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Abstract. The spectral collocation method for solving two-point boundary value
problems for second order differential equations is implemented, based on representing
the solution as an expansion in Chebyshev polynomials. The approach allows a stable
calculation of both the spectral representation of the solution and its pointwise
representation on any required grid in the definition domain of the equation and
additional conditions of the multipoint problem. For the effective construction of
SLAE, the solution of which gives the desired coefficients, the Chebyshev matrices of
spectral integration are actively used. The proposed algorithms have a high accuracy
for moderate-dimension systems of linear algebraic equations. The matrix of the
system remains well-conditioned and, with an increase in the number of collocation
points, allows finding solutions with ever-increasing accuracy.

Key words and phrases: ordinary differential equation, spectral methods, two-point
boundary value problems

1. Introduction

Ordinary differential equations (ODEs) and systems of ODEs of the second
order describe most problems in classical mechanics. Most oscillatory processes
are described by second order ODEs or systems of ODEs. Second order
ODE systems describe a number of optical diffraction problems (see, for
example, [1]). The model of adiabatic guided wave propagation of polarized
light in integrated optical waveguides is also described by a system of two
coupled oscillators [2–4].
There are many different methods for exact and approximate solution of

initial/boundary value problems for different classes of second order ordinary
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differential equations. Among them, the spectral methods of expansion in
Chebyshev polynomials consistently occupy a well-deserved place.
In 1991, L. Greengard [5] formulated a method for solving a two-point

boundary value problem for second order ODEs with constant coefficients,
based on expanding the solution into a series of Chebyshev polynomials
of the first kind. The method became stably referred to as the pseudo-
spectral collocation method. In the same paper, mathematical constructions
were introduced, which later received the names “differentiation matrix” and
“integration matrix” (or “antidifferentiation matrix”). A detailed description
of the properties of matrices that determine the relationship between the
expansion coefficients in a series of approximated functions and the expansion
coefficients of their derivatives and antiderivatives in the same set of basis
functions is given in [6]. Greengard obtained estimates for the norms of
these matrices and their condition numbers — large values for differentiation
matrices and small values for integration (antidifferentiation) matrices.
Despite the poor conditionality of differentiation matrices, many authors

used them to solve initial and boundary problems for ODEs of various orders.
This is explained by the more familiar and therefore ‘convenient’ representation
of physical models using the language of mathematical formulas.
The instability of widely used [7, 8] algorithms has been overcome by

applying methods of preconditioning to the corresponding systems of linear
algebraic equations. As a result of numerous studies, methods based on
integration matrices in the physical space and in the spectral representation
turned out to be the most preferable [9].
It is important to note that none of the applied methods for solving ODEs

based on Chebyshev integration matrices [9, 10] allows obtaining systems
of linear equations with sparse matrices [5]. The dense filling of matrices is
a consequence of attempts to introduce boundary conditions into the system
of linear algebraic equations along with differential relations [11]. The high
sparseness of the matrices can be maintained by improving the algorithm by
switching to the two-stage method. In this case, at the first stage, differential
conditions are considered, which allow fixing the leading coefficients in the
expansion of the solution into a series, thus defining the ‘general solution’.
The next step uses boundary/initial conditions to determine a pair (for second
order equations) of missing coefficients. This makes it possible to obtain
a complete set of expansion coefficients for the desired ‘particular’ solution.
The results of studies [5] demonstrate that the method of Chebyshev

collocation that ensures the best accuracy in solving initial and boundary
value problems is the method using Chebyshev integration matrices in the
spectral space. This approach effectively relies on the use of operations with
sparse matrices and its computational costs are quite comparable with the
Fourier spectral discretization.

2. Setting of the problem

We consider an approximate solution to the two-point boundary value
problem for the second-order differential equation having the form [12]

𝑦″(𝑥) + 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦(𝑥) = 𝑟(𝑥), 𝑥 ∈ (−1, 1), (1)
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where 𝑝(𝑥), 𝑞(𝑥), 𝑟(𝑥) are sufficiently regular functions. The uniqueness of the
solution for any 𝛼,𝛽 is ensured by the boundary conditions

𝛼0𝑦(−1) − 𝛼1𝑦′(−1) = 𝛼, 𝛽0𝑦(1) + 𝛽1𝑦′(1) = 𝛽, (2)

the constants 𝛼0,𝛼1,𝛽0,𝛽1 being nonnegative. For example, the condition
of continuous 𝑝(𝑥) and 𝑞(𝑥), positive 𝑞(𝑥) > 0, 𝑥 ∈ [−1, 1], and nonzero
𝛼0 + 𝛼1 ≠ 0, 𝛼0 + 𝛽0 ≠ 0, 𝛽0 + 𝛽1 ≠ 0 ensures the existence of the prob-
lem (1)–(2) [13].

3. Methods

The basic idea of spectral methods is to present the solution as a truncated
series in known basis functions. The linear transformation (differentiation
operator) that transforms the vector of coefficients a = {𝑎𝑘}𝑘⩾0 of the function
expansion 𝑓(𝑥) = ∑𝑘⩾0 𝑎𝑘𝜙𝑘(𝑥) into the vector of coefficients b = {𝑏𝑘}𝑘⩾0
of its derivative expansion 𝑓 ′(𝑥) = ∑𝑘⩾0 𝑏𝑘𝜙𝑘(𝑥) into an analogous series in

the same basis functions is known as the spectral differentiation matrix. The
most widespread is the use of bases of Chebyshev functions of the first kind
or Lagrange functions, which is due to high interpolative properties of these
functions.
Approximation by a finite series (on accuracy when discarding terms of

the series with 𝑛 > 𝑁). The expansion of function 𝑓 ∈ 𝐶𝑛[−1, 1] (𝑛 times
differentiable function) in Chebyshev polynomials 𝑇𝑘(𝑥) ∶ 𝑇𝑘(cos 𝜃) = cos(𝑘𝜃),
is determined by the relation

𝑔(𝑥) = 1
2

𝑎0𝑇0(𝑥) + 𝑎1𝑇1(𝑥) + … + 𝑎𝑛𝑇𝑛(𝑥) + … , 𝑥 ∈ [−1, 1], (3)

where

𝑎𝑘 = 2
𝜋

∫
1

−1
𝑓(𝑥)𝑇𝑘(𝑥)(1 − 𝑥2)−1/2𝑑𝑥. (4)

The residue of truncation of the series (3) to 𝑁 terms

𝑔𝑁(𝑥) = 1
2

𝑎0𝑇0(𝑥) + 𝑎1𝑇1(𝑥) + … + 𝑎𝑁𝑇𝑁(𝑥), 𝑥 ∈ [−1, 1], (5)

has an order of 𝑂 ( 1
𝑁𝑛−1 ) at 𝑁 → ∞ and at 𝑓 ∈ 𝐶∞[−1, 1] it tends to zero

superalgebraically [14, 15].

Remark 1. According to Eq. (4), coefficients 𝑎𝑘 are the coefficients of
Fourier cosine transformation, so that all 𝑁 coefficients 𝑎𝑘 can be obtained by
the fast Fourier cosine transformation. And using the inverse Fourier cosine
transformation, it is possible to simply calculate 𝑔𝑛(cos 𝜃𝑗) on a grid uniform

in 𝜃 ∈ [0, 𝜋].

Most often, the approximation of continuous functions is restricted to
a certain fixed number 𝑛 of the Chebyshev series, as a result of discarding
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the components with such 𝑇𝑘(𝑥), 𝑘 > 𝑛, the magnitude of which is small [16,
17]. In contrast to the approximations obtained using other power series, the
approximation using the Chebyshev polynomials minimizes the number of
terms necessary to approximate the function by polynomials with a given
accuracy. Related to this is also the property that the approximation based
on the Chebyshev series turns out to be quite close to the best uniform
approximation (among polynomials of the same degree), but it is easier to
calculate. In addition, it allows you to get rid of the Gibbs effect with
a reasonable choice of interpolation points.
The differentiation matrices in the implicit or explicit form are presented in

many publications related to the use of pseudospectral collocation methods [6–
8]. The ODE solution using nondegenerate differentiation matrices in the
(𝑁 +1)-dimensional physical and/or spectral space quite naturally led to poor
conditioned systems of the linear algebraic equations to be solved. Refs. [5, 6,
18–20] formulate the specific features of the differentiation and integration
matrices, considered on similar or mutually dependent grids. Using explicitly
the differentiation matrices on the Chebyshev–Gauss–Lobatto to solve ODEs
allows proposing stable and economic methods for solving ODEs. WE use
the integration matrices 𝑛 Chebyshev–Gauss–Lobatto grids in the spectral
representation. For more details on the form and properties of these matrices,
see [6, 18–20].

3.1. The algorithm based on using integration matrices

Note first that the derivative of 𝑇𝑘(𝑥) can be explicitly written as an
expansion in Chebyshev polynomials 𝑇0, 𝑇1, … , 𝑇𝑘−1 of lower order [6, 21] as
a sum

𝑑𝑇𝑘(𝑥)
𝑑𝑥

= 𝑘 (−[𝑘 𝑜𝑑𝑑]𝑇0(𝑥) + 2
⌊(𝑘−1)/2⌋

∑
𝑗=0

𝑇𝑘−1−2𝑗(𝑥)) , 𝑥 ∈ [−1, 1], (6)

where the notation ⌊𝑥⌋ means the largest integer less than 𝑥, and the expression
[𝑘 𝑜𝑑𝑑] takes the value equal to 1 when 𝑘 is odd, and 0 when 𝑘 is even.
We represent the desired function 𝑦(𝑥), the future approximate solution

of equation (1), as an expansion of the form (3),(4),(5) in a finite set of
Chebyshev polynomials 𝑇0, 𝑇1, … , 𝑇𝑛:

𝑦(𝑥) =
𝑛

∑
𝑘=0

𝑎𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1]. (7)

By differentiating (7), it is possible to present the first derivative as a series:

𝑦′(𝑥) =
𝑛

∑
𝑘=0

𝑎𝑘𝑇 ′

𝑘(𝑥), 𝑥 ∈ [−1, 1]. (8)

At the same time, the derivative 𝑦′(𝑥) as a polynomial of degree 𝑛 can
be expanded is series with respect to the initial basis 𝑇0, 𝑇1, … , 𝑇𝑛 with
coefficients b = {𝑏0, 𝑏1, … , 𝑏𝑛}:
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𝑦′(𝑥) =
𝑛

∑
𝑘=0

𝑏𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1], (9)

the last expansion coefficient becoming zero, 𝑏𝑛 = 0, in accordance with
formula (6) of a transition to the expansion in lower-order polynomials.

Therefore, Eq. (6) describes the relation between the expansion coefficients
a = {𝑎0, 𝑎1, … , 𝑎𝑛} of a Chebyshev polynomial of the first kind and the
expansion coefficients of its derivative. In matrix form, this relation can
be represented using the differentiation matrix: b = Da, where the infinite
matrix of Chebyshev differentiation has the form:

D ≡ DChebyshev =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 3 0 5 0 7 ⋯
0 4 0 8 0 12 0 ⋯

0 6 0 10 0 14 ⋯
0 8 0 12 0 ⋯

0 10 0 14 ⋯
0 12 0 ⋯

0 14 ⋱
0 ⋱

⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10)

A similar transformation for the coefficients of the second derivative

𝑦″(𝑥) =
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1] (11)

allows using the formula c = DDa to calculate the expansion coefficients
c = {𝑐0, 𝑐1, … , 𝑐𝑛} in the matrix form.

If an algorithm is needed to determine a part of the coefficients a =
{𝑎0, 𝑎1, … , 𝑎𝑛} of the expansion of function 𝑦(𝑥) from the known coefficients
b = {𝑏0, 𝑏1, … , 𝑏𝑛} of its derivative expansion, the appropriate matrix form for
this operation is a = D+b, where the infinite tridiagonal matrix of integration
(antidifferentiation) has the form [6, 18]:

D+ ≡ D+
Chebyshev =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
1 0 −1

21
4

0 −1
41

6
0 −1

6
1
8

0 ⋱
1
10

⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12)
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For example, using the spectral integration matrices D+ to determine
coefficients a = {𝑎0, 𝑎1, … , 𝑎𝑛} of function 𝑦(𝑥) for the known coefficients
c = {𝑐0, 𝑐1, … , 𝑐𝑛} of the expansion of its second derivative 𝑦″(𝑥) allows
calculating all coefficients of the function expansion by formula a = D+D+c,
except the first two coefficients. This is because the first row of matrix D+ is
zero.
Multiplying from the left the integration matrix D+ by vector b =

{𝑏0, 𝑏1, … , 𝑏𝑛} of the known coefficients of the derivative expansion allows re-
vealing [6] the following dependence of coefficients a = {𝑎0, 𝑎1, … , 𝑎𝑛} on
b = {𝑏0, 𝑏1, … , 𝑏𝑛}, which can be written in the explicit form:

D+b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 ⋮ 0 0 0 0
1 0 −1

2
0 0 ⋮ 0 0 0 0

0 1
4

0 −1
4

0 ⋮ 0 0 0 0

0 0 1
6

0 −1
6

⋮ 0 0 0 0

0 0 0 1
8

0 ⋮ 0 0 0 0

⋯ ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ ⋯ ⋯
0 0 0 0 0 ⋮ 0 −1/2

(𝑛−3) 0 0

0 0 0 0 0 ⋮ 1/2
(𝑛−2) 0 −1/2

(𝑛−2) 0

0 0 0 0 0 ⋮ 0 1/2
(𝑛−1) 0 −1/2

(𝑛−1)

0 0 0 0 0 ⋮ 0 0 1/2
𝑛 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑏0

𝑏1

𝑏2

𝑏3

𝑏4

⋮
𝑏𝑛−3

𝑏𝑛−2

𝑏𝑛−1

𝑏𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

⋮
𝑎𝑛−3

𝑎𝑛−2

𝑎𝑛−1

𝑎𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

All the above, including relations (6) and (7),(9),(11) expressed through
the representations a = D+D+c and b = D+c, allows us to write equation (1)
in spectral representation in the following matrix form:

Tc+ 𝑑𝑖𝑎𝑔(p)TD+c+ 𝑑𝑖𝑎𝑔(q)TD+D+c = r, 𝑥 ∈ (−1, 1). (13)

Here T is the Chebyshev matrix of mapping a point (vector) from the space
of coefficients to the space of function values [5]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑇0,0 𝑇1,0 𝑇2,0 ⋮ 𝑇𝑛,0

𝑇0,1 𝑇1,1 𝑇2,1 ⋮ 𝑇𝑛,1

𝑇0,2 𝑇1,2 𝑇2,2 ⋮ 𝑇𝑛,2

⋯ ⋯ ⋯ ⋱ ⋯
𝑇0,𝑛 𝑇1,𝑛 𝑇2,𝑛 ⋮ 𝑇𝑛,𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑐0
𝑐1
𝑐2
⋯
𝑐𝑛

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑝0
𝑝1
𝑝2
⋯
𝑝𝑛

⎤
⎥
⎥
⎥
⎥
⎦

, (14)

so that p = Tc is the vector of values of the desired function (also in the
physical space). Here, to reduce formulas, we use the notation 𝑇𝑘𝑗 = 𝑇𝑘(𝑥𝑗),
𝑘, 𝑗 = 0, … , 𝑛.
The system of linear algebraic equations (13) has a well-conditioned

matrix [5] for any number of collocation points. We will use the Chebyshev–
Gauss–Lobatto grid [7, 8], which has proven itself well in the Chebyshev
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pseudospectral collocation method [9]. Since the matrix is not a symmetric
real matrix, instead of the very convenient Cholesky method, we will use the
widely used LU method to solve system (13).

The solution of the system of linear algebraic equations (13) is the vector of
expansion coefficients {𝑐0, 𝑐1, … , 𝑐𝑛} in the (𝑛 + 1)-dimensional space of the
second derivative of the desired solution of equation (1). These components
determine the set of ’general’ solutions to the ordinary differential equation (1).
To single out some specific ’particular’ solution from this set, it is required to
impose additional restrictions on the components {𝑎0, 𝑎1}, which cannot be
determined from the relation a = D+D+c.
The first two components that have not yet been found will have to be

additionally determined (to obtain a ’particular’ solution) from the boundary
conditions (2). The remaining components of the vector a remain unchanged
and allow satisfying equation (1) for any first expansion coefficients in terms
of basis polynomials.

The solution of equation (13) gives us the vector of coefficients {𝑐0, 𝑐1, … , 𝑐𝑛}
of the expansion of the second derivative of the solution of Eq. (1) in Chebyshev
polynomials. Thus, the main problem is reduced to solving the simplest
Poisson equation:

𝑦″(𝑥) = 𝑓(𝑥), −1 < 𝑥 < 1, (15)

where the function 𝑓(𝑥) is calculated at any point of the interval 𝑥 ∈ based
on the known vector of coefficients {𝑐0, 𝑐1, … , 𝑐𝑛}.

𝑓(𝑥) =
𝑛

∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥), 𝑥 ∈ [−1, 1]. (16)

The method under consideration makes it possible to solve, depending
on the type of additional conditions, both the Cauchy problem with initial
conditions and the problem with boundary conditions of a general form,
requiring, for example, the use of the iterative shooting method [22]. The
boundary conditions of the original problem (2) allow extending the definition
of the spectral coefficients of the solution. Let us consider some variants,
such, e.g., as the Dirichlet conditions at both ends of the interval

𝑦(−1) = 𝛼, 𝑦(1) = 𝛽. (17)

Neumann–Dirichlet conditions

𝑦′(−1) = 𝛼, 𝑦(1) = 𝛽 (18)

or Dirichlet–Neumann condition

𝑦′(−1) = 𝛼, 𝑦′(1) = 𝛽. (19)

The algorithm for finding a solution to the simplest Poisson equation (15)
with one of the boundary conditions (17),(18),(19) consists of three stages:

— calculation of the coefficients of polynomial interpolation of the vector
𝑓(𝑥) in the right-hand side of Eq. (15) on the Gauss–Lobatto grid; an
efficient method is presented in [23];
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— calculation of those coefficients of the solution (except for the first two),
which are determined by the differential conditions (15) of the problem
(the solution must satisfy the differential conditions), by multiplying the
transposed Chebyshev matrix by the vector of interpolation coefficients
of the function 𝑓(𝑥);

— redefinition of solution coefficients based on boundary (or other indepen-
dent additional) conditions (17),(18),(19).

In the case of Dirichlet boundary conditions (boundary conditions of the
first kind): 𝑝(−1) = 𝛼, 𝑝(1) = 𝛽, the determination of the still unknown
coefficients 𝑎0,𝑎1 is reduced to solving a system of two equations, which can
be, e.g., the equations, which determine the behavior of the solution at the
boundary points 𝑥 = ±1:

𝑎0 + 𝑎1𝑇1,0(−1) +
𝑛

∑
𝑘=2

𝑎𝑘𝑇𝑘,0(−1) = 𝛼,

𝑎0 + 𝑎1𝑇1,𝑛(1) +
𝑛

∑
𝑘=2

𝑎𝑘𝑇𝑘,𝑛(1) = 𝛽.
(20)

If we additionally consider the fact that Chebyshev polynomials of the first
kind take the values 𝑇𝑘,𝑗(±1) = ±1, 𝑗, 𝑘 = 0, 1, … at the boundary of the

interval, then the solution can be written explicitly

𝑎0 = 1
2

(𝛼 + 𝛽 −
𝑛

∑
𝑘=2,𝑘 even

𝑎𝑘) , 𝑎1 = 1
2

(𝛽 − 𝛼 −
𝑛

∑
𝑘=2,𝑘 odd

𝑎𝑘) . (21)

In the case when the boundary conditions contain expressions of higher
degrees of derivatives of the desired function, one can use the relation [7]

𝑑𝑝𝑇𝑛
𝑑𝑥𝑝 ∣

𝑥=±1
= (±1)𝑛+𝑝

𝑝−1

∏
𝑘=0

𝑛2 − 𝑘2

2𝑘 + 1
. (22)

For example, in the case of mixed Neumann–Dirichlet conditions (boundary
conditions of the second and first kind): 𝑝′(−1) = 𝛼, 𝑝(1) = 𝛽, the coefficients
𝑐0, 𝑐1 are determined by the formulas:

𝑎1 = 𝛼 −
𝑛

∑
𝑘=2

(−1)𝑘+1𝑘2𝑎𝑘, 𝑎0 = 𝛽 − 𝑎1 −
𝑛

∑
𝑘=2

𝑎𝑘 (23)

and in the case of Dirichlet–Neumann conditions

𝑎1 = 𝛽 −
𝑛

∑
𝑘=2

𝑘2𝑎𝑘, 𝑎0 = 𝛼 − 𝑎1 −
𝑛

∑
𝑘=2

(−1)𝑘+1𝑘2𝑎𝑘. (24)



158 DCM&ACS. 2023, 31 (2) 150–163

4. Solution of model examples

To illustrate the capabilities of the proposed algorithm, consider as an ex-
ample the solution of the following second order ODE with Dirichlet boundary
conditions 𝑦(−1) = sin 1, 𝑦(1) = sin 1:

⎧{{
⎨{{⎩

𝑦″ + 𝑥𝑦′ = (2 + 𝑥2) cos𝑥, 𝑥 ∈ (−1, 1),
𝑦(−1) = sin 1,
𝑦(1) = sin 1.

(25)

The exact solution is 𝑦(𝑥) = 𝑥 sin𝑥.
The problem was solved by the collocation method using the integration

matrices (see figures 1, 2).

Figure 1. Ten collocation points. Solution is plotted in blue, residual – in red

Figure 2. Five collocation points. Solution is plotted blue, residual – red
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Comparison of the exact solution of the model equation with the numerical
one is given in the table 1.

Table 1

Comparison of the exact solution of the model equation with the numerical one

Number of

collocation

points

Mean deviation

𝑎𝑏𝑠(𝑦exact(𝑥) − 𝑦calc(𝑥))/𝑁
Maximum deviation of the

calculated solution from the

exact one

6 1.82356474757341e-06 4.63901002387395e-06

7 1.50424878363523e-06 3.0061171892859e-06

9 5.23575446557936e-09 1.05369208025419e-08

11 1.19253244714073e-11 2.39715192140721e-11

13 1.91730425714347e-14 3.86046415624311e-14

14 4.4039495190215e-17 1.11022302462516e-16

The error was estimated numerically (see figure 3). The number of accuracy
control points 𝑁 was taken equal to one hundred.

Figure 3. High solution accuracy with the average and maximum deviations of the numerical

solution from the exact one < 10−17 is achieved with a sufficiently small number

of collocation points (𝑛 > 13)

As can be seen from the results, the accuracy of the solution depends
significantly on the number of collocation points: with an increase in the
number of collocation points, the algorithm, in contrast to the method
using differentiation matrices, does not lose stability. Due to the inherent
property of Chebyshev polynomials, when approximating smooth functions,
the accuracy of the solution rapidly increases with a slight increase in the
number of basis functions. In our experiment, the most accurate solution was
obtained with the number of collocation points equal to 14. With a further
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increase in the number of collocation points and, consequently, the number
of approximation terms in the expansion series of the solution in Chebyshev
polynomials, the accuracy does not increase.

5. Conclusion

In traditional algorithms, even in the most favorable cases when using
differentiation matrices on arbitrary grids, the number of arithmetic operations
for solving problems with acceptable accuracy turns out to be large. This
fact is a consequence of the inclusion in the SLAE, obtained by passing from
differential to algebraic relations, of additional equations that specify the
initial and boundary conditions.
The algorithm presented in [23] uses a modified (improved) method of

pseudo-spectral collocation, i.e., the solution of the problem in two stages.
At the first stage, only the ’general’ solution of the ODE is found, which is
determined by the leading coefficients of the spectral expansion of the solution
in the polynomial basis. This approach allows constructing an algorithm
that uses only matrices of a simple structure to obtain the solution of the
corresponding SLAE. The missing expansion coefficients are determined at
the second stage based on the additional (initial or boundary) conditions,
solving a simple system of two linear equations.
In this paper, we use an algorithm based on integration matrices. The

matrix of the SLAE formed in this case turns out to be well conditioned even
for large dimensions of the system. A high accuracy of the solution is achieved
with a sufficiently small number of collocation points. The method based on
integration matrices should be chosen in cases when there is a request for
high and stable accuracy of solving the problem.
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Метод коллокации Чебышева для решения ОДУ
второго порядка с использованием матриц

интегрирования

К. П. Ловецкий1, Д. С. Кулябов1, 2, Л. А. Севастьянов1, 2,
С. В. Сергеев1

1 Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2Объединённый институт ядерных исследований,

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Аннотация. Реализован метод спектральной коллокации для решения двух-
точечных краевых задач для дифференциальных уравнений второго порядка,
основанный на представлении решения в виде разложения по полиномам Чебы-
шева. Подход позволяет устойчиво вычислять как спектральное представление
решения, так и его поточечное представление на любой необходимой сетке в об-
ласти определения уравнения и дополнительных условий многоточечной задачи.
Для эффективного построения СЛАУ, решение которой дает искомые коэффици-
енты, активно используются матрицы Чебышева спектрального интегрирования.
Предложенные алгоритмы обладают высокой точностью для систем линейных
алгебраических уравнений средней размерности. Матрица системы остается хо-
рошо обусловленной и с увеличением количества точек коллокации позволяет
находить решения со все возрастающей точностью.

Ключевые слова: обыкновенное дифференциальное уравнение, спектральные
методы, двухточечные краевые задачи


