ℂ𝑛))

is Lipschitz continuous for all 𝜉 ∈ ℝ>0 and (𝑡, 𝜔) ∈ ℝ × 𝛺 (Theorem 4) and the Lipschitz constant of
the mapping 𝐹𝑓𝜉 is

2

√𝜉
‖
‖√ℰ

‖
‖∞

. Furthermore, the following holds

𝐹𝑓𝜉 (𝑢) = 𝑓𝜉 (⟨𝑢 ∣ ℰ𝑢⟩ℂ𝑛) ≈ ⟨𝑢 ∣ ℰ𝑢⟩ℂ𝑛

for sufficiently small 𝜉 ∈ ℝ>0. We have obtained the Lipschitz continuous mapping 𝐹𝑓𝜉 =
(𝑢 ↦ 𝑓𝜉 (⟨𝑢 ∣ ℰ𝑢⟩ℂ𝑛)) which approximates ̃𝐹 = (𝑢 ↦ (⟨𝑢 ∣ ℰ𝑢⟩ℂ𝑛)) as 𝜉 → 0+.

Hence, the solution theory of the perturbed problem

(𝜕0𝑀0 +𝑀1 + 𝐴) 𝑢 + 𝐹𝑓𝜉 (𝑢) = 𝐹

provides an approximate solution of (4).

Theorem 5. Let (𝛺, 𝜇) be a 𝜎−finite measure space. Let 𝐻 = 𝐿2 (𝛺)𝑛. Let 𝑀0 ∈ 𝐿 (𝐻) be selfadjoint,
positive definite and 𝑀0|𝑀0[𝐻] ⩾ 𝑐0 > 0, and 𝑀1 ∈ 𝐿 (𝐻) with ℜ𝑀1|[{0}]𝑀0 ⩾ 𝑐1 > 0. Let 𝐴 ∶ 𝐻1,𝐴 ⊆
𝐻 → 𝐻 be a skew-selfadjoint operator. Assume that ℰ ∈ (𝐿∞ (𝛺))𝑛×𝑛 is selfadjoint and positive definite,
and 0 ≤ 2

𝑐𝜈√𝜉
‖
‖√ℰ

‖
‖∞

< 1 for some 𝜉 ∈ ℝ>0. Let 𝑢0 ∈ 𝐷 (𝐴) and 𝐹 ∈ 𝜒ℝ≥0 (𝑚0) [𝐻𝜈,0 ⊗𝐻] be given data.

Then there exists a unique solution 𝑢 ∈ 𝐻𝜈,0 ⊗𝐻 of

((𝜕0𝑀0 +𝑀1 + 𝐴) |𝐷(𝜕0)∩𝐷(𝐴)) 𝑢 = 𝐹𝑓𝜉 (𝑢) + 𝐹 + 𝛿 ⊗𝑀0𝑢0

for all 𝜈 ≥ 𝜈0 for some 𝜈0 ∈ ℝ>0. The solution depends continuously and causally on the data. Moreover, the
initial condition

(𝑀0𝑢) (0+) = 𝑀0𝑢0
is attained in 𝐻−1,𝐴.

3. Themicrowave heating problem

Themicrowave heating problem has wide industrial applications and it has been studied theoretically
and numerically in various situations (see e.g. [1–3] and the references therein). In the study of the
microwave heating problem the electric conductivity and/or thermal conductivity are considered as
an operator, which may depend on the temperature (see e.g. [3]). But we will study the microwave
heating problemwith temperature independent thermal conductivity, electric conductivity, magnetic
permeability and electric permittivity. These material coefficients are defined as 3 × 3matrix-valued
functions depending only on the spatial variables. This may describe material properties more
substantially. The equations are introduced in the introduction. The set of originally given equations
turns into the following equations

𝜌𝐶𝜌𝜕0𝜗 + div𝑞 = ⟨𝐸 ∣ 𝜎𝐸⟩ℂ3
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grad𝜗 + 𝜆−1𝑞 = 0
− curl𝐻 + 𝜎𝐸 + 𝜕0𝜀𝐸 = 𝐽1
curl𝐸 + 𝜕0𝜇𝐻 = 0.

A formal reformulation of these equations yields

⎛
⎜
⎜
⎜
⎜
⎝

𝜕0𝑀0 +𝑀1 +

⎛
⎜
⎜
⎜
⎜
⎝

0 div 0 0

grad 0 0 0

0 0 0 −curl

0 0 curl 0

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝜗

𝑞

𝐸

𝐻

⎞
⎟
⎟
⎟
⎟
⎠

= 𝐹 +

⎛
⎜
⎜
⎜
⎜
⎝

⟨𝐸 ∣ 𝜎𝐸⟩ℂ3

0

0

0

⎞
⎟
⎟
⎟
⎟
⎠

, (7)

where

𝑀0 =

⎛
⎜
⎜
⎜
⎜
⎝

𝜌𝐶𝜌 0 0 0

0 0 0 0

0 0 𝜀 0

0 0 0 𝜇

⎞
⎟
⎟
⎟
⎟
⎠

, 𝑀1 =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 𝜆−1 0 0

0 0 𝜎 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

and ⟨𝐸 ∣ 𝜎𝐸⟩ℂ3 = ⟨𝑢 ∣ ℰ𝑢⟩ℂ10 with

ℰ ∶=

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 0 0 0

0 0 𝜎 0

0 0 0 0

⎞
⎟
⎟
⎟
⎟
⎠

.

Now we reformulate (7) to the proper evolutionary problem. Assume that 𝜗 satisfies the (generalized)
Dirichlet boundary condition and 𝐸 satisfies the (generalized) homogeneous electric boundary
condition. Then we have the following skew-selfadjoint operator

𝐴 ∶=

⎛
⎜
⎜
⎜
⎜
⎝

0 div 0 0
∘

grad 0 0 0

0 0 0 −curl

0 0
∘

curl 0

⎞
⎟
⎟
⎟
⎟
⎠

in 𝐻1,𝐴 ∶= 𝐻(
∘

grad, 𝛺) ⊕ 𝐻 (div, 𝛺) ⊕ 𝐻(
∘

curl, 𝛺) ⊕ 𝐻 (curl, 𝛺), where 𝛺 ⊆ ℝ3 is an open set. As

in the preceding application, we assume that 𝜌𝐶𝜌 ∶ 𝐿2 (𝛺) → 𝐿2 (𝛺), 𝜀 ∶ (𝐿2 (𝛺))3 → (𝐿2 (𝛺))3 and
𝜇 ∶ (𝐿2 (𝛺))3 → (𝐿2 (𝛺))3 are selfadjoint, bounded linear and strictly positive definite operators.
Hence,𝑀0 is selfadjoint, bounded linear and strictly positive definite in𝑀0 [(𝐿2 (𝛺))

10]. Let 𝜆−1 be in

𝐿 ((𝐿2 (𝛺))3) andℜ𝜆−1 strictly positive definite. Furthermore, assume that 𝜎 is selfadjoint, positive

definite and it is in (𝐿∞ (𝛺))3×3. Then,𝑀1 is in 𝐿 ((𝐿2 (𝛺))
10) andℜ𝑀1 is strictly positive definite on

[{0}]𝑀0 = {0} ⊕ (𝐿2 (𝛺))3 ⊕ {0}6. Since 𝜎 ∈ (𝐿∞ (𝛺))3×3 is selfadjoint and positive definite, so is ℰ ∈
(𝐿∞ (𝛺))10×10. Moreover, there exists a selfadjoint, positive definite operator√ℰ. Hence, the quadratic
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form ⟨𝑢 ∣ ℰ𝑢⟩ℂ10 is approximated by the Lipschitz continuous mapping 𝐹𝑓𝜉 = (𝑢 ↦ 𝑓𝜉 (⟨𝑢 ∣ ℰ𝑢⟩ℂ10)) as

𝜉 → 0+, where 𝑓𝜉 is defined in Example 1. Let 𝜗0 ∈ 𝐻(
∘

grad, 𝛺), 𝐸0 ∈ 𝐻(
∘

curl, 𝛺), 𝐻0 ∈ 𝐻 (curl, 𝛺)

and 𝑉0 ∶= (𝜌𝐶𝜌𝜗0, 0, 𝜀𝐸0, 𝜇𝐻0). Then 𝑢0 ∶= (𝜗0, 0, 𝐸0, 𝐻0) ∈ 𝐷 (𝐴), 𝑉0 = 𝑀0𝑢0 and 𝑉0 ∈ 𝑀0 [𝐷 (𝐴)]. The
initial boundary-value problem with respect to the microwave heating problem is presented in our
framework as follows

⎛
⎜
⎜
⎜
⎜
⎝

𝜕0𝑀0 +𝑀1 +

⎛
⎜
⎜
⎜
⎜
⎝

0
∘
div 0 0

grad 0 0 0

0 0 0 −curl

0 0
∘

curl 0

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝜗

𝑞

𝐸

𝐻

⎞
⎟
⎟
⎟
⎟
⎠

= 𝐹 +

⎛
⎜
⎜
⎜
⎜
⎝

⟨𝑢 ∣ ℰ𝑢⟩ℂ10

0

0

0

⎞
⎟
⎟
⎟
⎟
⎠

+ 𝛿 ⊗

⎛
⎜
⎜
⎜
⎜
⎝

𝜌𝐶𝜌𝜗0
0

𝜀𝐸0
𝜇𝐻0

⎞
⎟
⎟
⎟
⎟
⎠

. (8)

This problem yields the following initial value evolutionary problem with the Lipschitz continuous
perturbation

⎛
⎜
⎜
⎜
⎜
⎝

𝜕0𝑀0 +𝑀1 +

⎛
⎜
⎜
⎜
⎜
⎝

0 div 0 0
∘

grad 0 0 0

0 0 0 −curl

0 0
∘

curl 0

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝜗

𝑞

𝐸

𝐻

⎞
⎟
⎟
⎟
⎟
⎠

= 𝐹 +

⎛
⎜
⎜
⎜
⎜
⎝

𝐹𝑓𝜉 (𝑢)

0

0

0

⎞
⎟
⎟
⎟
⎟
⎠

+ 𝛿 ⊗

⎛
⎜
⎜
⎜
⎜
⎝

𝜌𝐶𝜌𝜗0
0

𝜀𝐸0
𝜇𝐻0

⎞
⎟
⎟
⎟
⎟
⎠

(9)

for sufficiently small 𝜉 ∈ ℝ>0. In the next theorem we sum up the solution theory of (9), which
concerns the approximation solution of (8).

Theorem 6. Let 𝜆−1 ∈ 𝐿 ((𝐿2 (𝛺))3), and ℜ𝜆−1 be strictly positive definite. Let 𝜀, 𝜇 ∈ 𝐿 ((𝐿2 (𝛺))3)
be selfadjoint and strictly positive definite operators. Let 𝜌𝐶𝜌 ∈ 𝐿 (𝐿2 (𝛺)) be selfadjoint and strictly
positive definite. Let 𝜎 ∈ (𝐿∞ (𝛺))3×3 be selfadjoint, positive definite. Let (𝜗0, 0, 𝐸0, 𝐻0) ∈ 𝐷 (𝐴)
and 𝐹 ∈ 𝜒ℝ≥0 (𝑚0) [𝐻𝜈,0 (ℝ) ⊗ (𝐿2 (𝛺))10] be given data. Let 𝜈0 ∈ ℝ>0. Furthermore, assume that

0 ≤ 2

𝑐𝜈√𝜉
‖
‖√ℰ

‖
‖∞

< 1 for all 𝜈 ≥ 𝜈0 and for some parameter 𝜉 ∈ ℝ>0 and some 𝑐𝜈 > 0. Then there exists

a unique solution 𝑢 ∈ 𝐻𝜈,0 (ℝ) ⊗ (𝐿2 (𝛺))10 of (8) for all 𝜈 ≥ 𝜈0. The solution depends continuously and
causally on the given data.

4. Conclusions

We have obtained a Lipschitz continuous function approximating the quadratic form

(𝑢 ↦ ⟨𝑢 ∣ ℰ𝑢⟩ℂ𝑛)

for a selfadjoint, positive definite operator ℰ in (𝐿∞ (𝛺))𝑛×𝑛, 𝑛 ∈ ℕ. This gives us an opportunity
to conclude the well-posedness and causality of the evolutionary problems with non-linear term
consisting of the quadratic form with the help of the solution theory associated to the evolutionary
problems with a Lipschitz continuous perturbation.
The quadratic form can be found in the heat equation coupled with Maxwell’s equations. One

of these coupled systems is the microwave heating problem. Here we assumed that the physical
coefficients describing the properties of the underlying material, 𝜀, 𝜇 ∈ 𝐿 ((𝐿2 (𝛺))3), 𝜆, 𝜎, 𝛼 ∈
(𝐿∞ (𝛺))3×3 are 3 × 3matrix-valued functions depending only on the spatial variables.
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Корректность задачи о микроволновом нагреве

Балжинням Цангиа

Монгольский университет науки и технологий, Улан-Батор, Монголия

Аннотация. Ряд начально-краевых задач классической математической физики формулируется в виде
линейного операторного уравнения, а его корректность и причинность в гильбертовом пространстве
были установлены ранее. Если задача имеет единственное решение и решение постоянно зависит от
заданных параметров, то задача называется корректной. Независимость дальнейшего поведения ре-
шения до определенного момента указывает на причинность решения. В данной работе установлены
корректность и причинность решения эволюционных задач с возмущением, определяемым квадра-
тичной формой. В качестве примера рассмотрена связанная система уравнений теплопроводности
и Максвелла (задача микроволнового нагрева).

Ключевые слова: Эволюционные задачи, нелинейное возмущение, Липшицева непрерывность,
квадратичная форма, связанные задачи


