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Abstract. Based on the completely integrable Calogero dynamical system, which
describes the one-dimensional many-body problem, a tool for testing difference
schemes has been developed and implemented in the original fdm package integrated
into the Sage computer algebra system. This work shows how the developed tools
can be used to examine the behavior of numerical solutions near the collision point
and how to study the conservatism of the difference scheme. When detecting
singularities using Alshina’s method, a difficulty was discovered associated with false
order fluctuations. One of the main advantages of this set of tests is the purely
algebraic nature of the solutions and integrals of motion.
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1. Introduction

We are now developing a system for integrating ordinary differential equa-
tions in the Sage computer algebra system called fdm for sage [1] (https:
//github.com/malykhmd/fdm). The problem that arises when developing
and implementing numerical methods for integrating dynamic systems is the
limited number of test examples, most of them taken from classical mono-
graphs [2, 3]. Non-integrability itself is an important property of a dynamic
system, although very difficult to formalize. Therefore, tests based on inte-
grable systems are obviously doomed to be somewhat one-sided, which, at
least at the present stage, cannot be corrected.
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The second property of widely used tests is their small dimension. Con-
cerning the many-body problem, for tests the two-body problem and special
cases in which the three-body problem, limited or complete, has elementary
or at least obviously periodic solutions are chosen. Although many such solu-
tions have been found [4, 5], all of them are rather specific and, in particular,
lack singular points — or rather — the collisions of the bodies. A very small
number of papers [6] are devoted to the development of difference schemes
that inherit periodicity. On the contrary, the question of numerically deter-
mining the position of moving singular points of the solution has been well
elaborated [7–11]. However, this method has not actually been tested on me-
chanical problems of many bodies, although in these problems the bodies
can approach each other at arbitrarily small distances and cases of false posi-
tive singularity tests can be expected. It is equally interesting to explore the
question of whether these tests can handle multiple collisions of bodies.
On the contrary, the attention has always been focused at the preservation

of symplectic structure and integrals of motion. In classical many-body
problem the questions of integrals of motion are poor. All of these algebraic
integrals, except the energy integral, are linear or quadratic and are preserved
by any symplectic Runge–Kutta scheme, and the question of conservation
of all integrals is reduced to the question of conservation of energy [12, 13].
Therefore, testing conservative difference schemes requires the development
of tests based on Hamiltonian systems that have a large supply of algebraic
integrals, and therefore a large dimension.
Among the integrable high-dimensional Hamiltonian systems, the most

promising for creating this kind of tests is the Calogero system [14]. This
system describes the motion of n particles of the same mass in one dimension,
their interaction potential being inversely proportional to the square of the
distance between the bodies. Its solution is described by algebraic functions
of time, and the integrals of motion are rational functions. In fact, this
system is the only one among many body problems that can be integrated for
any number of bodies, and, moreover, the integration does not require any
transcendental functions.
For this reason, when developing a set of tests in our fdm system, we gave

a prominent place to tests based on the Calogero system. In this paper, we
present a set of tools for testing integration methods based on the Calogero
problem. This system is very convenient for implementation in computer
algebra systems, since it has a purely algebraic properties of solutions and
integrals of motion.

2. Tools for specifying the Calogero system

The Calogero system describes the motion of n material points of unit mass
in one dimension, repelling or attracting each other with a force inversely
proportional to the third power of the distance. Let us start numbering the
points from zero. Let qi be the position of the i-th point, then

q̈i = −∂U

∂qi
, i = 0, . . . , n− 1, (1)
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where

U =
∑
i<j

V (qi − qj), V (x) =
b

x2
.

In fdm, the process of specifying the initial problem is separated from the
application of the numerical method. To describe the initial problem, a special
class Initial_problem is used, described in [1]. To set the initial problem
for the Calogero system, the calogero_problem function has been added to
fdm, which has 4 optional arguments:

— ics is the list of initial values, with the positions of the bodies coming
first, and then their momenta,

— n is the number of bodies,
— T is the final time; we always take t = 0 for the initial time,
— b is the value of parameter b, default b = −1.
As an illustration, let us take the problem of 5 bodies, which at the initial

moment of time occupy the positions

qi(0) = i, i = 0, . . . , n− 1.

Let us take the velocities close to zero, and change t in the interval t ∈ [0, 0.5].
The time unit in this article is seconds. This problem in our system is set as
follows:

n=5
ics=list(range(n))+[0.1,0.2,-0.1,0,0]
problem_calogero=calogero_problem(ics=ics,n=n, T=0.5, b=-1)

It can be solved using standard fdm tools, for example, using the 4th order
Runge–Kutta method and plotting the dependence of q0 on t:
sol=erk(problem_calogero,N=100)

This function is described in [1]. Figure 1 presents the result of the
calculations.
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Figure 1. The problem of 5 bodies



390 DCM&ACS. 2023, 31 (4) 387–398

3. Tools for the analytical solution of the Calogero
system

The exact solution is described by means of the Lax pair [14]. The solution
q0(t), . . . , qn−1(t) is a set of eigenvalues of the matrix

M = Q|t=0 + tL|t=0,

where
Q = diag(q0, . . . qn−1)

and

L = diag(p0, p2, . . . , pn−1) +
√
−b

(
1− δjk
qj − qk

)
.

Therefore, calculating the coordinates of bodies at time t is reduced to
calculating the eigenvalues of the matrix M, i.e., they are the zeros of the
polynomial

F = det(M− qE) (2)

of symbolic variable q.
For a fixed value of t, these calculations are implemented as a function

calogero_q, which has two required arguments ics and n and two optional
arguments b and t. Eigenvalues are calculated in the algebraic number
field. Unfortunately, the order of the eigenvalues may not coincide with
the numbering order of the bodies. Therefore, this function returns the
coordinates of the bodies up to some permutation.
For example, for the problem of 5 bodies considered above at time t = 0.1,

we can find the positions of the bodies as follows:

calogero_q(ics,n,b=-1,t=0.1)
[0.02174568377617522?,
1.022008478256518?,
1.989567507785786?,
2.998508164438269?,
3.988170165743252?]

This can be compared with the values of qi found using the Runge–Kutta
method:

Q=[symbolic_expression('q'+str(i)) for i in range(n)]
[sol.value(q,0.1) for q in Q]
[0.0217456837809339,
1.02200847823443,
1.98956750781722,
2.99850816441585,
3.98817016575156]

The main disadvantage of this tool is the calculation of the determinant of
the matrix M− qE. For large n, this operation becomes very costly.
Function calogero_curve returns the polynomial (2) itself. For example,

calogero_curve(ics,n,b=-1)
-q^5 + 1/5*q^4*t - 18089/3600*q^3*t^2
+ 23053/36000*q^2*t^3 - 526651/129600*q*t^4
+ 104483/1296000*t^5 + 10*q^4 - 2*q^3*t
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+ 18101/600*q^2*t^2 - 5347/2000*q*t^3
+ 266021/32400*t^4 - 35*q^3 + 34/5*q^2*t
- 196199/3600*q*t^2 + 6829/4000*t^3 + 50*q^2
- 43/5*q*t + 51523/1800*t^2 - 24*q + 12/5*t

Standard Sage tools allow plotting qi versus time and compare the plots
with the results of calculations using a difference scheme.
For example, for the considered example of the 5-body problem, the plots of

q0 and q1 versus t, obtained numerically (solid line) and analytically (dashed
line) can be displayed in one figure as follows:

F=calogero_curve(ics,n)
sol.plot(t,q0)+sol.plot(t,q1)+\
implicit_plot(F,(t,0,0.7),(q,0,1.2), color='red', linestyle='--
',
axes_labels=['$t$','$q$'], aspect_ratio=1/2)

The result is presented in figure 2. It is clearly seen that the bodies collide
at t ' 0.6. The function implicit_plot is used when drawing graphics,
which can quickly draw contour maps, so different types of curves in the figure
represent different contours rather than different particle trajectories.
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Figure 2. Problem of 5 bodies

4. Collision of bodies

Collisions of bodies occur when the polynomial (2) has multiple roots.
Therefore, the first collision of bodies can be calculated as the smallest
positive value of t for which the equations

F = 0,
∂F

∂q
= 0
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are compatible. Function calogero_solution_crash allows finding it exactly
in algebraic numbers. For example,

calogero_solution_crash(ics,n)
0.618840603733536?

Unless making special efforts, at such a point

∂2F

∂q2
6= 0.

From the implicit function theorem it follows that at the collision point the
coordinates of the bodies have an algebraic singularity of the order of 1/2.
Known the moment of impact, it is possible to observe the behavior of

a particular numerical method near the point of impact. For example, let us
increase the final time in the example considered to t = 0.7 and make the
plots:

problem_calogero=calogero_problem(ics=ics,n=n, T=0.7, b=-1)
sol=erk(problem_calogero,N=100)
pl=sol.plot(t,q0)+sol.plot(t,q1, axes_labels=['$t$','$q$'])
pl.show(ymax=1, ymin=0)

The result of the calculations is presented in figure 3.
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Figure 3. Problem of 5 bodies. Collision of bodies q1 и q2

In fdm, there is a tool for numerically determining the position and order
of the solution singularity using the Alshina method [7–10]. Previously, we
tested it on the two-body problem [11]; testing on problems with a large
number of bodies indicated the inefficiency of our implementation and forced
us to significantly update it. The syntax remains the same. Function

eff_order(problem_calogero,q0,N=100)
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returns the plot 4. The dotted line in the figure represents the theoretical
order, which does not change with time.
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Figure 4. Problem of 5 bodies, effective order according to Alshina

Let us recall how to read this plot [11]. The CROS scheme on which
Alshina’s method is based is a second-order scheme. Up to the point of
collision, the scheme order, calculated approximately, coincides with the
theoretical one, that is, equals 2. Near the collision point, this rule ceases
to apply and, which is a specific property of the CROS circuit, the order
jumps sharply to a new constant value, which is equal to the order of this
special point [7]. In figure 4 we actually see that at the point of impact the

order changes sharply from a value of 2 to some value close to 1
2
. However,

in addition to this jump, there are two more ’spikes’, at the very beginning
of the graph and in the region of t = 0.8. Near these two points, the order
changes sharply, but eventually returns to its original value. The theory does
not explain the appearance of these artifacts, which require further research.
We plan to implement and test other numerical methods in our system for

identifying singularities [15, 16].

5. Preservation of integrals of motion

As noted above, the question of preserving all integrals of motion by
a difference scheme has been fruitfully discussed for a long time. The Calogero
system has n rational integrals of motion being in involution and, therefore,
is completely Liouville integrable [14]. These integrals can be described as
traces of the matrix L powers:

Fk = Sp Lk, (k = 1, . . . n).
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They are, of course, symmetric functions with respect to the group of
permutations of bodies.
The calculation of these integrals is implemented as the function

calogero_integral(k,n). For example,

calogero_integral(1,n)
p0 + p1 + p2 + p3 + p4

It should be noted that for b > 0 the matrix L is complex, and the traces
of its degree are real. Our function performs the appropriate simplification
and returns a rational function with real coefficients.
The integral F1 is linear, so all Runge–Kutta methods preserve it exactly.

The energy integral F2 is not quadratic for the Calogero system, so even
symplectic Runge–Kutta schemes do not preserve it [3]. Figure 5 shows the
dependences of F2 and F3 for our 5-body problem; it is clearly seen that
these functions monotonically increase in absolute value on approaching the
collision point.
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Figure 5. 5-body problem, integrals F2 and F3 in the explicit Runge–Kutta scheme



M.D. Malykh et al., On a set of tests for numerical methods … 395

It should also be noted that sharp jumps in the integrals, which are often
observed when applying explicit schemes to the classical, three-dimensional
many-body problem, did not appear in these plots. This suggests that the
Calogero problem, whose solutions are algebraic functions t, is much simpler
than the classical many-body problem and, therefore, the test based on it
does not detect this feature of explicit schemes.

6. Conclusion

The completely integrable dynamical Calogero system, which describes
the one-dimensional many-body problem, allows creating a convenient tool
for testing difference schemes by means that do not go beyond the algebraic
framework. We have implemented these tools in the new version of the fdm
for sage software.
The first application showed that the implementation of the method for

numerical detection of moving singularities is complicated by artifacts, the
false spikes in the order plot, not previously described in theory. This allows
an idea that the developed tools provide a fairly representative set of tests
that will allow revealing previously unnoticed difficulties.
On the other hand, it should be noted that the trajectories of bodies in

this dynamic system are arranged quite simply, without any ’loops’ and ’fine
structures’, which makes this test rather rough. In particular, we associate
this with the absence of jumps of integrals of motion in the plots calculated
using explicit schemes. This offers a prospect for the development of new
tests.
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О наборе тестов для численных методов
интегрирования дифференциальных уравнений,
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Аннотация. На основе вполне интегрируемой динамической системы Калодже-
ро, описывающей одномерную задачу многих тел, разработан инструмент для
тестирования разностных схем и реализован в оригинальном пакете fdm, инте-
грируемом в систему компьютерной алгебры Sage. Показано, как использовать
разработанные инструменты для проверки поведения численных решений возле
точек столкновения, а также для исследования консервативности разностных
схем. При обнаружении особенностей по методу Альшиной обнаружена труд-
ность, связанная с ложными колебаниями порядка. Одно из главных достоинств
этого набора теста — чисто алгебраический характер решений и интегралов
движения.

Ключевые слова: метод конечных разностей, динамические системы, система
Калоджеро, численная идентификация особенностей


