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Abstract. This paper investigates neurotechnologies for developing brain–computer
interaction (BCI) based on the generative deep learning Stable Diffusion model. An
algorithm for modeling BCI is proposed and its training and testing on artificial data
is described. The results are encouraging researchers and can be used in various
areas of BCI, such as distance learning, remote medicine and the creation of robotic
humanoids, etc.
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1. Introduction

An increasing number of researches in the field of artificial intelligence
are aimed at development of neurotechnological applications using advances
in generative deep learning. Many of these studies focus on using machine
learning to analyze or decode brain signals, and lead to the creation of
various biomedical devices that help people improve their quality of life [1].
One of the applications of machine learning in neurotechnology is modeling
brain–computer interaction (BCI). There are many different approaches to
BCI modeling, including the use of different machine learning models and
neural network architectures. One of the recent developments in this field is
Stable Diffusion (SD), which allows generating samples with a predetermined
distribution using a stochastic diffusion process [2].
Stable Diffusion (Stable Diffusion) is one of the approaches for implementing

stochastic diffusion, which takes into account the peculiarities of the input
data distribution. In particular, Stable Diffusion is a generalized Cauchy
distribution, which is a mixture of distributions with heavy tails and takes
into account the presence of heavy outliers in the data. This makes Stable
Diffusion particularly useful for modeling brain–computer interactions because
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data from electroencephalography (EEG) or magnetoencephalography (MEG)
often contain spikes and noise. Stable diffusion is the process of solving
the Fokker–Planck equation, which describes the evolution of the probability
density on the time axis. This probability density is usually a set of parameters
or latent features that are valuable indicators for processing EEG or MEG
data. Stable diffusion allows not only to generate new samples based on
these parameters, but also to solve many other tasks related to data analysis,
such as classification, regression, clustering, etc. [3, 4]. Moreover, it can be
used in improving the quality of BCI, by improving the accuracy of decoding
and computer interface control. A number of works have demonstrated the
successful application of latent diffusion methods in the tasks of medical
rehabilitation [5–7], research of biological structures [7, 8], development of
humanoid robots [9–11].
This paper proposes a brain–computer interaction algorithm based on the

Stable Diffusion model for BCI modeling in the learning process. The process
of model creation is described, starting from data preparation and ending with
the implementation of the model in a computer interface control application.

2. Stable Diffusion generative deep learning models

Diffusion models are machine learning models that learn to decompose
random Gaussian noise step-by-step to produce a pattern of interest, such as
an image [12–14]. The diffusion model has a significant disadvantage, since
the denoising process is time and memory consuming. This makes the process
slow and requires a lot of memory. The main reason for this is that they
work in pixel space, which becomes unreasonably expensive, especially when
generating high-resolution images. Stable diffusion was introduced to solve
this problem because it depends on latent diffusion. Latent diffusion reduces
memory and computational overhead by applying the diffusion process to
a lower-dimensional latent space instead of using the actual pixel space.
Understanding the Basics of Denoising Diffusion Probabilistic Models.

Figure 1. Process of Denoising Diffusion Probabilistic Model (Image by author)
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There are three main components in latent diffusion, the most important of
which is the variation autoencoder (VAE). The autoencoder (VAE) consists of
two main parts: an encoder and a decoder. The encoder converts the images
into a low-dimensional latent representation, which will be the input for the
next component, the U-Net. The decoder does the reverse work, converting
the latent representation back into an image. The U-Net is also made up of
encoder and decoder parts, and both are made up of ResNet blocks. The
encoder compresses the image into a lower resolution image, and the decoder
decodes the lower resolution image back into a higher resolution image.
To ensure that the U-net does not lose important information when down-

sampling, short connections are usually added between the encoder’s ResNet
networks for downsampling and the decoder’s ResNet networks for upsam-
pling. In addition, a stable diffusion U-net is capable of conditioning its
output to text embeddings by means of cross-attention layers. Cross-attention
layers are added to both the encoding and decoding parts of the U-net, usually
between ResNet blocks. The encoder is used to obtain a latent representa-
tion (latent) of the input images for the direct diffusion process during latent
diffusion training. While during output, the VAE decoder converts the latent
representation back into an image.
Text encoder. The text encoder converts an input query, such as “Pikachu

will have a nice dinner with a view of the Eph-phil tower”, into a space of
embedding that can be understood by the U-net. This would be a simple
transformer-based encoder that maps a sequence of tokens into a sequence
of hidden embeddings of text. It is important to use a good cue to get the
expected result. That’s why cue engineering is trending right now. Cue
engineering is the search for specific words that can make a model produce
a result with certain properties.
The reason latent diffusion is fast and efficient is because the U-net of latent

diffusion works in low-dimensional space. This reduces memory size and
computational complexity compared to diffusion in pixel space. For example,
the autoencoder used in Stable Diffusion has a reduction factor of 8. This
means that the shape image (3, 512, 512) becomes (4, 64, 64) in latent space,
which requires 64 times less memory. The stable diffusion model first takes
a latent seed and a text cue as input. The latent seed is then used to generate
random representations of latent images of size 64 × 64, and the text cue is
converted into 77 × 768 text blobs using the CLIP text encoder.
The U-network then iteratively discolors the random representations of the

hidden images, being conditioned by the text embeddings. The output of the
U-net, which is the residual noise, is used to compute the representation of
the hidden image using the scheduler algorithm. The scheduler algorithms
compute the predicted representation of the cleaned image based on the
previous noise representation and the predicted noise residual. Many different
scheduler algorithms can be used for these calculations, each with its own
pros and cons. For Stable Diffusion, we recommend using one of the following:

— PNDM scheduler (used by default);
— DDIM scheduler;
— K-LMS scheduler.

The denoising process is repeated about 50 times to get a better represen-
tation of the latent image step by step. After the process is completed, the
latent image representation is decoded by a part of the variational autocoder,
the decoder.
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Pre-trained latent diffusion models were used to develop our project. The
pre-trained diffusion model includes all the components needed to create
a complete diffusion pipeline. They are stored in the following folders:

— text_encoder: Stable Diffusion uses CLIP, but other diffusion models
may use other encoders, such as BERT.

— tokenizer: This must match the one used by the text_encoder model.
— scheduler: The scheduling algorithm used to postpone adding noise to

the image during training.
— U-Net: The model used to generate a latent representation of the input

data.
— VAE: The autoencoder module we will use to decode the latent represen-

tations into real images.

We can load the components by accessing the folder in which they were
saved, using the subfolder argument for from_pretrained [8].

3. Developing a brain–computer interaction algorithm
based on the SD model

Step 1. Data preparation

The first step in creating the Stable Diffusion model for BCI modeling is
to prepare the data. As data, we will use a set of EEG data obtained from
subjects who performed the task of memorizing numbers. Each experiment
consisted of several trials, each of which required the subject to memorize
a specific digit displayed on a screen and then reproduce it using reasoning.
EEG electrodes placed on the subjects’ heads were used to acquire the

data, and the signals were digitized and recorded on a computer. This data
consisted of several channels and included information about the temporal
distribution of the signals received from each electrode.
Before processing the data, we performed preprocessing, including noise

filtering and outlier elimination. In addition, we created a function to convert
the data into a format suitable for model processing and training. At this
stage we have prepared the data set which contains the information about the
time distribution of the EEG signals for the purpose of training and testing
the Stable Diffusion model.

Step 2: Model development

After receiving the data we began to develop the model itself. In our case
we chose the Stochastic Diffusion model using Stable Diffusion as the diffusion
process. It is worth noting that we used the TensorFlow Probability library
to implement this model [15–18]. Stable Diffusion was implemented in the
form of a parametrized distribution, which is specified by two parameters –
the exponent and the scale. These parameters were trained on EEG data
and used to generate new samples. In addition, we used the autoencoder
model to train latent features from the EEG data, which were then used as
input parameters for the Stable Diffusion model. In general, the model was
trained on the EEG data, which were divided into a training set, a control
set, and a test set. During training, we used the maximum likelihood method
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to optimize the model parameters. In addition, we used L2 regularization to
prevent model overtraining.

Step 3: Testing the Model

After training the model, we proceeded to test it on the control and test
datasets. We used metrics such as accuracy, AUC ROC, f1-score, and error
matrix to evaluate the quality of the model. We also tested how well our
model performed on new data by displaying samples created with the model
and comparing them to real data. We found that our model fairly accurately
reflected the distribution of the EEG data and allowed us to generate new
samples that seemed similar to the real data.

Step 4: Implement the model in the application

Finally, we set about incorporating the model into a computer interface
management application. We used the TensorFlow Serving library to run our
model on a remote server that handled requests from the application and
returned real-time predicates. In our application, the user could control the
computer with his mind. He could select commands such as “up”, “down”,
“left”, and “right” just by thinking about those commands. These mental
commands were passed to the TensorFlow server through our Python library,
which in turn used the Stable Diffusion model to classify the user’s EEG
signals and determine his intentions.

Step 5: Implementing the model in the training process

After we successfully trained and tested the Stable Diffusion model for
BCI modeling, we proceeded to implement it into the learning process. We
created an interactive application that allows users to control the computer
interface through thinking. The application is a scenario in which the user is
asked to perform a task, such as moving the mouse cursor around a target
and pressing buttons. To control the thinking, the user looks at a symbol
that corresponds to a given command and directs his or her attention to that
symbol. Then, the application’s interfaces use EEG signals to recognize that
symbol and execute the appropriate command.

4. Discussion of results

In this paper, we have reviewed the details of creating a Stable Diffusion
model to simulate brain–computer interaction in the learning process. We
described in detail how to prepare the data, develop the model, and test it
to determine the quality of its performance. We also demonstrated how our
Stable Diffusion model can be applied to create an interactive application
that allows users to manipulate the computer interface with their thinking.
The Stable Diffusion model we developed has been shown to work well in
simulating brain–computer interaction in the learning process. We created
a model that could process EEG data and generate new samples that matched
the distribution of the real data. We also successfully incorporated this model
into a computer interface control application where the user could control the
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computer by thinking. Moreover, our Stable Diffusion model can solve not
only the classification problem, but also some other data processing problems,
such as clustering and regression. It can be used not only for modeling the
interaction between the brain and the computer, but also for other tasks
related to time series analysis and modeling of temporal processes. As a result,
the Stable Diffusion model is a powerful tool for modeling and constructing
ROC/PR curves to evaluate the quality of model performance.
To test the model we used different tasks related to EEG signal decoding.

For example, we used different types of classification with a number of
classes from 2 to 10, including one-vs-all and multi-class classification. We
also performed clustering analysis to see which activity patterns could be
extracted from the data. During model testing, we obtained high accuracy
and AUC values, as well as high clustering quality. Overall, the model gave
good results on all tasks, indicating its validity and applicability to BCI
modeling.
One of the main advantages of modeling brain–computer interaction with

Stable Diffusion is that it takes into account the peculiarities of input data
distribution, which allows to work more efficiently with data containing noise
and spikes. Furthermore, using Stable Diffusion maximizes the likelihood of
the data, which improves the accuracy of decoding and controlling computer
interfaces. Another important advantage of simulating brain–computer inter-
action with Stable Diffusion is that it can be run in real-time online. This
is especially important when applying such a model to real-world computer
interface control tasks, where fast response and accuracy are critical.

5. Conclusion

The Stable Diffusion model is a powerful tool for modeling brain–computer
interaction, and can be used to create biomedical devices that help people
improve their quality of life. For example, such devices can be used to
control prostheses, control mouse cursors, or play computer games without
using hands or voice. However, at this point, our knowledge of the actual
capabilities and limits of this model and the specific solutions it can provide
is far from complete, which opens up many possibilities for future research
and development. The use of brain–computer interaction modeling to control
computational interfaces is an experimental and promising area that has great
potential for future development. However, it is also a challenging task that
requires high skill and expertise in neurotechnology, machine learning, and
biomedical sciences.
Successful implementation of such a model requires the use of modern data

processing and analysis methods, as well as a strong technical base, including
powerful computing resources and highly specialized devices for EEG and
MEG data acquisition and processing.
Despite limitations and disadvantages, the use of brain–computer inter-

action modeling is one of the most promising and attractive directions in
neurotechnology, and has the potential to significantly change our lives in the
future. And in conclusion it is worth mentioning that the future of this direc-
tion is determined by how fast, scientists can develop models which can be of
real interest for people and be widely used in their lives. They can change ex-
isting work processes and teach us new ways to manage the world around us
through our thoughts, and help people with disabilities in their daily lives.
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That is why this area is now actively researched and developed all over the
world. To date, there are several successful prototypes of computer-interface
control devices that use brain–computer interaction, and undoubtedly, we
will see more potential applications of this technology in the future.
However, it is important to note that the use of brain–computer interaction

technologies also raises ethical and safety issues. Thus, in order to achieve
the most positive results, it is necessary to pay due attention to security
and ethical issues, including data privacy and information security rights of
individual users.
In general, the application of brain–computer interaction modeling is an

important direction in neurotechnology, which opens up possibilities for a wide
range of new applications. However, in order to successfully achieve the results
and to use this technology in everyday life, careful work and continuous search
for new solutions and improvement of technologies are needed.
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Моделирование взаимодействия «мозг – компьютер»
на основе модели стабильной диффузии

Е. Ю. Щетинин

Финансовый университет при Правительстве Российской Федерации
Ленинградский проспект, д. 49, Москва, 125993, Россия

Аннотация. В этой статье исследуются нейротехнологии для развития взаимо-
действия «мозг – компьютер» (BCI) на основе генеративной модели стабильной
диффузии с глубоким обучением. Предложен алгоритм моделирования BCI
и описано его обучение и тестирование на искусственных данных. Полученные
результаты обнадёживают исследователей и могут быть использованы в раз-
личных областях BCI, таких как дистанционное обучение, удалённая медицина,
создание роботов-гуманоидов и т. д.

Ключевые слова: технология нейронных сетей, система мозг-компьютер, ста-
бильная диффузия


