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Abstract. A number of initial boundary-value problems of classical mathematical physics is generally represented
in the linear operator equation and its well-posedness and causality in a Hilbert space setting was established. If
a problem has a unique solution and the solution continuously depends on given data, then the problem is called
well-posed. The independence of the future behavior of a solution until a certain time indicates the causality of
the solution. In this article, we established the well-posedness and causality of the solution of the evolutionary
problems with a perturbation, which is defined by a quadratic form. As an example, we considered the coupled
system of the heat and Maxwell’s equations (the microwave heating problem).
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1. Introduction

Here we consider a non-linear, coupled system in thermoelectricity. Thermoelectric effects are
viewed as the result of the mutual interference of heat flow and electric flow in a system. The
interaction of thermal and electric processes is modeled by the heat equation

pCp0p9 + divg = Q
and Maxwell’s equations

—curlH +J+ 60D = ]1
curlE + d4B = 0.

Here q is the thermal current flux, p is the volumetric mass density, C,, is the specific heat density, 9
is the absolute temperature, J is the electric current flux, E, H are the electric and magnetic fields,
respectively, D is the displacement current, B is the magnetic induction and J; is the given electric
source. Q describes the production of internal energy by various mechanisms, such as the Joule
heating, radioactive decay, etc. In our system the Joule heating Q = (E | J) produces the internal
energy. This term governs the non-linearity in the system and, moreover, it couples the heat and
Maxwell’s equations. The system of these equations has to be supplemented by so-called constitutive
equations, which describe the material’s properties and effects. As constitutive equations, we deal
with the following thermoelectric material relations

J = oF
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q = -—Agradd
D = ¢E
B = uH.

Here o is the electric conductivity, 4 is the thermal conductivity, ¢ is the electric permittivity, u
is the magnetic permeability. The coupled system of the heat and Maxwell’s equations with these
constitutive equations becomes the microwave heating problem. The microwave heating problem has
wide industrial applications and it has been studied theoretically and numerically in various situations
(see e.g. [1-3] and the references therein). We study the coupled systems in the three-dimensional
case. Moreover, we consider this system with the physical coefficients defined as 3-by-3—matrix-
valued functions depending on the spatial variables only. We assume (homogeneous) Dirichlet
boundary conditions for 4, (homogeneous) electric boundary conditions for E and non-vanishing
initial values. We say that a problem is well-posed if the problem has a unique solution and the solution
continuously depends on the given data. The independence of the future behavior of a solution until
a certain time indicates the causality of the solution. In our solution theory the well-posedness and
causality of a given problem are discussed.

The idea of tackling well-posedness and causality of the problem just discussed is to frame the
above system in the theory of evolutionary equations: In [4, 5] it has been found that a number of
initial boundary-value problems of classical mathematical physics is represented by the following
general form

(oM (65") + A)u =F. 3

Here 9, is the (continuously invertible) derivative with respect to time in a suitable weighted Hilbert
space, A is a skew-selfadjoint operator in a suitable Hilbert space; the mapping (z — M (z)) is bounded
operator valued and holomorphic in an open ball B (r, r) with some positive radius r centered at r.
The operator M (8;) is interpreted in the sense of a function calculus by establishing d, as a normal
operator in a suitable Hilbert space. The solution theory associated to (3) was established in [4, 5]
and many diverse problems were studied there. For applications, we focus on a particular case of
M(85"), namely,
M(35") = My + 65" M.

Here M, is a selfadjoint, bounded, linear operator with My|n(nm,) = ¢o > 0, M; is a bounded, linear
operator satisfying RM|gv,) > ¢1 > 0. In the next section we establish the solution theory of the
following problem

(OoMo + M; + A)u+ F(u) =F, (4)

which covers the aforementioned non-linear coupled system. Here F is a quadratic form. The non-
linear problem (1) yields a fixed point problem. In our approach the well-posedness of (4) is based
on the strict positive definiteness of the operators R (9,M, + M; + A) and R (6,M, + M; + A)* and
a Lipschitz continuous approximation of F. Due to the strict positive definiteness result, the inverse
operator (d)M, + M; + A)~" becomes Lipschitz continuous in a suitable Hilbert space. Thus, (4)
amounts to be an evolutionary problem in the sense of (3) with a Lipschitz continuous perturbation,
which is eventually solved by the contraction mapping principle. As an application we shall consider
the microwave heating problem in the third section.
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2. Solution theory

We start by establishing time differentiation d, as a normal operator. It is initially considered on

C4(R), which is the set of infinitely often differentiable, complex-valued functions defined on the
real line R having compact support. Hence J, is a densely defined, closed linear operator on I? (R),
moreover, it is an essentially skew-selfadjoint operator on I? (R). We define the following weighted
I*>—space

H,(R) 1= I* (R, exp (—2vx) dx) :={p € Lj,, (R) | exp (—vmy) ¢ € I* (R)}

equipped with the norm

lel, o i= \// lp ()| exp (—2vx) dx, ¢ € H, o (R).
R
Here my is the closure of the following operator

Co®C®R) - L(R)
p = (xPxp((x).
The operator m, is called the multiplication by argument operator and it is densely defined, Hermitian
and moreover, it is self-adjoint. Let v € R. We also define the operator exp (—vm,) such that
exp (—vmg) @ = (x = exp (—vx) ¢ (x)) for peLl,, (R). Note that exp (~vig) [coo (R)] - C,, (R). Due
to the density of C,, (R) in both the spaces I? (R) and H,, 5 (R), exp (—vm) can be extended to a unitary
operator from I (R) onto H,, , (R) and the unitary extension is denoted again by exp (—vm,). The

inverse of exp (—vmy) is
exp (vmy) : *(R) > vo (R).

Note that we may utilize the notation H, o (R) for the space I? (R) with the inner product (- | 0.0 and
the norm |-, ,. The following operator

0, := exp (vmy) 8 exp (—vmy)

is unitarily equivalent to d, on H,, o (R). The operator d,, + v is the time derivative on H,, ; (R) and we
denote it again by d,. Moreover, for allv € Ry, 9y : D(Gp) C Hy o (R) = H,((R) is continuously
invertible on H,, 3 (R), that is

IA

195, 1, < 5

and a normal operator for all v € R\{0} on H,,(R). Furthermore, 85! : H,,(R) > H,((R)is
a normal operator (see e.g. [6, Theorem 5.42]) and there is the Sobolev chain

Hv,k+1 (60) < Hv,k (60) , keN
with respect to 8y, where H,, ;. (8,) : = D (%) is the Hilbert space with the norm
_ k
Hv,k - |ao.'v,0
for each k € N. Furthermore, we have

HV,—k (60) ind HV,—k—l (60) ) k (S N7
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where H, _; (9y) are completions of H,,; (R) for all k € N with the norms |-, _, := |65k-|v o Note that
we can unitarily extend the following operator

H,,(R)CH, ;) — H,p[R)
¢ = &'

We denote its extension again by d;'. This motivates the unitary extension of 3, from H,, , (R) onto
H, _ (9y) for each v € R\ {0} and we denote the extension again by d,. In the same manner we obtain
unitary operators

Hv,k+l(60) g Hv,k(ao)
¢ = Oop

for k € Z, as appropriate unitary extension/restriction of the originally discussed operator d, defined
on H, 4 (R).

2.1. On skew-selfadjoint operator

Let H, and H, be Hilbert spaces. For a densely defined, closed linear operator C : D(C) C H; - H,
and a block operator matrix B defined as follows

B=(0 —c*) ©
c 0

B, 0 0
0
A= ,
0
0 0 B,

where each B;, i = 1.n is defined as in (5).
In a coupled system of the heat and Maxwell’s equations with Dirichlet boundary condition and
electric boundary condition A has the following form

0 div 0

0 0 curl

0

gr;d 0 0 0
0

0 0 c1ir1 0

where div, grad, curl and curl are defined as follows. Let 2 C R? be an open set. Consider the
following vector analytical differential operators

grad, : C,(@QC@) - PLr@
k=1
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¢ = (5k¢)ke{1,m,n}

and

div, : Pca@cPr@ - 2@
k=1 k=1

@Pdkeq,..ny Ok Pr-
k=1

The operators grad , and —div, are formally adjoint to each other and closable. Denoting

grad := grad,, div := div,
and . .
grad := (—divc) , div := (—gradc) ,

we can construct the following skew-selfadjoint operator

0 div
A? = o ’
grad 0

where grad, div and grad, div are all together densely defined, closed linear operators. The operator
AP is not only skew-selfadjoint but also encode Dirichlet boundary condition, that is, ¢ being in

D (grad means that ¢ satisfies a generalized homogeneous Dirichlet boundary condition.

Due to the skew-selfadjointness of A, we have a long Sobolev chain with respect to A + 1. Since
+1 € p (A), the domains of the operators A and A + 1 coincide. There is the Sobolev chain

He (A+1) o Hy(A+1) fork e Z.

Here H =: Hy (A + 1), Hi (A + 1) is the domain of (4 + 1)k and it is a Hilbert space with the norm
[l = )(A + 1)k -|O o for each k € Nand H_; (A + 1) is the completion of H for each k € N under the

norm |-|_, := )(A +1)7F -|0 o For the sake of brevity, we also denote Hy 4 := Hy (A + 1). Now we are
in the position to construct the Sobolev lattices
(o @ Ho), o,
for the chains (H,, (60))kEZ and (H, (A + 1)),,_, with respect to the operators 6, ® Iy and I;, | ® A.
Herely : H—> HandlIy,, : H,(R) — H,((R) are the identity operators. Note that H, ; ® H can
be interpreted as the completion of the linear space generated by H—valued functions of the special

form

tedpOw=:POw)()

for each k € N, where 3 € C, (R), w € H. In fact, H, ; ® H is unitarily equivalent to H,, ; (R, H) for
eachk € N.

The operators J, ® Iy and Iy, , ® A are well-defined and have essentially the same properties as
the operators 3, and A, respectively. Therefore, we also write A and 9, for their canonical extensions
AQIyandly,, ®din Hyp (R, H).
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2.2. The material law operator
The Fourier-Laplace transform
L, 1= Fexp(-vmg) : H,o(R,H) - [*(R,H)

given as a composition of the (temporal) Fourier transform ¥ and the unitary weight operator
exp (—vmy), is a spectral representation associated with d,. It is

60 = »C: (lmO + V) Lv.

This observation allows us to consistently define an operator function calculus associated with d, in
a standard way and we can even extend this calculus to operator-valued functions by letting

1

Here the linear operator M(;> : ! (R,H) — I? (R, H) is determined uniquely via

imo+v

(M(im01+ V)CP) @) := M(im01+ v)(p(/l) inH

forevery 1 € R, ¢ € C(R, H) by an operator-valued function M. For a material law the operator-
valued function M needs to be bounded and an analytic function z —» M(z) in an open ball Bx(r,r)
with some positive radius r centered at r. Here we will concentrate on the following particular form
of the material law

M(35") = My + 85" My,

where M, is selfadjoint, bounded linear and M, > ¢, > 0 on the range M, [H], the null space [{0}] M,
is non-trivial and M, € L (H) with RM; > ¢; > 0 on [{0}] M,.

This is not an artificial assumption, rather a necessary constraint enforced by the requirement of
causality and strictly positive definite condition

R (u | (6pM(65")) u>H,,,0(R,H) >clu| ”>H,,,O(R,H)
for c € R, and all sufficiently large v € R, and all u € D (d,). The strict positive definite condition
implies
R | @M + My + Ay o > |y o
for c € R, and all sufficiently large v € R, and all u € D (d,). Moreover,
OoMoy+M; + A

has dense range in H,, o (R, H). For all sufficiently large v € R, we have

R 1
H(60M0+M1+A) H <—,0<¢,<0
L(Hyo(R,H)) Cv

and this also implies the solution theory of the following evolutionary problems
(aoMO +M1 +A)u = S(u) +f,

where S is a suitable Lipschitz mapping.
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2.3. Well-posedness of evolutionary problems with a non-linear perturbation term

After making some reformulations in the microwave heating problem, the problem gets the following
shape
(aoMO +M1 +A)u +F‘(u) = F,

where F is a quadratic form and it is not Lipschitz continuous. For a Lipschitz continuous
approximation of the quadratic form we recall the following Lemma and Theorem in [7].

Lemmal. Let f : Ryq — Ryq be differentiable, and such that (z - |\/E f’ (z)’) is bounded. Let
& € C™™" be selfadjoint with € > 0. Then there exists C > 0 such that

|f (] Euyen) = f (0 ] EV)ca)l, < Clu—vlen
forallu, v e C".
Theorem 4. Let (2, u) be a o—finite measure space. Let £ € (L® (Q2)) ™" and

F:D(F) - H,,RQIFQ)
u » (RxQ53(tw) = u(tw)|E@ult,w)e,)

with maximal domain. Here D (F) C H,, o (R) ® (I* (Q))n. We assume that & (w) € C™" is selfadjoint and
positive for a.e. w € Q. Let f : Ryq = Ry be differentiable with f (0) = 0 and such that

2 Wzf (@)
is bounded. Define

Fr : D(F) CH,o(R)® (2 (2)" - H,z(R)® Q)
u » (RxQ>3(tw)e f(Fw(tw))

with maximal domain. Then D (Fy) = H, o (R) ® (I? (Q))n and Fy is Lipschitz continuous.

Hence, it suffices to find a specific function f which satisfies all the assumptions in Lemma 1 and
approximates the quadratic form.

Example 1. We consider the following function

fe i Ry = Ry
-

for £ € R,. The function is infinitely differentiable for all x > —% and as £ — 0+, it is approximated

by the argument, that is,

Je () ~ x.
The mapping (z - |\/Ef€’ (z)|) is uniformly bounded. Indeed,

(zm f@Vz) = (w\/%)



Tsangia B., Well-posedness of the microwave heating problem 229

1

\/?

Let €(w) € C™" be selfadjoint and positive for a.e. w € Q. By Lemma 1, the following holds
|f§ ((u | Su>¢:n) - f§ (<U | gU>q:n)| < Clu - U|Cn

for C € R,. Since f; (0) = 0 for all § € R, the mapping defined by

<

D Hy(R)® (12 (Q)" > Hy(R) QI (Q)
u - (o) fr((ut o)l E@u(t,w)e,))

is Lipschitz continuous for all § € R and (t,w) € R X Q (Theorem 4) and the Lipschitz constant of
2 H\/E H . Furthermore, the following holds

iS\/—E

ng

the mapping Fy,

Fr, ) = f (] Ew)en) = (u | Ew)e
for sufficiently small § € R,,. We have obtained the Lipschitz continuous mapping F, =
(u fr((u| Eu)e,)) which approximates F = (u — ((u | Eu).,)) as & — 0+.
Hence, the solution theory of the perturbed problem
(oMo + M, +A)u+Ff§ (w=F
provides an approximate solution of (4).

Theorem 5. Let (2, 1) be a o—finite measure space. Let H = I? (Q)". Let My, € L (H) be selfadjoint,
positive definite and Mg |po[a1 2 €o > 0, and My € L(H) with RM|jjoym, > €1 > 0. Let A : Hy 4 C
H — H be a skew-selfadjoint operator. Assume that & € (L™ (Q))™" is selfadjoint and positive definite,
and0 < -2 H\/EH < 1for some & € Ry. Letuy € D(A) and F € xg,, (my) [H,,o ® H]| be given data.

o >

e

Then there exists a unique solutionu € H, o ® H of

((3oMo + My + A) [pagnpay) # = Fy, (u) + F + 8 @ Myuyg

for allv > v, for some vy € Rsq. The solution depends continuously and causally on the data. Moreover, the
initial condition
(Mou) (0+) = Mouy

is attained in H_j 4.

3. The microwave heating problem

The microwave heating problem has wide industrial applications and it has been studied theoretically
and numerically in various situations (see e.g. [1-3] and the references therein). In the study of the
microwave heating problem the electric conductivity and/or thermal conductivity are considered as
an operator, which may depend on the temperature (see e.g. [3]). But we will study the microwave
heating problem with temperature independent thermal conductivity, electric conductivity, magnetic
permeability and electric permittivity. These material coefficients are defined as 3 x 3 matrix-valued
functions depending only on the spatial variables. This may describe material properties more
substantially. The equations are introduced in the introduction. The set of originally given equations
turns into the following equations

pCp009 + divg = (E | 0E);
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grad + 1 71q=0
—curlH + 0E + 9y¢E = J;
curlE + 0yuH = 0.

A formal reformulation of these equations yields

0 div o0 0 9 (E | 0B)¢s
rad 0 0 0 0
Mo+ M, +| & Tl=F+ ; @)
0 0 0 —curl E 0
0 0 curl 0 H 0
where
pCp 0 0 O 0 0 0 0
-1
M, = 0 0 0 O M, = 0 A 0 0
0 0 ¢ O 0 0 o 0
0 0 0 u 0 0 0 0
and (E | 0E); = (u | Eu)yo with
0O 0 0 O
&= 0O 0 0 O
0 0 o O
0O 0 0 O

Now we reformulate (7) to the proper evolutionary problem. Assume that 9 satisfies the (generalized)
Dirichlet boundary condition and E satisfies the (generalized) homogeneous electric boundary
condition. Then we have the following skew-selfadjoint operator

0 div 0 0
0 0 0
A= grad
0 0 0 —curl

0 0 curl 0

inHyy := H(gr;d, Q) @® H(div,Q) & H(c&rl, Q) @ H(curl, Q), where Q C R3 is an open set. As
in the preceding application, we assume that pC, : [*(Q2) - I*(Q),¢ : (I? (Q))3 - (I? ((2))3 and
w oo (2 (Q))3 - (2 (Q))3 are selfadjoint, bounded linear and strictly positive definite operators.
Hence, M, is selfadjoint, bounded linear and strictly positive definite in M, [(L2 (.Q))m]. Let "' bein
L ((L2 (Q))3> and RA~! strictly positive definite. Furthermore, assume that o is selfadjoint, positive
definite and it is in (I (2))**. Then, M, isin L ((L2 (Q))lo) and RM; is strictly positive definite on
[{0}]1 M, = {0} & (I* (.Q))3 @ {0}°. Since 0 € (I (©2))**? is selfadjoint and positive definite, so is € €
(L= (€2))'°*'°, Moreover, there exists a selfadjoint, positive definite operator \/E Hence, the quadratic
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form (u | Eu)ey, is approximated by the Lipschitz continuous mapping ng = (u = Je ((u | 814)@0)) as
§ — 0+, where f; is defined in Example 1. Let 9, € H(grad, .(2), Ey € H(curl, Q), H, € H(curl, Q)

and 1 := (pC,8, 0, €Eg, uHy). Then ug := (8,0, Ey, Hy) € D (A), V = Myug and V5 € My [D (A)]. The
initial boundary-value problem with respect to the microwave heating problem is presented in our
framework as follows

0 div. 0 0 9 (u | Eweio pCu8
d o 0 0 0 0
0oMy + M; + gra T (-F+ +0Q® . (8
0 0 0 —curl E 0 ¢k,
0 0 curl 0 H 0 uH,

This problem yields the following initial value evolutionary problem with the Lipschitz continuous
perturbation

(3 div 0 0 9 ng (u) pCp%
d o0 0 0 0
O0oMy + M; + gra 1 =F+ 0 +6® ©)
0 0 0 —curl E 0 €k,
0 0 curl 0 H 0 uH,

for sufficiently small £ € R,,. In the next theorem we sum up the solution theory of (9), which
concerns the approximation solution of (8).

Theorem 6. Let 17! € L ((L2 (Q))s), and RA! be strictly positive definite. Lete, u € L ((L2 (Q))3>
be selfadjoint and strictly positive definite operators. Let pC, € L(I*(R)) be selfadjoint and strictly
positive definite. Let o € (L® (@) be selfadjoint, positive definite. Let (9,,0,Ey, Hy) € D(A)
and F € X, (mo) [Hv,o (R) ® (I? (Q))m] be given data. Let v, € R, Furthermore, assume that
o= 22

e/ €
a unique solution u € H, (R) ® (I* (Q))IO of (8) for all v > v,. The solution depends continuously and
causally on the given data.

< 1for allv > vy and for some parameter § € Ry and some c,, > 0. Then there exists
(oo}

4. Conclusions

We have obtained a Lipschitz continuous function approximating the quadratic form
(u (Ul Euen)

for a selfadjoint, positive definite operator £ in (I® (2))™", n € N. This gives us an opportunity
to conclude the well-posedness and causality of the evolutionary problems with non-linear term
consisting of the quadratic form with the help of the solution theory associated to the evolutionary
problems with a Lipschitz continuous perturbation.

The quadratic form can be found in the heat equation coupled with Maxwell’s equations. One
of these coupled systems is the microwave heating problem. Here we assumed that the physical
coefficients describing the properties of the underlying material, ¢, u € L ((L2 (Q))S), A o,a €

(L= (2))**? are 3 x 3 matrix-valued functions depending only on the spatial variables.
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KoppeKTHOCTb 3afa4u 0 MUKPOBOJIHOBOM Harpese

Bamxunaam llanrua

Moneonbckuil yHusepcumem HayKu U mexHonozuil, Yaan-Bamop, Moneonus

AHHoTaums. P/ HauaIbHO-KpaeBhIX 33/1a4 KJIaCCUYECKON MaTeMaThu4ecKor Gusuky GopMyIUpyeTcs B BUIE
JIMHEHHOTO OIIepaTOPHOTO YPaBHEHU, 4 €r0 KOPPEKTHOCTb U IPUYMHHOCTD B I'MIbOEPTOBOM IIPOCTPAHCTBE
6bLIM yCTaHOBJIEHHI paHee. Eciu 3az1a4a MMeeT eJHCTBEHHOE PellleHUe U pellleHHe IIOCTOSHHO 3aBUCUT OT
3aJJlaHHBIX IapaMeTPOB, TO 3aJada Ha3bIBae€TCsI KOPPeKTHOH. He3aBUCHMOCTD AalbHeIIero IoBe/ieHus pe-
IIeHUs [0 OTIpe/ieIeHHOTO MOMeHTa yKa3hIBaeT Ha IPUYMHHOCTD PellleHus. B JaHHOIT paboTe ycTaHOBJIEHBI
KOPPEKTHOCTb U IPUYMHHOCTD PEIIeHNUs 3BOTIOIIMOHHEIX 33/]ad C BO3MYIIleHUEM, OIIpeZiesseMbIM KBaJpa-
TUYIHOH (HopMOIi. B KadecTBe MpuMepa pacCMOTpPeHa CBSI3aHHAs CUCTeMa YPaBHEHUH TeIJIONIPOBOAHOCTHU
1 MaxcBessa (3ajada MUKPOBOJIHOBOTO HarpeBa).

KniouyeBble cnoBa: DBOJIOLIMOHHBIE 33Zladyl, HeJUHEHHOe BO3MylleHue, JIUNIIuIleBa HENPEePbIBHOCTS,
KBa/ipaTU4yHas GopMa, CBA3aHHBIE 3ala4U



