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Abstract. The problem of finding equilibrium configurations of one-component charged particles, induced by
external electrostatic fields in planar systems, is a subject of active studies in fundamental as well in experimental
investigations. In this paper the results of numerical analysis of the equilibrium configurations of charged
particles (electrons), confined in a circular region by an infinite external potential at its boundary are presented.
Equilibrium configurations with minimal energy are searched by means of special calculation scheme. This
computational scheme consists of the following steps. First, the configuration of the system with the energy as
close as possible to the expected energy value in the ground equilibrium state is found using a model of stable
configurations. Next, classical Newtonian molecular dynamics is used using viscous friction to bring the system
into equilibrium with a minimum energy. With a sufficient number of runs, we obtain a stable configuration
with an energy value as close as possible to the global minimum energy value for the ground stable state for
a given number of particles. Our results demonstrate a significant efficiency of using the method of classical
molecular dynamics (MD) when using the interpolation formulas in comparison with algorithms based on Monte
Carlo methods and global optimization. This approach makes it possible to significantly increase the speed at
which an equilibrium configuration is reached for an arbitrarily chosen number of particles compared to the
Metropolis annealing simulation algorithm and other algorithms based on global optimization methods.
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1. Introduction

The question of how charged particles arrange themselves in a restricted planar geometry attracted
continuous attention for many decades (for a review see [1]). Modern technology allows us to study
such phenomena on the same scale, from Bose condensates with some thousand atoms to quantum
dots with a few electrons, providing rich information about specific features of correlation effects
in mesoscopic systems (see, for example, [2, 3]). However, finding the exact analytical equilibrium
charge distribution (the one that makes the body an equipotential) is not a simple problem. The
existence of the symmetry for considered system may simplify the task. Thomson was the first
to suggest an instructive solution for interacting electrons, reducing the 3D harmonic oscillator
confinement to a circular (2D) harmonic oscillator [4]. He developed an analytical approach, which
enables us to trace a self-organization for a small number of electrons (n < 10) in a family of rings
(shells) with a certain number of electrons in each shell.

Nowadays, many ideas and concepts introduced in condensed matter physics can be realized and
analyzed with high accuracy as a function of particle number and boundary properties. In fact,
nanotechnology gave rise to emergence of lateral quantum dots creation which properties where not
so obvious in ninetieth. Assuming a circular symmetry of such quantum dots, the first attempt to
understand the distribution of electrons in such confined systems were based on the Monte Carlo
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(MC) calculations for charged particles (ions and electrons) confined by 2D parabolic and hard-wall
potentials (see, e.g., [5-7]). The results of these calculations confirmed the predictions based on
the Thomson model for N < 52. The next step in the attempt to find the analytical description of
the distribution of charged particles in the disc geometry have been done in [8]. In this paper the
basic principles of self-organization of one-component charged particles, confined in disk have been
proposed. A system of equations was derived, which allows to determine equilibrium configurations
for an arbitrary, but finite, number of charged particles that are distributed over several rings. This
approach reduces significantly the computational effort in minimizing the energy of equilibrium
configurations and demonstrates a remarkable agreement with the values provided by molecular
dynamics calculations. This paper gave a new impetus to activity in finding the bridge between the
distribution of finite number of confined charged particles to their continuous limit (e.g., [9-15]).

From the analysis, based on MC and MD calculations for a relatively small number of charged
particles, it follows that the number of stable configurations grows very rapidly with the number of
particles. There are many local minima that have energies very close to the global minimum. These
metastable states with lower (or higher) symmetry are found with much higher probabilities than the
true ground state [9, 10]. This picture is akin to a liquid-solid transition, when a rapid cooling gives
rise to a glass-like disordered solid rather than a crystal with lower energy. Therefore, the description
of this phenomenon requires the development of various not only analytical approaches but as well
the effective numerical recipes with growing number of confined particles.

In this paper, we present a new approach for numerical-analytical analysis of the equilibrium
configurations of charged particles (say, electrons) confined in a disk geometry. Using a model of
stable configurations, which takes into account the interaction between shells of charged particles [8,
11], we obtain functional dependencies of the total number of particles of the system on the number
of rings and those of the energy of the equilibrium configuration on the total number of particles.
These dependencies make it possible to significantly simplify the search for the absolute minimum
of the system for a given total number of one component charged particles.

2. System description

The physical formulation of the problem can be as follows. A system of similarly charged particles
is given; they are located in a region with a cylindrical confining potential at the boundary. The
configurations of the particles are determined by the Hamiltonian, in which the potential energy
of the interparticle interaction dominates over the kinetic energy. It is necessary to find a stable
configuration of N particles with the minimal energy inside the given region.

Thus, we consider two-dimensional system on a plane consisting of identically charged particles
with mutual Coulomb interaction in the confining disk potential with the radius R. The Hamiltonian
of such a system can be written as follows:

H= Z Vet(®) + @ Z

i,j=1 ,—r]|
i<j

N
Z T, @)

where r; = |r}| is the distance to the center of the region bounded by the potential V., (r), a = €?/4nz e,
is a quantity characterizing the interaction of charges in the medium, and T; is the particle kinetic
energy. The confining potential V,,,(r) is defined as follows:

Vext(r) = { 0. r<k (2

o, r=R.

To avoid a large number of metastable states (local minima), the system is considered at
temperatures that are close to zero; at these temperatures, the potential energy dominates over
the kinetic one. As a result, it is possible to rewrite the function of the total energy of the system (1)

as follows:

H= Z Vext(n) +a Z
ij=1 |rl - rj|
i<j
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The problem is to find a stable configuration of the particle inside the given region with the
minimally possible energy.

Using his model, Thomsom obtained equation (4) for analytical calculation of the coordinates of
particles in the equilibrium state for one ring

En(r) = Z Z = X5 @)
" & 4 sin s (|z—1|) ar
n—1 1
S, = —.
i1 sin ;k

Here, E,(r) is the Coulomb energy of n particles with the charge e uniformly distributed along
a circle with the radius r, a = €?/4reye, is the quantity characterizing the interaction of charged
particles in the medium. Without loss of generality, electrons with the charge e are considered as
charged particles below. An original approach to the calculation of equilibrium configurations and
the corresponding energy was formulated in [8, 11]; in this approach, the interaction between shells
consisting of charged particles is also taken into account in addition to the energy of one ring (one
shell). As a result of solving the (5)

F=0, i=2,...,p.

P n B/ . i-1 KE ”i/’jz K "i/ljz
ner 3 [( >] s, ( [’ [()]).

(5)

Here, K = X_;(E = X;) are the complete elliptic integrals of the first (second) kind: X,(x) =

”/ 2dt(1 — xsin® £)P/2; 1, is the value of the ith optimal radius for the given stable configuration of
charged particles; and n; is the number of particles in the ith shell.

As preliminary analysis showed, the solution of these equations makes it possible to significantly
reduce the amount of computational work by finding the state that is closest to the equilibrium
configuration. It is worth noting that this approach allows us to almost exactly determine both the
equilibrium configuration and the total energy of the equilibrium state for N < 52.

In this paper, we develop a new approach and methods for calculating the coordinates of particles
and the energy of the equilibrium configuration for an arbitrary finite number of particles using the
obtained analytic dependencies of the distribution of particles and the energy of the equilibrium
configuration on the total number of particles in the system for N < 1000.

3. Computational scheme

To further increase the efficiency and reduce the calculation time, the following modification of the
traditional approach based on the molecular dynamics method [16] is proposed in this paper.
The computational scheme consists of the following steps.

1. We use interpolation formulas (6) for calculation initial particle distribution

N(N) = aiNg —b; (6)

i 1 2 3 4 5 6
a; | 2.7948 | 1.3439 | 1.1323 | 1.0127 | 0.9482 | 0.8517
b; | 3.9444 | 7.2999 | 10.845 | 14.850 | 19.128 | 21.732

Formulas (6) were obtained by interpolating solutions [17, 18] to equations (3) of the equilibrium
configuration model [8, 11].

2. Using the initial distribution of particles inside the circular region obtained in the previous
step, we run ab initio calculations using Newtonian molecular dynamics. The dissipation of
energy for cooling the system upon reaching the ground state with a minimum of potential and
zero kinetic energy is modeled by adding to the equations of motion a viscous friction force
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proportional to the speed (7), which realizes the corresponding outflow of energy from the
system.

=

mt/ = —V,V(¥;)—bsr/, Vie{l,23,..,N}. 7)
Here V(f;) = Veu(n) +a e r—lw includes the external confining potential plus the Coulomb
i<j |ri—rj

terms, and the friction coefficient by is the parameter controlling the quenching of velocities.

For calculations we used quenched velocity Verlet algorithm. Let at some moment of time ¢

the coordinates ¥;(¢t) and velocities ¥(t) of the particles be given, then at the moment of time

t + At, where At is some fixed time step, we can obtain the coordinates ¥;(t + At) and velocities
v,(t + At) using the following formulas (8), (9), (10).

£(6) = —V,V(#(0). ®)
Rt + At) = £(6) + V()AL + %(fi(t) — bV(O)AL. ©

(2 = bpAt) V(1) + Gi(t) +E(+ At))At
2+ bpAt ’

Vit + A1) = (10)
This is the so-called quenched molecular dynamics method.

3. The final stage of calculations includes a fairly large sequence of runs of molecular dynamics
calculations described at the previous step, which is due to the existence of a number of
metastable states that exponentially increases with the number of particles near the point
of global minimum of energy.

In order to estimate the minimum number of runs N, to obtain the ground state energy
value E,;, as close as possible to the global minimum, the following procedure is used. First,
a certain number of runs are performed depending on the number of particles in the system.
Then the probability of finding the minimum P(E,;, < Ey,) is calculated. Then the estimate for
the minimum number of runs has the following form N,,,s = 1/P(Emin < Eqal)-

For a sufficiently large number of runs N, in accordance with the Central Limit Theorem, the
energy values of metastable states calculated in each run are distributed in accordance with the
Gaussian distribution. Typically, the value E,,, — 30 is used as E,;. In this case, for a system consisting,
for example, of 1000 particles, E,,, — 30 = 736980.1734 in reduced units (E,,, is an average value for
the general sample for all runs. And o is the corresponding standard deviation.). At a given value of
E a1, the minimum number of runs N, to obtain the global minimum energy must be greater than
741.

However, we use a different version of probability estimation and, accordingly, a minimum number
of runs to practically guarantee obtaining the minimum energy value. This value was obtained using
the asymptotic formula (11) for the minimum energy of the ground state, obtained by the authors [17,
18] based on an analysis of solutions to the equations of the equilibrium configuration model [8, 11].

T T, 2 T

In this case, the estimate for E,, for 1000 particles will be equal to 736978.54, which is approximately
equal to E,,, — 40. The corresponding minimum number of runs N, to obtain the global minimum
energy must be greater than 25237. This value for the number of runs N,,,; looks more realistic for
the case of the initial configuration of particles distributed randomly within the disk.

As an initial approximation, the particle distribution obtained by solving equations of the model
of equilibrium configurations (5) for a certain number of rings is taken. After that, calculations are
started using the quenched molecular dynamics method under the condition of a gradual decrease in
the system temperature. When the zero temperature is reached, the calculations of the time evolution
of the system are considered to be completed, after which the energy of the resulting equilibrium
configuration of particles in the system is calculated.
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For example, for the above-mentioned system of 1000 particles, we fixed the distribution of particles
on the outer ring in the initial configuration N; = 276 in accordance with the formula (6). As a result,
we needed only 500 runs to obtain the minimum ground state energy equal to 736979.7283. The best
published value known to us is 736977.7079. This value can be obtained, according to our estimates,
for a number of runs no less than 25237 [14].

4. Conclusions

The effectiveness of the approach proposed in this article for calculating the global minimum energy
for the ground state of the above-mentioned systems of charged particles is based on the following
modifications of the traditional molecular dynamics method.

First, the initial configuration for molecular dynamics calculations was calculated using analytic
solutions of the equations of the equilibrium configuration model [8, 11]. Secondly, to cool the system,
energy dissipation was carried out due to viscous friction forces. For this purpose, the Verlet velocity
scheme with quenching was used. Finally, to estimate the number of molecular dynamics runs
with different initial conditions, we used an asymptotic formula [17, 18] for the ground state energy,
obtained from an analysis of solutions to the equations of the equilibrium configuration model [8,
11]. As a result, the computational efficiency in terms of computation time has increased by more
than two orders of magnitude.

The algorithms and programs developed by us can be used to numerically study the stability
of systems of charged particles in various fields of physics, chemistry, molecular biology, and
nanotechnology, including, for example, the study of nano-objects, such as quantum dots.
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KomnbloTepHble UCC/ief0BaHMSA 3aBUCMMOCTMU OT YMC/1A YaCTUL, CTPYKTYPbI
OCHOBHOI'O COCTOSIHUSA JBYMEPHOI CUCTEMbI 3apsXKeHHbIX YacTul,
OrpaHU4YEeHHbIX KPYroBbiM NOTEHLUAJIOM
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AnnoTtayms. [Ipo6eMa HAXOXKAEHUSI PABHOBECHBIX KOH(QUIYPALMil OZlHOKOMIIOHEHTHBIX 3aPSKEHHBIX JaCTHII,
MHJYIAPOBAHHBIX BHEITHUMMU 3JIEKTPOCTATUYECKUMHU IOJISMHU B INIAHAPHBIX CUCTEMaX, IBJSAETCS IpeIMeTOM
aKTHUBHBIX UCCJIeJOBAHUH KaK B PyHIaMeHTaJIbHBIX, TaK U B 9KCIIepIMEeHTAIbHbIX UCCIeJOBAHUAK. B JaHHON
paboTe IpeACTaBIEeHB! PE3yAbTAThl YUCIEHHOTO aHAIN3a PABHOBECHBIX KOHDUTYPALUH 3apsPKeHHBIX YaCTHI]
(3J1eKTPOHOB), yIePXKUBaeMBIX B KPYTOBOIi 06/1acTy 6eCKOHeYHBIM BHEIIIHIM ITOTEHIIAJIOM Ha ee TpaHHIle.
PaBHOBecHble KOHQUTYpallMy ¢ MUHUMAaJIbHOH 5Heprueii UIIyTcs ¢ IIOMOIIbIO CIIellalbHOM cXeMbl pacdeTa.
JlaHHas BEIYMCIUTENbHAS CXeMa COCTOUT U3 CJAeAYIOMUX maros. CHayasa ¢ IOMOIIBIO CTAIOHAPHOMN MoJenn
HaXOJUTCSI KOHQUTYPALUsI CUCTEMBI C 9HEepruei, MaKCHMaIbHO OJIM3KOH K 0OXKHIJaeMOMy 3HaUeHHUIO SHEePIUU
B OCHOBHOM COCTOSIHMU PaBHOBecus. Jlajiee NCIIOIb3yeTCs KJacCUYecKas HbIOTOHOBCKasl MOJIEKY/IApHas JUHa-
MUKA C UCIIOJIb30BaHHEM BSI3KOTO TPEHUS, YTOObI IPUBECTH CUCTEMY B PABHOBECHE C MUHUMAJIbHOM SHEPrHUei.
TIpu KOCTaTOYHOM KOJUYECTBE IIPOTOHOB MBI IIOJIy9aeM YCTOUIMBYI0 KOHOUTYPALMIO CO 3HaYeHHeM 3HEPTUU,
MaKCHMaJbHO OIU3KUM K I7106a1bHOMY MUHUMAaJIbHOMY 3HaU€HHUIO SHEPTUH AJIs1 OCHOBHOTO YCTOMYIHBOIO CO-
CTOSIHUS JJI 33JaHHOT'0 YMCJIa yacTull. Hamy pe3ynpTraTsl JeMOHCTPUPYIOT 3HAUUTENbHYIO0 3P (EeKTUBHOCTD
KICIIOJIb30BAHUS METOJa KJIACCUYeCKOH MOJIEKYIApHOH AuHaMuKy (MJ) IpU MCIOIb30BaHUN UHTEPIIONS-
IIOHHBIX (OPMYJI TI0 CPAaBHEHUIO C aITOPUTMAaMU, OCHOBAHHBIMU Ha MeToZax MoHTe-Kapsio u rinobanbHoM
ontuMusanuu. Taxkoi Mogxoz I03BOJIAET CYIleCTBEHHO IIOBBICUTD CKOPOCTb IOCTIKEHN PABHOBECHOI KOH-
urypauuu s Ipor3BOJbHO BEIOPAHHOIO YKC/Ia YACTHLL [I0 CPABHEHHUIO C AJITOPUTMOM MOJEIUPOBAHIS
oTKUra MeTporonuca 1 JpyruMy aIfOPUTMaMi, OCHOBAaHHBIMU Ha MeTOaX IJI00aJbHO ONTUMU3AI .
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