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Abstract. For one-dimensional inhomogeneous (with respect to the spatial variable) linear parabolic equations,
a combined approach is used, dividing the original problem into two subproblems. The first of them is an
inhomogeneous one-dimensional Poisson problem with Dirichlet–Robin boundary conditions, the search for
a solution of which is based on the Chebyshev collocation method. The method was developed based on
previously published algorithms for solving ordinary differential equations, in which the solution is sought in
the form of an expansion in Chebyshev polynomials of the 1st kind on Gauss–Lobatto grids, which allows the use
of discrete orthogonality of polynomials. This approach turns out to be very economical and stable compared to
traditional methods, which often lead to the solution of poorly defined systems of linear algebraic equations. In
the described approach, the successful use of integration matrices allows complete elimination of the need to
deal with ill-conditioned matrices.

The second, homogeneous problem of thermal conductivity is solved by the method of separation of variables.
In this case, finding the expansion coefficients of the desired solution in the complete set of solutions to the
corresponding Sturm–Liouville problem is reduced to calculating integrals of known functions. A simple
technique for constructing Chebyshev interpolants of integrands allows to calculate the integrals by summing
interpolation coefficients.

Key words and phrases: initial boundary problems, pseudo spectral collocation method, Chebyshev polynomials,
Gauss–Lobatto sets, numerical stability, separation of variables

1. Introduction

Many important physics problems that involve two or more independent variables are solved using
mathematical models that include partial differential equations, not limited to models based on
ordinary differential equations. Models of this kind also include the description of heat propagation in
solids using the heat equation with various boundary and initial conditions. An important method for
solving partial differential equations known as the separation of variables method will be discussed
below. Its essential feature is the reduction of the original partial differential equation to a system of
simpler ordinary differential equations, which can be successfully solved based on given initial or
boundary conditions.
The desired solution to a partial differential equation is expressed as an infinite series, which is

the sum of solutions of individual ordinary differential equations. In many cases, it is convenient to
represent the required solutions in the form of a series of sines, cosines, or polynomial functions, for
example Chebyshev polynomials. This approach allows an effective use of the collocation method –
a projection method for solving both integral and differential equations. Therefore, the first part of
the present paper is devoted to a discussion of the Chebyshev interpolation method for solving the
one-dimensional heat equation.
The Chebyshev collocation method has proven itself in solving a wide class of problems [1–5].

Particularly, in [6–9] its effectiveness was demonstrated in solving ODEs and problems of restoring
functions from known first- and second-order derivatives. In Ref. [10] stable spectral methods for
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solving the Poisson equation with Dirichlet–Dirichlet, Dirichlet–Neumann and Neumann–Neumann
boundary conditions were analyzed in detail. The present paper describes an algorithm for solving
the 1-D Poisson equation with Dirichlet–Robin boundary conditions. The algorithm is based on
the developed new method of spectral collocation and illustrates the effectiveness of the variable
separation method in solving inhomogeneous heat conduction problems.
Spectral methods have proven themselves to be excellent in solving homogeneous boundary value

problems for a wide class of partial differential equations using the method of separation of variables.
In cases of inhomogeneous problems, methods for separating variables are not directly applicable.
However, in this paper we show how the Chebyshev collocation method can be effectively applied in
a two-stage solution scheme for a certain class of inhomogeneous boundary value problems for a 1-D
linear parabolic equation.

2. Mathematical model of heat conduction

Thermal conductivity is the property of a material to conduct heat, which is assessed primarily from
the point of view of Fourier’s law of thermal conductivity. Heat conduction, also called diffusion, is the
direct microscopic exchange of kinetic energy of particles (such as molecules) or quasiparticles (such
as lattice waves) across a boundary between two systems. On amicroscopic scale, thermal conduction
occurs when hot, fast-moving, or vibrating atoms and molecules interact with neighboring atoms
and molecules, transferring some of their energy (heat) to those neighboring particles. In other
words, heat is transferred by conduction when neighboring atoms vibrate relative to each other or
when electrons move from one atom to another.
When an object has a different temperature than another body or its surroundings, heat flows

so that the body and surroundings reach the same temperature, at which point they are in thermal
equilibrium. This spontaneous transfer of heat always occurs from a region of high temperature
to another region of lower temperature, as postulated by the second law of thermodynamics.
Thermodynamic and mechanical heat transfer are calculated using the heat transfer coefficient
– the proportionality between heat flow and the thermodynamic driving force of heat flux. Heat
flux is a quantitative vector representation of the movement of heat through a surface [11]. In an
engineering context, the term “heat” is perceived as synonymous with thermal energy.
The heat conduction equation models diffusion processes [12], including thermal energy in solids,

solutes in liquids, and biological populations. We will consider the heat conduction equation
describing the temperature change in a one-dimensional rod of a finite length. Let us also consider
several possible types of boundary conditions that can be used when modeling temperature changes.
A commonly used method for solving the heat conduction equation is the complete separation

of variables method, which results in the solution of two ordinary differential equations generated
by the separation of variables method. To solve one of the emerging subproblems, a uniform
approach to solving the heat conduction equation for almost any of the frequently used (Dirichlet–
Neumann–Robin) sets of boundary conditions is considered. A technique is proposed for constructing
a general solution to the inhomogeneous Poisson equation – the heat conduction equation – regardless
of the type of boundary conditions. Concretization of the solution – the determination of a pair of
missing coefficients of expansion of the solution according to the selected polynomial basis occurs at
the second stage, considering the specified (distinct types and combinations) boundary conditions.

3. Inhomogeneous boundary value problems

Let us consider the solution of an inhomogeneous initial-boundary value problem for a one-
dimensional parabolic equation, including a time-independent inhomogeneous part of the equation
and time-independent boundary conditions.

Two-sided Dirichlet–Dirichlet conditions

𝑘𝜕
2𝑢
𝜕𝑥2 (𝑥, 𝑡) −

𝜕𝑢
𝜕𝑡 (𝑥, 𝑡) = −𝐹(𝑥), 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑢(0, 𝑡) = 𝑢0, 𝑢(𝐿, 𝑡) = 𝑢1, 𝑡 > 0,
𝑢(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝐿.

(1)



76 DCM&ACS. 2024, 32 (1) 74–85

The boundary conditions of problem (1) mean that the left and right edges of the rod have different
constant temperatures due to ideal contact with heat baths having respectively temperatures 𝑢0
and 𝑢1.

Recall that a boundary value problem (BVP) is called inhomogeneous if either the partial differential
equation or the boundary conditions are inhomogeneous. The well-known method of separating
variables is not applicable to such inhomogeneous boundary value problems. However, in some
cases it is possible to change the variables in such a way that the inhomogeneous boundary value
problem transforms into two problems. One of which is a relatively simple inhomogeneous BVP for
an ordinary differential equation (ODE), and the other is a homogeneous BVP for a partial differential
equation (PDE).
Assume a function 𝐹(𝑥) to describe the intensity of heat generation inside the rod, 𝑢0 and 𝑢1 being

constant. Replacing the unknown 𝑢(𝑥, 𝑡) with a new variable by means of substitution 𝑢(𝑥, 𝑡) =
𝑣(𝑥, 𝑡) + 𝜓(𝑥), we reduce the solution of problem (1) to a subsequent solution of two subproblems:

Problem А, an inhomogeneous problem with two-sided Dirichlet–Dirichlet conditions.

𝑘𝜓″(𝑥) + 𝐹(𝑥) = 0, 𝜓(0) = 𝑢0, 𝜓(𝐿) = 𝑢1. (2)

Problem B, a homogeneous boundary value problem for a partial differential equation.

⎧
⎪
⎨
⎪
⎩

𝜕2𝑣
𝜕𝑥2 (𝑥, 𝑡) =

𝜕𝑣
𝜕𝑡 (𝑥, 𝑡),

𝑣(0, 𝑡) = 0, 𝑣(𝐿, 𝑡) = 0,

𝑣(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥).

(3)

It is important to note that problem A is a simple one-dimensional Poisson problem — an ordinary
differential equation of the second order with given inhomogeneous boundary value Dirichlet
conditions. At the same time, this problem is a problem of restoring a function from its known second-order
derivative 𝐹(𝑥) with two additional conditions, in this case, the Dirichlet boundary conditions.
The second auxiliary subproblem B is a homogeneous BVP that can be solved based on the

traditional separation of variables method. The solution to the original problem (1) will be the
“sum” of the solutions to problems A and B.

Let us illustrate the considered approach to the analytical solution of the inhomogeneous boundary
value problem (1) using a pair of examples.

Example 1. Assume that 𝐹(𝑥) = 𝑟 = 𝑐𝑜𝑛𝑠𝑡 > 0. It is required to solve the problem (1) under the
following boundary and initial conditions for 𝐿 = 1:

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 𝑢0, 𝑡 > 0,
𝑢(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 1.

In our example, both the partial differential equation and the boundary condition at point 𝑥 = 1
are inhomogeneous. Let us perform the change of variables 𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝜓(𝑥), then

𝜕2𝑢
𝜕𝑥2 (𝑥, 𝑡) =

𝜕2𝑣
𝜕𝑥2 (𝑥, 𝑡) + 𝜓″(𝑥) and 𝜕𝑢

𝜕𝑡 (𝑥, 𝑡) =
𝜕𝑣
𝜕𝑡 (𝑥, 𝑡).

We substitute these expressions into Eq. (1), so that the equation takes the form

𝑘 𝜕
2𝑣
𝜕𝑥2 (𝑥, 𝑡) + 𝑘𝜓″(𝑥) + 𝑟 = 𝜕𝑣

𝜕𝑡 (𝑥, 𝑡).

Let the function 𝜓 satisfy the equation

𝑘𝜓″(𝑥) + 𝑟 = 0 or 𝜓″(𝑥) = − 𝑟
𝑘 , (4)

with the boundary conditions
𝜓(0) = 0 and 𝜓(1) = 𝑢0. (5)
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Then for 𝑣(𝑥, 𝑡) we obtain a problem of solving the homogeneous parabolic equation

𝑘 𝜕
2𝑣
𝜕𝑥2 (𝑥, 𝑡) −

𝜕𝑣
𝜕𝑡 (𝑥, 𝑡) = 0, (6)

with the boundary conditions
𝑣(0, 𝑡) = 0 and 𝑣(1, 𝑡) = 0 (7)

and the initial condition
𝑣(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥). (8)

Equation (4) is integrated two times, as a result of which we arrive at its solution in the general
form

𝜓(𝑥) = − 𝑟
2𝑘𝑥

2 + 𝑐1𝑥 + 𝑐2. (9)

Then to determine the constants 𝑐1 and 𝑐2, we use the boundary conditions

𝜓(0) = 0 and 𝜓(1) = 𝑢0,

distributed over the summands of the sought solution. Substituting these values into the general
solution (9), we calculate the values of constants 𝑐1 and 𝑐2:

𝑐2 = 0, 𝑐1 =
𝑟
2𝑘 + 𝑢0.

Therefore, the final partial solution of the Dirichlet–Dirichlet problem (4)–(5) for the simplest
Poisson equation (4) has the form:

𝜓(𝑥) = − 𝑟
2𝑘𝑥

2 + ( 𝑟2𝑘 + 𝑢0) 𝑥. (10)

From the initial condition 𝑢(𝑥, 0) = 𝑣(𝑥, 0)+𝜓(𝑥) it follows that 𝑣(𝑥, 0) = 𝑢(𝑥, 0)−𝜓(𝑥) = 𝑓(𝑥)−𝜓(𝑥).
Therefore, to determine 𝑣(𝑥, 𝑡), we solve a new boundary value problem

𝑘 𝜕
2𝑣
𝜕𝑥2 (𝑥, 𝑡) =

𝜕𝑣
𝜕𝑡 (𝑥, 𝑡), 0 < 𝑥 < 1, 𝑡 > 0,

𝑣(0, 𝑡) = 0, 𝑣(1, 𝑡) = 0, 𝑡 > 0,

𝑣(𝑥, 0) = 𝑓(𝑥) + 𝑟
2𝑘𝑥

2 − ( 𝑟2𝑘 + 𝑢0) 𝑥, 0 < 𝑥 < 1,

(11)

using the method of separation of variables. This method yields a solution to this problem in the
form

𝑣(𝑥, 𝑡) =
∞
∑
𝑛=1

𝐴𝑛𝑒−𝑘𝑛
2𝜋2𝑡 sin𝑛𝜋𝑥, (12)

where the coefficients 𝐴𝑛 are calculated by the formula

𝐴𝑛 = 2∫
1

0
[𝑓(𝑥) + 𝑟

2𝑘𝑥
2 − ( 𝑟2𝑘 + 𝑢0) 𝑥] sin𝑛𝜋𝑥𝑑𝑥. (13)

As a result, the solution to the original problem (1) is obtained by summing the solutions 𝜓(𝑥) and
𝑣(𝑥, 𝑡) of the homogeneous boundary value problem (4)–(5) and the boundary value problem (11)

𝑢(𝑥, 𝑡) = − 𝑟
2𝑘𝑥

2 + ( 𝑟2𝑘 + 𝑢0) 𝑥 +
∞
∑
𝑛=1

𝐴𝑛𝑒−𝑘𝑛
2𝜋2𝑡 sin𝑛𝜋𝑥. (14)

Note that 𝑢(𝑥, 𝑡) → 𝜓(𝑥) as 𝑡 → ∞ in expression (14). That is why the function 𝜓(𝑥) as a part of the
solution of the heat conduction equation that does not change with time is called a steady solution.
Whereas the function 𝑣(𝑥, 𝑡) → 0 as 𝑡 → ∞ is therefore called a transition solution.
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The determination of the coefficients 𝐴𝑛 according to formula (13) can be implemented using the
integration technique based on the interpolation of the integrand with Chebyshev polynomials of the
first kind on Gauss–Lobatto grids [13].

Example 2. In the next example, we consider an approach to solving an inhomogeneous boundary
value problem when the Dirichlet condition is specified at the left end, i.e. the left end is in perfect
contact with the heat bath (welded or screwed to a massive holder having a constant temperature 𝑢0),
and at the right end of the interval the Robin condition is imposed, i.e. this end exchanges heat with
the environment at temperature 𝑢𝑚 (hangs freely in the environment). Robin boundary conditions
arise, e.g., when the ends are immersed in some liquid or gaseous medium. The initial temperature
distribution 𝑓(𝑥) along the rod length 0 < 𝑥 < 𝐿 is also assumed to be given.
In accordance with the decomposition method, it is proposed to represent the solution to this

inhomogeneous boundary value problem under given boundary and initial conditions

𝑘𝜕
2𝑢
𝜕𝑥2 (𝑥, 𝑡) −

𝜕𝑢
𝜕𝑡 (𝑥, 𝑡) = −𝐹(𝑥), 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑢(0, 𝑡) = 𝑢0, 𝑢0 = 𝑐𝑜𝑛𝑠𝑡,
𝜕𝑢
𝜕𝑥
|||𝑥=𝐿

= −ℎ(𝑢(𝐿, 𝑡) − 𝑢𝑚), ℎ > 0 and 𝑢𝑚 = 𝑐𝑜𝑛𝑠𝑡,

𝑢(𝑥, 0) = 𝑓(𝑥), 0 < 𝑥 < 𝐿,

(15)

as a combination of two terms
𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) + 𝜓(𝑥), (16)

each of them being a solution to a separate boundary value problem, respectively:
Problem A2. The function of the spatial variable 𝜓(𝑥) is a solution to an inhomogeneous ordinary

differential equation with the Dirichlet boundary condition at the left end of the interval and the
Robin boundary condition at the right end, namely:

𝑘𝜕
2𝜓(𝑥)
𝜕𝑥2 (𝑥) + 𝐹(𝑥) = 0, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝜓(0) = 𝑢0, 𝑢0 = 𝑐𝑜𝑛𝑠𝑡,
𝜕𝜓
𝜕𝑥

|||𝑥=𝐿
+ ℎ𝜓(𝐿) = ℎ𝑢1, ℎ > 0 and 𝑢1 = 𝑐𝑜𝑛𝑠𝑡.

(17)

Problem B2. The second term, the function of two variables 𝑣(𝑥, 𝑡), is a solution to a homogeneous
boundary value problem with zero Dirichlet–Robin boundary conditions and given initial condition:

𝑘 𝜕
2𝑣
𝜕𝑥2 (𝑥, 𝑡) −

𝜕𝑣
𝜕𝑡 (𝑥, 𝑡) = 0, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑣(0, 𝑡) = 0,
𝜕𝑣
𝜕𝑥
|||𝑥=𝐿

+ ℎ𝑣(𝐿, 𝑡) = 0, ℎ > 0,

𝑣(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥), 0 < 𝑥 < 𝐿.

(18)

Let us consider sequentially the methods for solving each of these problems.

4. Solving Problem A2 by the Chebyshev collocationmethod

By analogy with the method of approximate solution of the Poisson problem with various boundary
conditions, such as the Dirichlet conditions on both ends of the interval 𝑢(𝑎) = 𝛼, 𝑢(𝑏) = 𝛽, Neumann–
Dirichlet condition 𝑢′(𝑎) = 𝛼, 𝑢(𝑏) = 𝛽, or Dirichlet–Neumann condition 𝑢(𝑎) = 𝛼, 𝑢′(𝑏) = 𝛽
thoroughly studied in Ref. [13], let us consider the solution of problem (17) based on the Chebyshev
collocation method and, therefore, polynomial interpolation of the solution.
The polynomial interpolation based on using the basis of Chebyshev polynomials, leads to

a necessity to formulate the problem in the interval [−1, 1] instead of the initial interval [𝑎, 𝑏]. In
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the new interval, the polynomial interpolant of the function 𝑦(𝑥) is specified in the form of a series
expansion 𝑦(𝑥) ∼ ∑𝑛

𝑘=0 𝑐𝑘𝑇𝑘(𝑥) in Chebyshev polynomials of the first kind 𝑇𝑘(𝑥) with the domain of
definition on the segment 𝑥 ∈ [−1, 1].

The transition 𝑥 ⇒ 𝑡 to new arguments, from 𝑥 ∈ [𝑎, 𝑏] to 𝑡 ∈ [−1, 1], is implemented using a linear
transformation

𝑡 = 2𝑥 − (𝑏 + 𝑎)
𝑏 − 𝑎

and, if necessary, the inverse transformation

𝑥 = 𝑡(𝑏 − 𝑎) + (𝑏 + 𝑎)
2 .

In this case, the values of the function, the integrals and derivatives are recalculated using the
formulas

𝑓(𝑥) ⇔ 𝑓 (𝑏 − 𝑎
2 𝑡 + 𝑏 + 𝑎

2 ) , 𝑥 ∈ [𝑎, 𝑏], 𝑡 ∈ [−1, 1],

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = ∫

1

−1
𝑓 (𝑏 − 𝑎

2 𝑡 + 𝑏 + 𝑎
2 ) 𝑑𝑥𝑑𝑡 𝑑𝑡, 𝑥 ∈ [𝑎, 𝑏], 𝑡 ∈ [−1, 1],

𝑑𝑥
𝑑𝑡 =

𝑏 − 𝑎
2 ,

𝑓′𝑥(𝑥) ⇔
𝑑𝑓
𝑑𝑡 (𝑡)/

𝑑𝑥
𝑑𝑡 , 𝑥 ∈ [𝑎, 𝑏], 𝑡 ∈ [−1, 1],

and [14] the upper estimate of the interpolation error has the form

|
|
|
𝑦(𝑥) −

𝑛
∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥)
|
|
|
≤ 1
2𝑛(𝑛 + 1)!

|||
𝑏 − 𝑎
2

|||
𝑛+1

max
𝜉∈[𝑎,𝑏]

||𝑦𝑛+1(𝜉)|| .

Thus, Chebyshev interpolation provides an almost optimal approximation in the sense of the 𝐿∞
norm and almost optimal to the 𝐿2 norm. In addition, the use of Gauss–Lobatto nodes as interpolation
nodes leads to optimal integration formulas.

As in Ref. [6], the method for approximate solution of problem (17) for a second-order ODE consists
of sequential solution of several subproblems.

1. calculation of spectral coefficients of polynomial Chebyshev interpolation of the second
derivative of the solution – the function of the right-hand side (17) on the Gaussian–Lobatto grid
– interpolation of 𝐹(𝑥) in the basis of Chebyshev polynomials of the first kind;

2. calculation of those coefficients of the desired solution (except for the first two) that are
determined from the differential conditions of the problem (allowing the solution to satisfy the
differential conditions) – multiplication of the inverse (with respect to the matrix of spectral
Chebyshev differentiation) matrix by the vector of interpolation coefficients;

3. additional determination of the first few coefficients of the solution based on boundary (or other
independent additional) conditions.

Let us represent the approximate solution in the form of a finite series of orthogonal Chebyshev
polynomials

𝑝(𝑥) =
𝑛
∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1]. (19)

Let us differentiate function (19) twice. The expression for the second derivative has the form

𝑝″(𝑥) =
𝑛
∑
𝑘=0

𝑐𝑘𝑇″
𝑘 (𝑥) =

𝑛
∑
𝑘=0

𝑏𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1]. (20)

Using recurrence relations satisfied by Chebyshev polynomials of the first kind and their
derivatives [5], [15] and equating the coefficients for identical polynomials in (20), we arrive [5]
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at the following dependence of the coefficients 𝑐𝑖, 𝑖 = 2, 3,… , 𝑛, 𝑏𝑘, 𝑘 = 0,… , 𝑛:

D+D+b = c (21)

where D+ is a generalized inverse matrix with respect to the Chebyshev differentiation matrix in the
spectral space [15], [16].

D+D+b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 ⋮ 0 0 0 0
1 0 −12 0 0 ⋮ 0 0 0 0

0 1
4 0 −14 0 ⋮ 0 0 0 0

0 0 1
6 0 −16 ⋮ 0 0 0 0

0 0 0 1
8 0 ⋮ 0 0 0 0

⋯ ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ ⋯ ⋯
0 0 0 0 0 ⋮ 0 −1/2

(𝑛−3)
0 0

0 0 0 0 0 ⋮ 1/2
(𝑛−2)

0 −1/2
(𝑛−2)

0

0 0 0 0 0 ⋮ 0 1/2
(𝑛−1)

0 −1/2
(𝑛−1)

0 0 0 0 0 ⋮ 0 0 1/2
𝑛

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑏0
𝑏1
𝑏2
𝑏3
𝑏4
⋮

𝑏𝑛−3
𝑏𝑛−2
𝑏𝑛−1
𝑏𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑐0
𝑐1
𝑐2
𝑐3
𝑐4
⋮

𝑐𝑛−3
𝑐𝑛−2
𝑐𝑛−1
𝑐𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22)

Hence, the vector of coefficients {𝑐2, 𝑐3,… , 𝑐𝑛} is the result of double multiplication of a simple
tridiagonal matrix D+ (inverse of the differentiation matrix) by vector {𝑏0, 𝑏1,… , 𝑏𝑛}.
At the third stage of solving the problem, the first two coefficients of the expansion of the desired

solution in Chebyshev polynomials are determined.

5. Dirichlet–Robin boundary conditions

For a one-dimensional problem considered on the interval [−1, 1], the Dirichlet–Robin conditions
look as follows

𝛼𝑝(−1) = 𝑔(−1),
𝛽𝑝(1) + 𝛾𝑝′(1) = 𝑔(1). (23)

Here 𝛼, 𝛽, 𝛾 are given constants. The sign in front of the term with the derivative at the right
boundary point is positive, since the outer normal to the domain of definition at the right boundary
point is directed to = ∞, i.e., in the positive direction.
Let us take into account that the derivatives of Chebyshev polynomials of the first kind are simply

expressed in terms of polynomials of the second kind:

𝑑𝑇𝑛
𝑑𝑥 = 𝑛𝑈𝑛−1,

and, in addition, the relations

𝑇𝑛(−1) = (−1)𝑛, 𝑇𝑛(1) = 1, 𝑈𝑛(−1) = (−1)𝑛(𝑛 + 1), 𝑈𝑛(1) = (𝑛 + 1),

are valid. In this case, the system of equations for calculating the unknown expansion coefficients of
the solution has the form

𝛼 (𝑐0 − 𝑐1 +
𝑛
∑
𝑘=2

𝑐𝑘(−1)𝑘) = 𝑔(−1),

𝛽 (𝑐0 + 𝑐1 +
𝑛
∑
𝑘=2

𝑐𝑘) + 𝛾 (𝑐1 +
𝑛
∑
𝑘=2

𝑐𝑘𝑘2) = 𝑔(1).
(24)
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Let us introduce the notation

𝛼(𝑐0 − 𝑐1) = 𝑔(−1) − 𝛼
𝑛
∑
𝑘=2

𝑐𝑘(−1)𝑘 ≡ 𝐺(−1),

𝛽(𝑐0 + 𝑐1) + 𝛾𝑐1 = 𝑔(1) − 𝛽
𝑛
∑
𝑘=2

𝑐𝑘 − 𝛾
𝑛
∑
𝑘=2

𝑐𝑘𝑘2 ≡ 𝐺(1),
(25)

or
𝛼(𝑐0 − 𝑐1) = 𝐺(−1),

𝛽𝑐0 + (𝛽 + 𝛾)𝑐1 = 𝐺(1). (26)

Remove the brackets
𝛼𝑐0 − 𝛼𝑐1 = 𝐺(−1),

𝛽𝑐0 + 𝛽𝑐1 + 𝛾𝑐1 = 𝐺(1) (27)

and multiply the first equation by 𝛽 and the second equation by 𝛼:

𝛽𝛼𝑐0 − 𝛽𝛼𝑐1 = 𝛽𝐺(−1),
𝛽𝛼𝑐0 + 𝛽𝛼𝑐1 + 𝛾𝛼𝑐1 = 𝛼𝐺(1). (28)

To calculate the coefficient 𝑐1, subtract the first equation from the second one:

2𝛽𝛼𝑐1 + 𝛾𝛼𝑐1 = 𝛼𝐺(1) − 𝛽𝐺(−1), (29)

from which it follows that
𝑐1 =

𝛼𝐺(1) − 𝛽𝐺(−1)
𝛼(2𝛽 + 𝛾) . (30)

To calculate the coefficient 𝑐0, we substitute the calculated value of 𝑐1 into the first equation (27):

𝑐0 =
𝐺(−1)
𝛼 + 𝑐1 =

𝐺(−1)
𝛼 + 𝛼𝐺(1) − 𝛽𝐺(−1)

𝛼(2𝛽 + 𝛾) ,

𝑐0 =
(𝛽 + 𝛾)𝐺(−1) + 𝛼𝐺(1)

𝛼(2𝛽 + 𝛾) . (31)

6. Solving the problem B2. Method of separation of variables

Recall the formulation of problem (18). It is required to find a solution of the homogeneous boundary
value problem with zero Dirichlet–Robin conditions and a given initial condition:

𝑘 𝜕
2𝑣
𝜕𝑥2 (𝑥, 𝑡) −

𝜕𝑣
𝜕𝑡 (𝑥, 𝑡) = 0, 0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑣(0, 𝑡) = 0,
𝜕𝑣
𝜕𝑥
|||𝑥=𝐿

+ ℎ𝑣(𝐿, 𝑡) = 0, ℎ > 0,

𝑣(𝑥, 0) = 𝑓(𝑥) − 𝜓(𝑥), 0 < 𝑥 < 𝐿.
where 𝑘 is the heat conductivity coefficient depending on the material properties.

The method of separation of variables yields a solution to this problem (see, e.g., [17]) in the form

𝑣(𝑥, 𝑡) =
∞
∑
𝑛=1

𝐴𝑛𝑒−𝑘𝜆𝑛𝑡 sin√𝜆𝑛𝐿𝑥, (32)
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where the coefficients 𝐴𝑛 are calculated as

𝐴𝑛 = 2∫
𝐿

0
[𝑓(𝑥) + 𝜓(𝑥)] sin√𝜆𝑛𝐿𝑥𝑑𝑥, (33)

where 𝜆𝑛 > 0 is the set of positive solutions of the equation√𝜆 = −ℎ tan(√𝜆𝐿), 𝑛 ∈ ℕ.
Finally, the solution of the initial problem 2 (15) is obtained by adding the solution 𝜓(𝑥) of

the boundary value problem (17) and the solution 𝑣(𝑥, 𝑡) of the homogeneous boundary value
problem (18):

𝑢(𝑥, 𝑡) = 𝜓(𝑥) +
∞
∑
𝑛=1

𝐴𝑛𝑒−𝑘𝜆𝑛𝑡 sin√𝜆𝑛𝐿𝑥. (34)

The determination of coefficients 𝐴𝑛 by formula (33) can be implemented using the technique of
integration based on the interpolation of the integrand by the Chebyshev polynomials of the first kind
on Gauss–Lobatto grids. In this case, the calculation of the coefficients 𝐴𝑛 reduces to elementary
summation of the weighted even coefficients of the interpolant.

7. Conclusion

Among the numerical algorithms for solving initial and boundary value problems for linear ODEs
of the first and second order, there are many methods that use the initial approximation (boundary
conditions) as the initially active condition that determines all further solution of the problem. These
are methods such as Euler, Adams–Bashforth, Runge–Kutta, etc. [18]. Other methods, based on
approximation of the solution using global functions [1–5], are based on the construction of systems
of equations that simultaneously include both initial (boundary) conditions and conditions that
specify the behavior of the derivatives of the desired solution.
The solution to the main inhomogeneous initial-boundary value problem for a one-dimensional

parabolic equation is presented in the form of a sequential solution of several subproblems. As
a method for solving one of the subproblems – an inhomogeneous ordinary differential equation
with Dirichlet–Robin boundary conditions – it is proposed to use the stable and efficient spectral
method of Chebyshev collocation.

Polynomial interpolation of the desired solution by Chebyshev polynomials is carried out in several
stages. At the first stage, a general solution is identified, i.e., a set of solutions that satisfies the
differential equation, but does not necessarily satisfy the initial (boundary) conditions. Considering
the initial (boundary) conditions is carried out at the last stage of solving the problem and reduces to
solving a linear equation with two unknown coefficients.

The search for a general solution to an inhomogeneous ODE reduces to multiplying the transposed
matrix of values of Chebyshev functions on the Gauss–Lobatto grid by the vector of the function values
that specifies the right-hand side of the original differential equation to determine the interpolation
coefficients for the expansion of the solution derivative. Next, multiplying the bi-diagonal integration
matrix [5], [15] by the vector of these coefficients leads to obtaining all the coefficients of the desired
solution, except for first ones. At the final stage, the use of the initial (boundary) condition makes it
possible to determine the first two coefficients of the polynomial expansion of the solution.
The solution of the second homogeneous subproblem is carried out by the traditional method

of separation of variables. In this case, to calculate the coefficients of expansion of the solution
according to the basis of the Sturm–Liouville problem, an effective and stable spectral method of
Chebyshev collocation is used. Thus, the authors expand the scope of applicability of the developed
2-stage Chebyshev collocation method.
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Применение метода коллокации Чебышева для решения граничных
задач теплопроводности
К. П. Ловецкий1, С. В. Сергеев1, Д. С. Кулябов1, 2, Л. А. Севастьянов1, 2

1 Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация
2 Объединённый институт ядерных исследований,
ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Российская Федерация

Аннотация. Для одномерных неоднородных (по пространственной переменной) линейных параболи-
ческих уравнений используется комбинированный подход, разбивающий исходную задачу на две
подзадачи. Первая из них – неоднородная одномерная задача Пуассона с граничными условиями
Дирихле–Робена, поиск решения которой основан на методе чебышевской коллокации. Метод раз-
работан на основе ранее опубликованных алгоритмов решения обыкновенных дифференциальных
уравнений, в которых решение ищется в виде разложения по полиномам Чебышева 1-го рода на сетках
Гаусса–Лобатто, что позволяет использовать дискретную ортогональность полиномов. Такой подход ока-
зывается весьма экономичными стабильнымпо сравнению с традиционнымиметодами, приводящими
к решению часто плохо определенных систем линейных алгебраических уравнений. В описываемом
подходе удачное применение матриц интегрирования позволяет вообще избавиться от необходимости
работы с плохо обусловленными матрицами.
Вторая, однородная задача теплопроводности решается методом разделения переменных. При этом

отыскание коэффициентов разложения искомого решения по полному набору решений соответству-
ющей задачиШтурма–Лиувилля сводится к вычислению интегралов от известных функций. Простая
методика построения чебышевских интерполянтов подынтегральных функций позволяет вычислять
интегралы суммированием интерполяционных коэффициентов.
Ключевые слова: начально-краевые задачи, псевдоспектральный метод коллокации, полиномы Чебыше-
ва, множества Гаусса–Лобатто, численная устойчивость, разделение переменных


