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Abstract. The method of numerical integration of Euler problem of buckling of
a homogeneous console with symmetrical cross section in regime of plastic deformation
using Maple 18 is presented. The ordinary differential equation for a transversal
coordinate 𝑦 was deduced which takes into consideration higher geometrical momenta
of cross section area. As an argument in the equation a dimensionless console slope
𝑝 = tg 𝜃 is used which is linked in mutually unique manner with all other linear
displacements. Real strain-stress diagram of metals (steel, titan) and PTFE polymers
were modelled via the Maple nonlinear regression with cubic polynomial to provide
a conditional yield point (𝑡,𝜎𝑓). The console parameters (free length 𝑙0, 𝑚, cross

section area 𝑆 and minimal gyration moment 𝐽𝑥) were chosen so that a critical
buckling forces 𝐹cr corresponded to the stresses 𝜎 close to the yield strength 𝜎𝑓.
To find the key dependence of the final slope 𝑝𝑓 vs load 𝐹 needed for the shape

determination the equality for restored console length was applied. The dependences
𝑝𝑓(𝐹) and shapes 𝑦(𝑧), 𝑧 being a longitudinal coordinate, were determined within
these three approaches: plastic regime with cubic strain-stress diagram, tangent
modulus 𝐸tang approximations and Hook’s law. It was found that critical buckling

load 𝐹cr in plastic range nearly two times less of that for an ideal Hook’s law. A quasi-
identity of calculated console shapes was found for the same final slope 𝑝𝑓 within the

three approaches especially for the metals.
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1. Introduction

The problem of stability loss in a beam under longitudinal load (buckling) in
the range of inelastic strains is actual and important from many points of view
such as sports (pole vaulting), civil engineering (bridges, truss constructions),
aeronautics, robotics and elsewhere the requirements of a small weight and
large strength are imposed on structural elements been designed [1]. Fatigue
of materials, lowering the proportionality and elasticity limit due to the
Bauschinger effect in periodically tensile and compressed elements, hysteresis
etc. — all that results in falling of initially secure loads time into the zone of
serious risk of buckling. Therefore, beginning from the pioneering work of
F.R. Shanley [2] considered so called tangent and reduced moduli approaches
[ibid], Euler’s problem in inelastic range attracts more and more researchers —
from engineers dealing with material strength to pure mechanicians and
mathematicians dealing with bifurcations, nonlinear phenomena etc.

Of course, modern models of buckling are 2- or even 3-dimensional and they
take into account not only bending shift component but a shear one too. To
take all this into account the finite-element modeling (FEM) is widely used and
it is implemented in the commercial software package ABAQUS (see e.g. [3–5])
and similar software. Many features and peculiarities both in thick so called
Timoshenko beams [6] and in sandwich/fiber-composite/lattice/C-columns
(see [7–9]) etc. are explained well in these multidimensional models.

The problem is studied in university courses of material sciences within
a plane cross-sections hypothesis which leads to simple one-dimensional (1D)
Euler ordinary differential equation (ODE) of the II-nd order. However,
the attention is paid mainly to moment of arising of the phenomenon itself
and its possible shapes for various ways of a beam fixation. Unfortunately,
the linearized Euler ODE coupled with boundary condition (BC) on the
beam ends looks like a classical eigenvalue problem with unstable higher
modes corresponding to higher eigenvalues too. This ODE is similar to the
Schröedinger equation for 1D particle in a potential well with infinitely high
walls. This similarity misleads the students to the wrong conclusion that the
non-zero solution of the ODE exists only for a set of “resonant” axial loads
𝐹𝑛, 𝑛 = 1, 2, … just like in the aforementioned case of the well. And it is not
clear whether for “non-resonant” forces from inside the intervals the ODE has
purely compressive solution without any buckling or else power-like formula
or something else. Or, may be, it shoots at some finite value at once just
as the axial force 𝐹 reaches some critical value as we have seen from our
own experience, compressing by the hands a steel ruler? In what way the
non-linear and inelastic properties with yield point on strain-stress diagram of
real materials influence the critical buckling load 𝐹cr and the shape of column
buckled?

This kind of questions inevitably arises by analytically thinking students
which can’t find the answers in many available textbooks where only simplified
explanation of the phenomenon is presented. One of the reasons why it takes
place is traditionally pure mathematical means to describe the buckling
process not expressing in standard algebraic functions. Nowadays, at the
time of rapid development of mathematical software, more and more new
opportunities to study the buckling phenomenon both with practical, scientific
and educational purposes are opening up.
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As for the Maple itself it is permanently improving software package with
simple programming language with commands close to English ones supplied
with comprehensive parameters and easily read option Help. The undeniable
advantage of the package in addition to the extremely broad coverage of
the sciences from Bayesian statistics to Feynman diagram calculations is an
extremely high computational accuracy due to so-called “long Arithmetics”
(Matlab soft uses Maple calculations) and opportunity to choose an alternative
computational method and compare the results to improve their reliability.
All above makes this package most reliable means of numerical modeling
compared to those packages where the control of the calculation process is
reduced only to the choice of the “mouse” option from the menu.
The work is devoted to numerical modeling of the buckling phenomenon

of uniform beam. The main purpose of this work is to present readers
relatively simple and effective calculation algorithm and its realization with
the Maple 2018 relying on which it is possible to learn in what way inelastic and
plastic properties of the material in question influence the basic parameters of
buckling. The versatile skills gained from this activity may be then applied in
up to date theories and experiments in study of buckling of real constructive
elements say within aforementioned FEM and others.
The application of the Maple not only solves many technical difficulties

of mathematical nature but with the algorithm itself and with consequence
of computational procedures it gives students better comprehension of the
mechanism and nature of the phenomenon of buckling. Moreover, as part of
university lessons and practices this kind of investigations may be joined in
one collective interdisciplinary research project which results may be discussed,
analyzed and then presented at student conference/contest.

2. Equation

We neglect in the paper the shear effects and stay within the classical
Euler’s 1D-model of buckling but with the axial compressive loads resulting
in plastic deformations in the material.
Nevertheless, the fundamental properties of the phenomenon are described

adequately both from qualitative and quantitative points of view in the frames.
And the results of modelling with the use of software package Maple 18 fit
well compressive tests for various real materials with non-linear strain-stress
diagram.
We regard for simplicity the vertical column 𝐴𝐵 of free length 𝑙 and uniform

cross-section (𝑆) symmetrical with respect to the axis x of minimal gyration.
The column is made of isotropic material with a typical for metals and
polymers strain-stress diagram with conditional yield point (see later). The
lower end 𝐴 of the column is pinned hardly while the upper one 𝐵 been
exposed to the axial compressive load 𝐹, 𝑁 (figure 1). This vertical force
provides normal stresses 𝜎𝑛 beyond the elastic range on the diagram, and
even greater than yield strength 𝜎𝑓 above.

The choice of the pinned console solves problems with ambiguity of the
bonds between the slope and the axis displacements. So, the transversal
shift 𝑦 of the center of the 𝑧 cross-section and its vertical displacement Δ𝑧
are uniquely related to the current inclination 𝑝 = 𝑑𝑦/𝑑𝑧 of the console axis
(figure 2).
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Figure 1. The uniform beam with pinned lower end 𝐴 and loaded with 𝐹 on the upper 𝐵
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Figure 2. Symmetrical cross-section with zero odd momenta

Let’s write down the fundamental relation between bending torque 𝑀𝑥(𝑧)
and curvature radius 𝜌 (𝑧) in the same section (𝑧). First, within plane-
section hypothesis we represent the normal strain in the layer with the local
coordinate 𝜂 as 𝜀𝜂 = 𝜀𝑎𝑥 + 𝜂/𝜌 where 𝜀𝑎𝑥 is a compressive strain of the axis

crossing the section 𝑧 in the center 𝐶.
Then regarding strain-stress diagram as obeying cubic law with respect to

the access value we have

𝜎(𝜀) = 𝜎(𝜀𝑎𝑥) + 𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

𝜂
𝜌

+ 1
2!

𝑑2𝜎(𝜀𝑎𝑥)
𝑑𝜀2 (𝜂

𝜌
)

2

+ 1
3!

𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3 (𝜂

𝜌
)

3

.

Substituting this expression into the formula for the bending moment and
taking into account the symmetry of the cross-section, we get

𝑀𝑥(𝑧) = ∬ 𝜎𝑧𝜂𝑑𝑆 = 𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

𝐽 (𝐼𝐼)
𝑥

𝜌
+ 1

3!
𝑑3𝜎(𝜀𝑎𝑥)

𝑑𝜀3
𝐽 (𝐼𝑉 )

𝑥

𝜌3 ,

with 𝐽 (𝐼𝐼)
𝑥 and 𝐽 (𝐼𝑉 )

𝑥 being the 2-nd and 4-th momenta of inertia of the
cross-section area. The 3-rd one drops due to the cross-section symmetry and
we may generalize the concept of a cross-section symmetry in this way, i.e.

𝐽 (𝐼𝐼𝐼)
𝑥 = 0.
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Given that 1/𝜌 equals 𝑦″
𝑧𝑧/(1 + 𝑦′2

𝑧 )3/2, we get the left-hand side and writing
down the right-hand side the equation which determines the shape of the
column buckled

𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

𝐽 (𝐼𝐼)
𝑥 𝑦″

𝑧𝑧

(1 + 𝑦′2
𝑧 )

3
2

+ 1
6

𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3

𝐽 (𝐼𝑉 )
𝑥 (𝑦″

𝑧𝑧)3

(1 + 𝑦′2
𝑧 )

9
2

= −(𝐹𝑦 + 𝑀𝐴), (1)

with 𝑀𝐴 = −𝐹𝑏 being a torque on hard seal 𝐴 (figure 1) and the value of 𝑏
as a transversal shift of the upper end 𝐵.
This equation is nonlinear on the senior second derivative but due to its

autonomy, it can be lowered in its order and then solved within the framework
of perturbative approach under the assumption that the second term with

𝐽 (𝐼𝑉 )
𝑥 is much smaller than the first one. Thus, making the substitute 𝑣 = 𝑦−𝑏
we get the equation with boundary condition

⎧{{
⎨{{⎩

𝐽 (𝐼𝐼)
𝑥 𝑣′′

𝑧𝑧

(1 + 𝑣′2
𝑧 )

3
2

(𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

) + 1
6

(𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3 ) 𝐽 (𝐼𝑉 )

𝑥 𝑣′′3
𝑧𝑧

(1 + 𝑣′2
𝑧 )

9
2

= −𝐹𝑣,

𝑣(0) = −𝑏, 𝑣(𝑧𝐵) = 0, 𝑣′
𝑧(0) = 0.

After substitution 𝑣′ = 𝑝 and assigning the 𝑝 as an argument we get
𝑣″

𝑧𝑧 = 𝑝 ⋅ (𝑑𝑝)/(𝑑𝑣) and

⎧{{
⎨{{⎩

𝐽 (𝐼𝐼)
𝑥 𝑝𝑑𝑝

𝑑𝑣

(1 + 𝑝2)
3
2

(𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

) + 1
6

(𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3 )

𝐽 (𝐼𝑉 )
𝑥 (𝑝𝑑𝑝

𝑑𝑣)3

(1 + 𝑝2)
9
2

= −𝐹𝑣,

𝑣(0) = −𝑏, 𝑣(𝑝𝑓) = 0,

where 𝑝𝑓 is a final slope at the end 𝐵.
After simple transformation we receive

⎧{{
⎨{{⎩

𝐽 (𝐼𝐼)
𝑥 𝑑𝑝2

(1 + 𝑝2)
3
2

𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

+ 1
6

𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3

𝐽 (𝐼𝑉 )
𝑥 𝑣2𝑑𝑝2

(1 + 𝑝2)
9
2 (𝑑𝑣2

𝑑𝑝2 )2
= −𝐹𝑑𝑣2,

𝑣2(0) = 𝑏2, 𝑣(𝑝2
𝑓) = 0,

⇔

⇔∣𝑣
2 ≡ 𝑤

𝑝2 ≡ 𝑠
∣
⎧
{
⎨
{
⎩

𝑑𝑤
𝑑𝑠

=− 𝐽 (𝐼𝐼)
𝑥

𝐹(1 + 𝑠)3
2

𝑑𝜎(𝜀𝑎𝑥)
𝑑𝜀

− 1
6

𝑑3𝜎(𝜀𝑎𝑥)
𝑑𝜀3

𝐽 (𝐼𝑉 )
𝑥 𝑤

𝐹(1 + 𝑠)9
2 (𝑑𝑤

𝑑𝑠 )2 ,

𝑤(0) = 𝑏2, 𝑤(𝑝2
𝑓) = 0.

(2)

In this equation the derivatives (𝑑𝜎(𝜀𝑎𝑥))/(𝑑𝜀) and (𝑑3𝜎(𝜀𝑎𝑥))/(𝑑𝜀3) de-
pend on 𝑝2 = 𝑠 because both the strain 𝜀𝑎𝑥 of the axis and the normal stress
𝜎𝑎𝑥 at certain place caused by it depend the slope 𝑝 as

𝜎𝑎𝑥(𝑝) = 𝐹 cos 𝜃
𝑆

= 𝐹
𝑆(1 + 𝑝2)1

2
= 𝐹

𝑆(1 + 𝑠)1
2

. (3)
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Also, the final slope 𝑝𝑓 is unknown and it should be found from some

condition (see later). To solve (2) we should build and use a model strain-
stress diagram both in direct and inverse type.

3. Modelling strain-stress diagram

We considered the diagrams which contain a) initial proportionality stage
𝜎(𝜀) = 𝐸𝜀, the 𝐸 being Young’s modulus, b) the yield stage containing

conditional yield point (𝜎𝑓, 𝑡), i.e. an inflection point with (𝑑2𝜎(𝑡))/(𝑑𝜀2) = 0,
c) and final densification stage with (𝑑2𝜎(𝜀))/(𝑑𝜀2) > 0.
The cubic formula meeting all the requirements above is as follows

𝜎(𝜀) = 𝐸𝜀 − 3𝐸𝜇
2

𝜀2 + 𝐸𝜇
2𝑡

𝜀2, 𝜇 =
𝐸𝑡 − 𝜎𝑓

𝐸𝑡2 , (4)

and it has the derivatives

𝑑𝜎(𝜀)
𝑑𝜀

= 𝐸 − 3𝐸𝜇𝜀 + 3𝐸𝜇
2𝑡

𝜀2, 𝑑3𝜎(𝜀)
𝑑𝜀3 = 3𝐸𝜇

𝑡
. (5)

(The parameter 𝜇 turns to zero at ideal linear diagram otherwise it describes
in what extent the diagram is nonlinear. Namely, the greater 𝜇 the more
non-linear 𝜎(𝜀)-dependence and it manifests itself at smaller strains 𝜀.)
For the equation (3) it corresponds to reverse approximate formula

𝜀(𝜎) = 𝜎
𝐸

+ 3𝜇𝜎2

2𝐸2 + 𝜇(9𝜇𝑡 − 1)𝜎3

2𝐸3𝑡
(6)

which gives identity with accuracy of 𝑂(𝜀4) when the stress value (3) is
substituted into it.
Application of (4) for regression by Maple 2018 option “Fit” on experimental

data received at students’ practicum for low carbon steel compression test
gives good match on the level of adjusted 𝑅2 = 0.999733 of the data with the
curve (3) (figure 3). An estimated Young’s modulus 𝐸 lies in confidence (95%)
interval (165; 175) GPa a little less of the handbook values of 180 … 220 GPa.
This is surely due to fatigue of the material as a result of numerous tests
fulfilled by many generations of students in the workshop on material science
at Yaroslavl branch of Moscow Institute of Transport Engineers.
The reversed formula (6) also fits well the data within yield stage though it

doesn’t contain a densification stage. Up to the beginning of the densification
stage due to (3), the curves actually merge into a single line with discrepancies
being of order of the residuals of estimation. Also, we see good quasi-linearity
of the data in range of 𝜀𝑠 from about 0.007 to ∼ 0.017 where the conditional
yield point (𝑡 = 0.0134) is localized. This quasi-linearity justifies the use of
the tangent modulus method in solving the Euler equation for buckled beam.
Not only for the steel but for other metals such as titan and wolfram the

simple cubic formulas (4) and (6) fit well the experimental data. For the fluor
polymers they hold too. Thus, for Al/PTFE (aluminum/polytetrafluoroethy-
lene) the experimental data [10] fit well (4) (figure 4). Moreover, we see that
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in the wide enough middle part of the diagram points fit well on a straight
line corresponding to the tangent modulus 𝐸𝑡 of about 50 MPa. Although
the interpolating line does not emphasize this fact.

Figure 3. Cubic model direct (4) (grey solid) and reverse (6) (black long dash) diagrams

built on experimental data (black diamonds) for low carbon steel. Hook’s law (solid thin

grey), yield strain 𝑡 = 0.0134 (black dot), yield stress 𝜎𝑓 = 1.48 ⋅ 109 Pa (grey dash)

Figure 4. Al/PTFE strain-stress diagram: experiment [10] (solid circle); cubic

model 𝜎(𝜀) (4) with the parameters 𝐸 = 400 MPa, 𝜎𝑓 = 44 MPa, 𝑡 = 0.3,
𝐸tang = 55.8 MPa (solid black), Hook’s law (solid thin grey), reversed diagram 𝜀(𝜎) (solid

thick grey), yield strain 𝑡 = 0.3 (black dot), yield strength (grey long dash)
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All examples above confirm the effectiveness of a simple cubic formula for
adequate describing the diagrams of many plastic materials, both metals and
polymer composites, increasingly used in mechanical engineering, aeronautics
and robotics.

4. Solving the equation

To write down the equation describing the buckling in inelastic regime we
should substitute (6) in the formula (5) for the first derivative and limit the
resulting expression to the first four members

𝑑𝜎
𝑑𝜀

= 𝐸 − 3𝜇𝜎 + ( 3𝜇
2𝐸𝑡

− 9𝜇2

2𝐸
)𝜎2 + (6𝜇2

𝐸2𝑡
− 27

2𝐸2 )𝜎3. (7)

Substituting the expression (3) for axial stress in (7) and then in (2) we

receive the equation defining the dependence 𝑤 = 𝑣2 ⋅ 𝑣𝑠 ⋅ 𝑠 = 𝑝2.

𝑑𝑤
𝑑𝑠

= − 𝐽 (𝐼𝐼)
𝑥

𝐹(1 + 𝑠)3
2

+ 3𝐽 (𝐼𝐼)
𝑥 𝜇

𝑆(1 + 𝑠)2 −
𝐽 (𝐼𝐼)

𝑥 ( 3𝜇
2𝐸𝑡 − 9𝜇2

2𝐸 )
𝑆2(1 + 𝑠)5

2
𝐹−

−
𝐽 (𝐼𝐼)

𝑥 (6𝜇2

𝐸2𝑡 − 27
2𝐸2 )

𝑆3(1 + 𝑠)3 𝐹 2 − 𝜇𝐸
2𝑡

𝐽 (𝐼𝑉 )
𝑥 𝑤

𝐹(1 + 𝑠)9
2 (𝑑𝑤

𝑑𝑠 )2 . (8)

Expressing the 𝑤 = 𝑤0 + 𝛿𝑤 as a sum of the 𝑤0 satisfying the equation (8)

with 𝐽 (𝐼𝑉 )
𝑥 = 0 and boundary conditions in (2), and a small additive 𝛿𝑤 fitting

zero boundary conditions at upper end 𝐵, we find formulas for the 𝑤0 and 𝛿𝑤:

𝑤0(𝑠) = 2𝐽 (𝐼𝐼)
𝑥

𝐹(1 + 𝑠)3
2

− 3𝐽 (𝐼𝐼)
𝑥 𝜇

𝑆(1 + 𝑠)2 +
2𝐽 (𝐼𝐼)

𝑥 ( 3𝜇
2𝐸𝑡 − 9𝜇2

2𝐸 )

3𝑆2(1 + 𝑠)5
2

𝐹+

+
𝐽 (𝐼𝐼)

𝑥 (6𝜇2

𝐸2𝑡 − 27
2𝐸2 )

2𝑆3(1 + 𝑠)3 𝐹 2 − 𝑏2, (9)

𝛿𝑤(𝑠) = 𝜇𝐸𝐽 (𝐼𝑉 )
𝑥

2𝐹𝑡

𝑝2
𝑓

∫
𝑠

𝑤0(𝑠′)𝑑𝑠′

(1 + 𝑠′)9
2 (𝑑𝑤0

𝑑𝑠′ )2 . (9′)

From (8) a clear relationship between the transversal displacement 𝑏 of the
upper end B of the console and its final slope 𝑝𝑓 follows

𝑏 = { 2𝐽 (𝐼𝐼)
𝑥

𝐹(1 + 𝑝2
𝑓)1/2 − 3𝐽 (𝐼𝐼)

𝑥

𝑆(1 + 𝑝2
𝑓)2 +

2𝐽 (𝐼𝐼)
𝑥 ( 3𝜇

2𝐸𝑡 − 9𝜇2

2𝐸 )

3𝑆2(1 + 𝑝2
𝑓)5/2 𝐹+
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+
𝐽 (𝐼𝐼)

𝑥 (6𝜇2

𝐸2𝑡 − 27
2𝐸2 )

2𝑆3(1 + 𝑝2
𝑓)3 𝐹 2 + 𝜇𝐸𝐽 (𝐼𝑉 )

𝑥

2𝐹𝑡

𝑝2
𝑓

∫
𝑠

𝑤0(𝑠′)𝑑𝑠′

(1 + 𝑠′)9
2 (𝑑𝑤0

𝑑𝑠′ )2 }
1/2

. (10)

Further calculations (see later) show that for real materials and standard
cross sections (I,L-beam, channel, square, circle, etc.) the addition (9′) is at
least 4 orders less than basic function (8). Thus, for a PTFE Teflon channel
with a length of 𝑙0 = 0.75 m and an area 64 times the area of channel No. 10
at a final slope of 0.5, the additive 𝛿𝑤 was in maximum less than 0.01% of
the basic function 𝑤0(𝑠 = 𝑝2). And since they are added geometrically to
form 𝑣(𝑝) = 𝑦(𝑝) − 𝑏, the contribution will be completely invisible (figure 5).
So, we may easily neglect the integral amendment in (10).

Figure 5. First order function 10−4𝑤0(𝑠 = 𝑝2) (black) (9) and additive 𝛿𝑤 (grey) (9′) due

to 4-th moment of inertia 𝐽 (𝐼𝑉 )
𝑥 for I-beam made of Teflon (PTFE), 0.75 m, 0.077 m2,

𝐽 (𝐼𝐼)
𝑥 = 0.000065124 m4

5. Determining the final slope vs load dependence

Analyzing the expressions (8)–(10) it is easily seen that correct solution of
ODE may be received only for known dependence of the load 𝐹 on the final
slope 𝑝𝑓. To find it we are to compile so called characteristic equation on

restored length of the console.
So, we have a transversal axis shifted coordinate 𝑣0(𝑝) = 𝑦(𝑝) − 𝑏 =

−√𝑤0(𝑝2).
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Figure 6. The 𝑝𝑓(𝐹) dependences for Al/PTFE I-console with 𝑙0 = 0.5 m, 𝑆 = 0.077 m2,

𝐽 (𝐼𝐼)
𝑥 = 0.000065124 m4 within the three approaches: stress due (4) (black), tangent

modulus (thick grey) and Hook’s law (grey thin)

The longitudinal coordinate 𝑧 may be found as 𝑧(𝑝) = ∫
𝑝

0

𝑑𝑣0(𝑝′)
𝑝′ and

elementary length of the axis as

𝑑𝑙(𝑝) = 𝑑𝑣0(𝑝)
𝑝

√1 + 𝑝2 = −
𝑑√𝑤0

𝑑𝑠
⋅ 𝑑𝑤0

𝑑𝑠
⋅ 𝑑𝑠

𝑑𝑝
⋅

√1 + 𝑝2

𝑝
= −𝑑𝑤0

𝑑𝑠
√1 + 𝑝2

√𝑤0
.

Being restored after the load is removed, this value becomes

𝑑𝑙res(𝑝) = 𝑑𝑙(𝑝)
1 − 𝜀(𝑝)

≈ 𝑑𝑤0
𝑑𝑝2 ⋅

√1 + 𝑝2
√𝑤0

(1 + 𝜀(𝑝) + 𝜀2(𝑝) + 𝜀3(𝑝)) ,

where the strain 𝜀(𝑝) taken positive, of the console axis element marked
𝑝 is received by substitution of the stress (3) in the reverse strain-stress
diagram (6). By integrating by 𝑝 and equating the result with the free length
of the console 𝑙0, we obtain the function 𝑝𝑓(𝐹) specified implicitly:

−

𝑝𝑓

∫
0

𝑑𝑤0
𝑑𝑝2 ⋅

√1 + 𝑝2
√𝑤0

(1 + 𝜀(𝑝) + 𝜀2(𝑝) + 𝜀3(𝑝)) 𝑑𝑝 = 𝐿(𝐹 , 𝑝𝑓) = 𝑙0. (11)

This key equation has non-empty solution if and only if the value of load 𝐹
exceeds some critical buckling force 𝐹cr, The Maple package has successful
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option implicitplot which builds precisely the graphs of implicitly specified
functions.
To compare the results obtained at different approximations, dependencies

𝑝𝑓(𝐹) were also calculated for an ideal material with the same Young’s

modulus, as well as in the approximation of a tangent module when the first

derivative in (7) was limited by the first two terms 𝑑𝜎
𝑑𝜀 (𝜎) = 𝐸 − 3𝜇𝜎.

Due to the availability of a quasilinear middle yield stage on the diagrams
(figures 4) for Al/PTFE (aluminum/polytetrafluoroethylene) [ibid], the results
for the cubic formula (4) obtained within the tangent modulus approach were
very close, but hugely differing from the results within Hook’s law (figure 5).

It is worth mentioning that the extremely large loads were chosen exclusively
to reach the stresses close to yield strength 𝜎𝑓. For the same reason, the

geometric parameters of the console were chosen, so that its flexibility 𝜆
varied from ∼ 5 to ∼ 20.
So, we see that regime of plastic deformations diminishes cardinally the

classical critical load 𝐹cr predicted by Hook’s law approach studied in most
universities. Especially it takes place for the materials with low yield strength
such as Teflon, polymers in general and composites based on them.

Also, we see that relatively simple tangent modulus approach gives the
results extremely close to those received by modeling strain-stress diagram
by cubic formula (4) with conditional yield point.

The cross-section symmetry in generalized meaning, i.e., 𝐽 (𝐼𝐼𝐼)
𝑥 = 0 simpli-

fies significantly the calculation due to the absence of a next-in-rank additive.
And as for this for the 4-th gyration moment it occurs quite negligible so
we may limit ourselves to only the terms containing the second moment of
the cross-section. As for widely used non-symmetrical cross-sections such as
L-beam the 3-rd moment doesn’t equal exactly to zero but very close to it
due to the area quasi-anti-symmetry. Thus, the method developed may be
implemented for wide class of constructive profiles.

6. Buckling shape

The shape of the buckled console is easily calculated parametrically from
the above formulas for the longitudinal 𝑧(𝑝) and transversal 𝑦(𝑝) coordinates.
The shape was calculated in all three approximations: the plastic deformations
of the axis due to a model cubic diagram with a conditional yield strength, in
the approximation of the tangent modulus, and for Hook’s law. The load 𝐹
for each case was taken to provide the same final slope 𝑝𝑓 = 0.5 (figures 7, 8).

We see that the shapes are extremely close to each other though the
compressed lengths differ significantly especially for ideal Hook’s case with the
load almost 2 times greater of those for the rest two approaches. As for the
case of the low carbon steel with much greater Young’s modulus the identity
of the shapes was really ideal (figures 8) for different beam lengths. Due
to approximate proportionality of the loads providing the same final slope
within different approaches one may suggest not to solve the unwieldy case
of cubic diagram (4) but to use a simple Hookean case with the subsequent
recalculation of forces.
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Figure 7. Quasi-identity of the shape of the Al/PTFE I-console, 𝑙0 = 0.5 m. 0.077 m2,

𝐽 (𝐼𝐼)
𝑥 = 0.000065124 m4 buckled under the loads 𝐹(𝑝𝑓 = 0.5) within the three

approaches: plastic strain (4) under 𝐹 = 1.932 ⋅ 106𝑁 (black solid), tangent modulus with

𝐹 = 1.97 ⋅ 106𝑁 (black dot) and Hook’s law with 𝐹 = 3.68 ⋅ 106𝑁 (grey)

Figure 8. Really complete shape identity for the steel I-console No 10, 𝑙0 = 0.5 m under

loads resulting in equal 𝑝𝑓 of 0.5 due to ideal Hook’s (black long dash) and cubic (solid grey)

strain-stress diagram

7. Conclusion

So, we prove that the suggested numerical method of Euler problem solution
within a plane section hypothesis using the Maple software is quite effective
and implementable in the range of plastic strains. The software is versatile
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useful for solving many related sub-problems such as bringing together similar
terms, expansion expression into a series, curve fitting, nonlinear estimation of
parameters from experimental data, plotting an implicitly specified function,
3D-plots, etc. The algebraic type of the functions involved which is provided
by a lucky choice of integration variable facilitates the computational process
and gives a gain in speed compared to analogous use of transcendental and
moreover special functions. Therefore, the method may be further generalized
on more complicate case of piecewise uniform beam.
Solving this kind problems, when any even minor invisible error can mislead

student to qualitatively wrong results and conclusions, disciplines him and
eventually makes him a specialist in mathematical modeling in a wide range
of sciences. The specialist who is critical of “ready-made solutions” in the
form of convenient commercial software products which may solve well one
class of problems and occur useless and distractive for another one.
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Продольный изгиб однородной консоли
с симметричным сечением в режиме пластических
деформаций: численное моделирование посредством

Maple 18

В. В. Чистяков, С. М. Соловьёв

Лаборатория физики редкоземельных полупроводников,
Физико-технический институт им. А.Ф. Иоффе РАН,

Политехническая ул., д. 26, Санкт-Петербург, 194021, Россия

Аннотация. Представлен способ численного моделирования посредством
Maple 2018 продольного изгиба однородной консоли с симметричным сечением
в режиме пластических деформаций. Получено обыкновенное дифференциаль-
ное уравнение для поперечной координаты, учитывающее высшие моменты
инерции сечения. В качестве аргумента в нём служил уникальный для каждого
места безразмерный наклон консоли 𝑝 = tan 𝜃, взаимно однозначно связанный со
всеми перемещениями. Диаграммы сжатия реальных материалов (сталь, титан,
тефлон, алюминий-тефлон) моделировались в Maple при помощи нелинейной
регрессии на экспериментальных и литературных данных с использованием
полинома 3-го порядка, обеспечивающего условный предел текучести (𝑡,𝜎𝑓). Па-
раметры консоли (длина 𝑙0, площадь сечения 𝑆 и минимальный момент инерции
𝐽𝑥) подбирались так, чтобы изгибающая сила обеспечивала напряжение вблизи
предела текучести 𝜎𝑓. Для нахождения ключевой зависимости углового накло-

на свободного конца 𝑝𝑓 от закритической нагрузки 𝐹 > 𝐹cr, что необходимо для

определения формы прогиба, использовалось равенство проинтегрированной
восстановленной элементарной длины её свободному значению 𝑙0. Зависимости
𝑝𝑓(𝐹) и 𝑦(𝑧), 𝑧 — продольная координата, рассчитывались в рамках следующих

трёх подходов: пластический характер деформаций согласно полиномиальной
(𝑛 = 3) диаграмме, приближение касательного модуля 𝐸tang и приближение

идеальной выполнимости закона Гука. Обнаружено, что в реальном случае
пластических деформаций критическая нагрузка 𝐹cr почти вдвое меньше, чем
в идеальном случае. При этом наблюдается почти идентичность формы изги-
ба консоли в рамках этих трёх подходов при одинаковом конечном наклоне 𝑝𝑓,
особенно для металлов.

Ключевые слова: проблема Эйлера, гипотеза плоских сечений, выгибание,
консоль, пластические деформации, диаграмма сжатия, условный предел теку-
чести, критическая выгибающая сила, программирование на Maple, нелинейная
оценка, тефлон Al/PTFE, сталь


