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Abstract. The analysis of trajectory dynamics and the solution of optimization problems using computer meth-
ods are relevant areas of research in dynamic population-migration models. In this paper, four-dimensional
dynamic models describing the processes of competition and migration in ecosystems are studied. Firstly, we
consider a modification of the “two competitors—two migration areas” model, which takes into account uniform
intraspecific and interspecific competition in two populations as well as non-uniform bidirectional migration in
both populations. Secondly, we consider a modification of the “two competitors—two migration areas” model,
in which intraspecific competition is uniform and interspecific competition and bidirectional migration are
non-uniform. For these two types of models, the study is carried out taking into account the variability of pa-
rameters. The problems of searching for model parameters based on the implementation of two optimality
criteria are solved. The first criterion of optimality is associated with the fulfillment of such a condition for the
coexistence of populations, which in mathematical form is the integral maximization of the functions product
characterizing the populations densities. The second criterion of optimality involves checking the assumption
of the such a four-dimensional positive vector existence, which will be a state of equilibrium. The algorithms de-
veloped on the basis of the first and second optimality criteria using the differential evolution method result
in optimal sets of parameters for the studied population-migration models. The obtained sets of parameters
are used to find positive equilibrium states and analyze trajectory dynamics. Using the method of constructing
self-consistent one-step models and an automated stochastization procedure, the transition to the stochastic
case is performed. The structural description and the possibility of analyzing two types of population-migration
stochastic models are provided by obtaining Fokker-Planck equations and Langevin equations with correspond-
ing coefficients. Algorithms for generating trajectories of the Wiener process, multipoint distributions and
modifications of the Runge-Kutta method are used. A series of computational experiments is carried out using
a specialized software package whose capabilities allow for the construction and analysis of dynamic models
of high dimension, taking into account the evaluation of the stochastics influence. The trajectory dynamics of
two types of population-migration models are investigated, and a comparative analysis of the results is carried
out both in the deterministic and stochastic cases. The results can be used in the modeling and optimization of
dynamic models in natural science.

Key words and phrases: one-step processes, population dynamics models, stochastic differential equations,
optimality criteria, differential evolution, stochastization, trajectory dynamics, computer modeling, software
package

1. Introduction

The study of mathematical models of population systems began to develop actively in the twenties
of the last century, thanks to the works of A. Lotka [1] and V. Volterra [2]. Currently, this direction
includes the wide class study of models taking into account various interactions between populations
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(See, for example, [3-6]). Significant progress in the study is achieved due to the analysis of the
dynamic stability models of ecological systems using the theory of differential equations, numerical
methods and optimization methods [3, 4, 7-9].

A four-dimensional model of two competing species with migration between two ranges, taking
into account the asymmetry coefficient, is considered in [10]. It is shown that the choice of the
migration area is carried out depending on the value of this coefficient. The coefficient of asymmetry
affects which of the habitats species migrate to first. Two-species Lotka-Volterra competition patch
model is studied in [11]. It's shown that in the long time, either the competition exclusion holds that
one species becomes extinct, or the two species reach a coexistence equilibrium, and the outcome
of the competition is determined by the strength of the inter-specific competition and the dispersal
rates.

The transition to the non-deterministic case based on the design stochastic self-consistent models
(DSSM) method allows us to identify new qualitative properties of models and carry out a comparative
analysis [12-16] and in the other works. For various types of population models, the DSSM method is
usedin [12,17,18]. In [18], a formalized description of the four-dimensional model “two competitors—
two migration areas” and its modifications are proposed, taking into account the case when population
growth coefficients are different (non-uniform reproduction of species). Using the implementation of
the evolutionary algorithm, a set of parameters is obtained that ensure the coexistence of populations
in the conditions of competition between two species in the general area, taking into account the
migration of these species. Stochastization of the model “two competitors—two migration areas”
(under conditions of non-uniform species reproduction) is carried out on the basis of the method of
constructing self-consistent stochastic models. The dynamics of trajectories for deterministic and
stochastic cases is studied, a comparative analysis is performed.

This paper is a continuation of [18] and contains the construction and analysis of such modifications
of the model “two competitors—two migration areas”, which allows us to study the influence of non-
uniform migration flows and the influence of non-uniform interspecific competition on the trajectory
dynamics both in the deterministic case and in the stochastic case.

In section 2 of this paper, we consider the construction of two modifications of the model “two
competitors—two migration areas” with bidirectional non-uniform migration (to two refuges), taking
into account the uniformity and non-uniformness of the interspecific competition coefficients. In
section 3, the search for model parameters is carried out using an evolutionary algorithm taking
into account different optimality criteria. In section 4, a study of the obtained deterministic four-
dimensional models is carried out, two-dimensional and three-dimensional projections of phase
portraits are constructed. In section 5, the transition to stochastic models “two competitors—two
migration areas” is made on the basis of the constructing self-consistent stochastic models method,
the dynamics of trajectories in the stochastic case is studied. The results of computer experiments
are presented and the interpretation of these results is given taking into account the comparison of
stochastic and deterministic models. The developed in Python [19] software package [20] is used to
study the models. Section 7 discusses the results.

2. Description of the model modifications “two competitors—two migration areas”
taking into account non-uniform migration

Ref. [18] describes a general four-dimensional deterministic model, which takes into account
the influence of interspecific and intraspecific competition in two populations with bidirectional
migration of both populations, and the non-uniform growth of population reproduction.

We describe further such a model “two competitors—two migration areas”, for which the growth
of population reproduction, interspecific and intraspecific competition are uniform, and migration
is non-uniform. The specified model is given by a system of equations of the form

Xy = axy — pxj — rx;x; + X, — yxy,
. 2
Xy = ax, — px5 +yx; — Bxy, 1)

X3 = ax; — pX3 — rx; Xz + €x4 — 63,

X4 = ax, — px3 + 6x3 — exy,

where the incoming values are explained in the table 1.
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Table 1
Variables and parameters of model (1)

Variable, | Explanation of the variable, parameter

parameter

X, the competing population density of the first species in the general area

X, population density of the first species in the first refuge

X3 the competing population density of the second species in the general area

X4 population density of the second species in the second refuge

a coefficient of natural growth

¥ coefficient of interspecific competition

p coefficient of intraspecific competition

B coefficient of migration of the first species from the general area to the first refuge

Y coefficient of migration of the first species from the first refuge to the general area

é coefficient of migration of the second species from the general area to the second
refuge

€ coefficient of migration of the second species from the second refuge to the general
area

Let’s move from model (1) to a model that takes into account the non-uniformness of the coefficient
of interspecific competition r. We denote the estimated parameter of the competitive impact of the
second type on the first by p;5. Accordingly, we denote the coefficient of the impact of the first type
on the second by ps;. Thus we obtain a system of differential equations of the following form:

. 2
Xy = ax; — pxi — p13X1X3 + X5 — yX1,

Xp = ax, — px3 + yx; — Bx,, @

. 2
X3 = ax; — pX3 — P31X1X3 + €x4 — 6X3,

X4 = ax, — px3 + 8x; — €xy4,

where a is the coefficient of natural growth, f§ is the coefficient of the first species migration from
the general area to the first refuge, y is the coefficient of the first species migration from the first
refuge to the general area, ¢ is the coefficient of the second species migration from the general area
to the second refuge, ¢ is the coefficient of the second species migration from the second refuge to
the general area, p;; (i # j) are coefficients of interspecific competition.

In the future, we will search for optimal sets of parameters that ensure the coexistence of
species in the general area and the existence of species in refuges. In addition, we will carry out
a comparative analysis of the trajectory dynamics of models (1) and (2), taking into account the
considered initial conditions and optimal sets of parameters, as well as construct and study stochastic
models corresponding to (1) and (2).

3. Search for model parameters using differential evolution

We consider optimization problems associated with finding parameter sets that guarantee the
coexistence of all species in the general area and the existence of migratory species in refuges.
The sets of parameters to be searched correspond to stationary modes of the system. We use such
a numerical optimization method, which reduces to the implementation of the differential evolution
algorithm [21-23].
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In this paper we use two optimality criteria. The first optimality criterion is associated with
maximizing the integral of the product of functions characterizing population densities. The specified
maximization ensures the fulfillment of the selected condition for the coexistence of populations. It
should be noted that an algorithm of differential evolution is used to solve problem of maximizing the
integral, a program in Python is developed [18]. The second criterion of optimality involves checking
the assumption of the existence of a positive equilibrium state of the four-dimensional model [24].

Based on the use of the first and second criteria, algorithms are developed using the differential
evolution method. The algorithms are aimed at obtaining optimal sets of parameters of a four-
dimensional system, which makes it possible to find approximate values of the components of
the vector corresponding to a positive equilibrium state and to study the trajectory dynamics near
equilibrium states. It is important to note that these two types of algorithms are based on intelligent
search methods [25-27]. The implementation of these methods in the case under consideration
makes it possible to find the numerical values of the components of the positive equilibrium state
and identify such system parameters that provide the required properties of the equilibrium states.

In [18, 24], the implementation of algorithms for modifications of the system “two competitors—
two migration areas” is considered without taking into account the non-uniform competition and
migration. Here we consider more complex modifications with non-uniform bidirectional migration
of two populations. Table 2 shows the characteristics of models (1) and (2) taking into account the
first and second optimality criteria. The set of parameters obtained using the first optimality criterion
is denoted by i-I, i = 1,2. The set of parameters obtained using the second optimality criterion is
denoted by i-II, i = 1, 2.

Table 2
Summary table of characteristics of models (1) and (2) under initial conditions (x(0), x,(0), x3(0), x4(0)) = (0.5,0.5,1, 7).

Equilibrium States Parameters

Model (1) with set 1-1

X, = 58.04, x, = 90.75, x3 = | a = 10.00, p = 0.10, r = 0.10, 8 = 5.67, 8 = 9.01, y = 7.42,
56.42, x4 = 91.04 €=6.48

Model (1) with set 1-IT
x; = 58.27, x, = 90.79, X3 = | a = 10.00, p = 0.10, r = 0.10, 8 = 7.32, § = 9.99, y = 9.97,
56.09, x4 = 91.17 € =17.03

Model (2) with set 2-I-a

x, = 57.78, x, = 90.46, x3 = | a = 10.00, p = 0.10, p;3 = 0.50, p3; = 0.70, B = 5.67, § = 9.01,
56.89, x4, = 90.70 y =742, =6.48

Model (2) with set 2-I-b
x; = 5831, x, = 90.39, X3 = | a=10.00, p = 0.10, p;3 = 0.70, p3; = 0.50, 8 = 5.67, 8 = 9.01,
56.58, x4 = 90.71 y=742,¢=648

Model (2) with set 2-1I-a

X, = 7134, x, = 98.80, x5 = | a=10.00, p = 0.10, py3 = 0.50, ps; = 0.70, B = 7.32, & = 9.99,
6.06, x, = 43.60 Yy =9.97,¢ =703

Model (2) with set 2-1I-b
X, = 6.16, Xy, = 41.57, X3 = a= 1000, D= 0.10, P13 = 0.70, D31 = 0.50, ﬁ = 7.32, 6= 9.99,
69.73, X, = 99.63 ¥ =997, ¢ =703

Table 2 presents the sets of parameters we use in the process of computer experiments related to
the analysis of the trajectory dynamics of models (1) and (2).
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4. Results of computational experiments and comparative analysis of trajectory
dynamics for deterministic models

This section presents the results of computational experiments for models (1) and (2), taking into
account the selected initial conditions and the found parameters. Figure 1 shows the trajectories of
the system (2) for the set of parameters 2-I-a in comparison with the corresponding trajectories of
the system (1) with the resulting set of parameters 1-I.

Figure 2 shows the trajectories of system (2) for the set of parameters 2-I-b in comparison with
the corresponding trajectories of system (1) with the resulting set of parameters 1-I. According to
figures 1, 2, the densities of the corresponding populations for models (1) and (2) are kept at the
same level for the selected time interval. Figure 3 shows the trajectories of system (1) with sets of
parameters 1-I and 1-II.

Figure 4 shows the trajectories of system (2) for a set of parameters 2-I-a in comparison with the
corresponding trajectories of system (2) with the resulting set of parameters 2-II-a.

Next, we will consider some projections of the phase portraits of model (2) on the plane and in
space. The projection of the phase portrait on the plane (x;, x,) for the system (2) taking into account
X3 = 56.89, x4 = 90.70 is shown in figure 5. The projection of the phase portrait in space (x;, x,, X3)
taking into account x, = 90.70 for the model (2) is shown in figure 6.

The presented analysis of models (1) and (2) is carried out with two sets of each model parameters
and is aimed at studying two modes of species coexistence for a state of equilibrium determined
by the method of differential evolution. In the future, we will study and analysis of the qualitative
properties of the models, taking into account the introduction of stochastics.
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Figure 1. Trajectories of (1) and (2) at (x1(0), x5(0), x3(0), x4(0)) = (0.5, 0.5, 1, 7) taking into account
the parameters sets 1-I and 2-I-a
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Figure 3. Trajectories of (1) and (2) at (x1(0), x2(0), x3(0), x4(0)) = (0.5,0.5, 1, 7) taking into account
the parameters sets 1-I and 1-II
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5. Modifications of the stochastic model “two competitors—two migration areas”

To construct stochastic models corresponding to models (1) and (2), it is proposed to use the DSSM
method [12-16]. Using the software implementation of this method allows:
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(i) to construct a stochastic model of a dynamic system taking into account the description of
interactions;
(it) to construct an appropriate deterministic model;
(iii) to obtain numerical solutions of ODEs and SDUs and graphical representations of solutions.

To describe a stochastic system, according to the DSSM method, it is enough to write the Fokker-
Planck equation. The coefficients of the Fokker-Planck equation for models (1) and (2) are obtained
using a software package and are presented respectively in figures 7, 8.

Beog [19]: f = de.drift_vector(XX, k_plus_1, model_1.matr_N(), model_1.matr_M())
sp.Matrix(f)

+

ax) — px; — rx;x3 — x ¥ + x2f
ax; — px3 + x1y — xapf
axy — px3 — rx;x3 — x30 + x4

2
axy — px; + x3d — xge

Beog [2@]: g=de.diffusion_matrix(XX, k_plus_1, model_1.matr_N(), model 1.matr_M(}}

g
out[20]: [ax) + px? + rxixs + xiy + x2P —x1y — x2f 0 0
—x17 — x2P ax; + pxi + x7 + 0 0
0 0 axy + pr; + rapxy + %30 + x48 —x30 — x48
0 0 —x386 — x4 axs + px_“: + x36 + xq8

Figure 7. Coefficients of the Fokker-Planck equation for the model (1)

Beog [65]: f = de.drift_vector (XX, k_plus_2, model 2.matr_N(), model_2.matr_M())
sp.Matrix(f)

[ax) — px} — praxixs — xiy + x2p
axy — px3 +x7 — x2f
axy — px3 — puxixz — x3b + xse

axy — pr}, + x30 — x4e

Beog [66]: g=de.diffusion_matrix(XX, k_plus_2, model 2.matr_N(), model_2.matr_M())
g

t[661: [ ax) + pxt + pjax x3 + x7 + x2p —xp Y — %8 0 0
—x1y — xafp axy + px3 + xi1y + x2f 0 0
0 0 ax3 + pxi + pyyx X3 + x38 + x4e —x38 — x4
0 0 —x30 = x48 axy +px§ + x76 + x4e

Figure 8. Coefficients of the Fokker-Planck equation for the model (2)

Graphs of the numerical solution for the deterministic and stochastic case taking into account the
sets of parameters 1-I and 2-I-a from the table 1 are shown in the (figures 9, 10). For the numerical
solution of ODE systems, we use a software implementation of standard four-order Runge-Kutta
methods. To solve the corresponding SDE, we use a specially developed library a detailed description
of which is contained in [13].

For sets of parameters 1-11, 2-I-a, 2-I-b, 2-II-a, numerical experiment shows that in the stochastic
case the trajectories fluctuate near deterministic trajectories, similar to the one shown in figures 9, 10
taking into account sets of parameters 1-I and 2-1I-b respectively. In the next section, we present
a comparative analysis of the results obtained for models (1) and (2) with different sets of parameters.
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6. Discussion of the results

Let us first consider the results of a computational experiment for the case of parameters 1-I and
parameters 2-I-a at p;3 < ps;. A comparative analysis of the trajectories’ behavior for models (1)
and (2) according to figure 1 shows that:

1) there is a co-existence of all species corresponding to the stationary regime in the general area,
as well as the existence of migratory species in refuges;

2) the non-uniformness of the interspecific competition coefficients affects the population density
X3 in the general area, while the population density x; of the model 2 decreases compared to
the population density x5 of the model 1.

Let us further consider the results for the case of parameters 1-I and 2-I-b at p;3; > ps;.
A comparative analysis of the solution trajectories of models (1) and (2) presented in figure 2 shows
that:

1) there is a coexistence of all species in the general area and the existence of migratory species in
refuges;

2) the population density x; of the model (2) decreases compared to the population density x; of
the model (1).

Figure 3 shows the trajectories of the model (1) solutions taking into account parameters 1-I and 1-II
and two optimization methods. Figure 4 shows the trajectories of solutions for model (2) taking into
account the parameters 2-I-a and 2-II-a and two optimization methods. Comparison of trajectories
allows us to conclude that the choice of the first or second optimality criterion does not significantly
affect the population density both in the general area and in refuges. Computational experiments
show the consistency of the two selected optimality criteria (the trajectories have a similar character).

Taking into account the transition to the stochastic case using the Fokker-Planck equations
(figures 7, 8), computer experiments are carried out to identify trajectory dynamics. The results
are presented in figures 9, 10. Computer experiments show that the introduction of stochastics has
no effect on the behavior of systems described by the systems of equations (1) and (2). As in the
deterministic case, solutions of stochastic differential equations reach the stationary mode. In Fig. 9,
where the range from 0 to 10 corresponds to the change in population density x; in the general area,
the fluctuating nature of the trajectory dynamics in the stochastic case is visually observed. In order
to observe such a character for the other variables, it is possible to choose an enlarged scale of the
drawing. For example, a fragment of the deterministic and stochastic trajectories of model (2) for
the population density x, in the migration area, taking into account the enlarged scale, is shown in
figure 11.

Xastoch —#— Xaget

Populations x;(t)

.0 0.5 1.0 1.5 2.0 2.5 3.0
Time t

Figure 11. Fragment of deterministic and stochastic trajectories for model (2) with parameters set 2-II-b

Stochastic modeling revealed the similar nature of the trajectories of models (1) and (2) with the
considered sets of parameters, and the initial set of parameters is obtained taking into account the
conditions guaranteeing the coexistence of two populations in the general area and the positive
abundance of each species in refuges. Thus, with the considered sets of parameters of models (1)
and (2), it is sufficient to carry out a computational experiment only in the deterministic case to study
the trajectory dynamics.
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7. Conclusion

The paper presents a computer study of deterministic and stochastic models “two competitors—two
migration areas”. Computational experiments are based on the use of evolutionary algorithms and
optimization methods for finding parameters taking into account their variability. The optimization
problem is solved using the differential evolution method, which made it possible to find optimal
parameters for population-migration models. Approximate stable equilibrium states corresponding
to the obtained parameters are found for these models. The assessment of the changes influence in
the coefficients of interspecific competition on the trajectory dynamics of four-dimensional models
with non-uniform migration flows in the deterministic case is considered.

In this paper, the transition to stochastic models of population dynamics, taking into account
competition and migration, based on the DSSM method, is carried out. The stochastization algorithm
used made it possible to analyze the trajectory dynamics of stochastic models in comparison with
deterministic analogues. The analysis demonstrates a negligible effect of introducing stochastics
into deterministic models (1) and (2) taking into account the parameters and allows us to conclude
that the computational experiment is sufficient only in the deterministic case.

As directions for further research, we can indicate the construction of population-migration models
of the form “n competitors—n migration areas”, where n > 2, as well as the study of multidimensional
stochastic models taking into account the effects of additive random perturbations of the equations
right-hand sides.
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KoMnbloTepHoOe uccsiegoBaHue AeTepMUHUPOBAHHbIX U CTOXAaCTUYECKUX
mMopenen «aBa KOHKYpeHTa—pABa apeasia MUrpaLum» C y4eTom
BapuaTUBHOCTY NapaMeTpoB

U. Y. Bacuibesal, A. B. Jlemuzosa?, O. B. [ipyxununa®, 0. H. Macuna’

! Eneykuii zocydapcmeennutil ynugepcumem um. U.A. Bynuna, ya. Kommynapos, 0. 28, Eaey, 399770, Poccuiickas
Dedepayus

2 Poccutickuil ynueepcumem dpyxc6oL Hapodos, ya. Mukayxo-Makaas, . 6, Mockea, 117198, Poccuiickas ®edepayus
3 @edepanvhblil uccnedosamenvckuil yenmp «Ungopmamuka u ynpasaerie» Poccuiickoll akademuil Hayx,

ya. Bagunosa, 0. 44, kopn. 2, Mockea, 119333, Poccuiickas edepayus

AHHOTauus. AHaIN3 TPAeKTOPHOM JUHAMUKU U PellleHNe 3a/ja4 ONITUMU3alNY C IpIMeHeHleM KOMITbIOTePHBIX
MeTOJJOB OTHOCUTCS K aKTYyaJIbHbIM HAaIlpaBJE€HHUSM HWCCIE[NOBAHUS AWHAMHYECKUX IOIYISIMOHHO-
MUTPALMOHHBIX Mofeseil. B HacTosIell paboTe M3y4aloTCsi YeThIpexMepHble AMHAMHYECKUEe MOAEeNH,
OIIHCHIBAIOIINE IIPOIleCCHl KOHKYPEeHIIUY U MUTPAIlNH B 9KOCUCTeMax. Bo-IlepBbIX, MBI paccMaTpUBaeM Mo-
auduKanuio Moflest «Ba KOHKypeHTa — /IBa apeajla MUTpaI[il», B KOTOPOH yYMUTHIBaeTCs paBHOMepHas
BHYTPMBU/0BAs U MeXBII0Bas KOHKYPEHIIUA B IBYX MOIY/IAIMAX, a TaK)Ke HepaBHOMepHas JByHaIpaBJieH-
Hasi MUTpanys 06enx oMy, Bo-BTOPEIX, MBI paccMaTpUBaeM MOAUDUKAIIMIO MOJEIH «/Ba KOHKYPEHTa
— [lBa apeajia MUTPALIUK», B KOTOPOY BHYTPUBHU/IOBAas KOHKYPEHIIN ABJIAETCI PABHOMEPHOI, a MeXBUZA0OBAs
KOHKYPeHIIH U IByHallpaBleHHAs MUTPAIU IBJIAI0TCI HepaBHOMEPHBIMU. JIJ1 yKa3aHHBIX IByX THUIIOB MO-
Jeel ucciefoBaHMe IPOBOAUTCS C y4eTOM BapHaTHBHOCTH IIapaMeTpOB. PellleHbI 3aja4M IIOMCKA MOJe/IbHBIX
IapaMeTpPOB Ha OCHOBe peaJl3alluy JBYX KPUTepHeB ONTHMaIbHOCTHU. [lepBhIii KpUTEPUil ONTHMaJIbHOCTH
CBSI3aH C BBIIIOJIHEHNEeM TaKOTO YCI0BUsA COCYIleCTBOBaHNS IOMY/IAIM, KOTOpoe B MaTeMaTu4deckoli popme
IIPe/ICTaBIsAeT CO60I MaKCUMU3AIUIO MHTETPpaa OT IPOU3Be/ileHus QYHKINI, XapaKTepU3YOI[UX IOTHOCTH
HOMYJIALME. BTOpO# KpUTEPHIl OITUMAIBHOCTH BKJIIOUAET B Ce6sI IPOBEPKY MIPEIIONIOKEHNUS O CYI[eCTBOBA-
HUH TaKOTO YeThIPeXMepPHOTO ITOJIOXUTETbHOTO BEKTOPa, KOTOPHIH GYAeT SIBIISAThCS COCTOSTHIEM PaBHOBECHS.
PesysnbraToM paboTHL aJITOPUTMOB, Pa3paboOTaHHBIX Ha OCHOBE IIePBOrO ¥ BTOPOr0 KPUTEPHEB ONTUMAIbHO-
CTU C IpUMeHeHueM MeToza fuddepeHINaTbHON 3BOJIOLNHY, IBISIOTCI ONTHMabHbIE HAOOPHI IIapaMeTPOB
M3y4JaeMbIX TONMYISIMOHHO-MUTPAIMOHHBIX Mogeel. [TosyueHHbIe HAOOPHI TapaMeTPOB UCIIOIb3YIOTCS JJIs
HaxOXeHUs I0J0XKUTENbHBIX COCTOSIHUI PAaBHOBECHS U /LIS aHAJIN3a TPAeKTOPHOU AuHAMUKU. C IIOMO-
IIBIO METO/a IOCTPOEHHUS CAaMOCOIVIACOBAaHHEBIX O/HOILITATOBBIX MOZieIell ¥ aBTOMAaTU3UPOBAaHHON IIPOLIEZy PhI
CTOXaCTH3ALMY BHIIIOJHEH [IePeXo/l K CTOXaCTUYeCKOMY ciy4aro. CTPYKTypHOe ONMCaHMe 1 BO3MOKHOCTDb aHa-
JIM3a ABYX THUIIOB MOMYJISAIIMOHHO-MUTPAIIIOHHBIX CTOXaCTUYeCKUX MoZelell 06ecIieunBaloTCs IoIydeHueM
ypaBHeHul ®okkepa-IlnaHka 1 ypaBHeHUH B popMe JIaH)KeBeHa C COOTBETCTBYIOIIUMU KO3(hUIIEeHTaMU.
VicTo1p30BaHBbI QJITOPUTMBI FTeHEPHUPOBAHUS TPAeKTOPUI BUHEPOBCKOT'O IIPOIlecca U MHOTOTOYEYHBIX pac-
npezeneHu U Moaudukanuu Merosa Pyare-KyTrsl. [IpoBefieHa cepusl BBIYUCIUTENbHBIX 9KCIIEPUMEHTOB
C IpUMeHeHUeM CIelMalrn31POBAHHOTO IIPOrPaMMHOT0 KOMILIEKCA, BO3MOXKHOCTH KOTOPOTO II03BOJIIOT BbI-
IIOJIHATD IIOCTPOEHME U aHAIN3 JUHAMIYECKUX MOZieJIel BRICOKOI Pa3MePHOCTH C yYETOM OIeHKU BIMSIHUS
croxacTuku. VcciesoBaHa TpaeKTOPHAs AUHAMUKA IBYX TUIIOB IOMYIAIIMOHHO-MUT'PAIIOHHBIX MOZelel
U BBIIIOJIHEH CPaBHUTEIbHBIN aHAIN3 Pe3yIbTaTOB KaK B IeTePMUHUPOBAHHOM, TaK U B CTOXaCTUIECKOM
ciydae. Pe3ynbraTsl MOTYT HaliTH IpUMeHeHHe B 3a/la4axX MO/Ie/TMPOBaHUA 1 OITUMU3AINY JUHAMUYECKUX
MoJiesieli eCTeCTBO3SHAHUA.

KnioyeBble cNI0Ba: O/[HOIIATOBbIE IIPOITECCHI, MOZE/IH ANHAMUKHY IOMYIAIII, CTOXacTHIecKue AubdepeHIInaNDb-
Hble ypaBHeHNs, KPUTEePUH ONTHUMAIbHOCTH, AuddepeHI[aabHasd 3BONIOISA, CTOXaCTHU3AlN, TPAeKTOPHAs
IVHAaMUKa, KOMIIBIOTEpHOE MOJIeIPOBAHIE, IIPOTPAMMHBIN KOMILIEKC



