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Abstract. In the proposed work, we consider a heterogeneous queueing system
with a Markov renewal process and an unlimited number of servers. The service
time for requests on the servers is a positive random variable with an exponential
probability distribution. The service parameters depend on the state of the Markov
chain nested over the renewal moments. It should be noted that these parameters do
not change their values until the end of maintenance. Thus, the devices in the system
under consideration are heterogeneous. The object of the study is a multidimensional
random process — the number of servers of each type being served with different
intensities in the stationary regime. The method of asymptotic analysis under the
condition of equivalent growing of service times in the units of servers is applied for
the study. The method of asymptotic analysis is implemented in the construction of
a sequence of asymptotic of increasing order, in which the asymptotic of the first
order determines the asymptotic mean value of the number of occupied servers. The
second-order asymptotic allows one to construct a Gaussian approximation of the
probability distribution of the number of occupied servers in the system. It is shown
that this approximation coincides with the Gaussian distribution.

Key words and phrases: queuing system, random environment, Markov renewal
process, asymptotic analysis method

1. Introduction

Queueing theory is a field of applied mathematics that deals with the study
and analysis of processes in various service, production, management, and
communication systems in which homogeneous events are repeated many
times. Examples of such systems include consumer services; systems for
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receiving, processing, and transmitting information, automatic production
lines, telecommunication systems, and others [1].

The independence of processes in queueing systems is generally assumed
when developing queueing models. However, real systems often involve sev-
eral process dependencies, and failure to consider these can lead to a serious
under errors in the estimation of the performance measures. Semi-Markov
processes are used in modeling stochastic control problems arising in Mar-
kovian dynamic systems where the sojourn time in each state is a general
continuous random variable. They are powerful, natural tools for the opti-
mization of queues, production scheduling, reliability/maintenance [2, 3]. For
example, in a machine replacement problem with deteriorating performance
over time, a decision-maker, after observing the current state of the machine,
decides whether to continue its usage, initiate maintenance (preventive or
corrective) repair or replace the machine.

Semi-Markov Processes include renewal processes and continuous-time
Markov chains as special cases. In a semi-Markov process similar to Markov
chains, state changes occur according to the Markov property, i.e., states
in the future do not depend on the states in the past given the present.
However, the sojourn time in a state is a continuous random variable with
distribution depending on that state and the next state. A renewal process
is a generalization of a Poisson process that allows arbitrary holding times.
Its applications include such as planning for replacing worn-out machinery
in a factory. A Markov renewal process is a generalization of a renewal
process that the sequence of holding times is not independent and identically
distributed. Their distributions depend on the states in a Markov chain. The
Markov renewal processes were studied by Pyke in the 1960s [4, 5].

In the proposed work, we consider a heterogeneous queueing system (QS)
with a Markov renewal process (MRP) for the process of its arrival and an
unlimited number of servers. The service time for requests have an exponential
probability distribution. Parameter of the service depends on the state of
the Markov chain nested over the renewal moments. It should be noted that
these parameters do not change their values until the end of maintenance.
Thus, the devices in the system under consideration are heterogeneous.This
problem for the Queueing System 𝑀|𝑀|∞ in a Markov Random Enviroment
was addressed in [6–8].

The objects of the study are the number of servers of each type being
served in the stationary regime. Such a QS can be attributed to the class of
non-homogeneous QS operating in a random environment.

Currently, a significant part of the information, telecommunication, and
other systems operate in a changing environment. The impact of a random
environment can be expressed, for example, in a change in the parameters
of the functioning of the system. In this regard, questions arise about the
stability of such systems to external influences. Therefore, the study of
systems operating in a random environment is an urgent task. In various
works devoted to the study of systems in Markov and semi-Markov random
environments, various variants of the system’s response to a change in the
state of the external environment were considered in [9–11].

In this paper, we consider the case assuming that the service mode of claims
does not change until they leave the system. The method of asymptotic
analysis under the condition of equivalent growing of service times in the
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units of servers is applied for the study. This asymptotic condition means
proportional growth of the average service times in both service units and it
is taken from practice. The method of asymptotic analysis is implemented in
the construction of a sequence of asymptotic of increasing order, in which the
asymptotic of the first order determines the asymptotic mean value of the
number of occupied servers. The second-order asymptotic allows to construct
an approximation of the probability distribution of the number of occupied
servers in the system. It is shown that this approximation coincides with the
Gaussian distribution.

2. Markov renewal process

A renewal process is a generalization of a Poisson process that allows
arbitrary waiting time between events. Its applications include such as
planning for replacing worn-out machinery in a factory. A Markov renewal
process is a generalization of a renewal process that the sequence of holding
times is not independent and identically distributed. Their distributions
depend on the states in a Markov chain. The Markov renewal processes were
studied by Pyke [4, 5] in 1960s.

2.1. Mathematical model of the Markov renewal process

Consider a two-dimensional homogeneous Markov random process
{𝜉(𝑛), 𝜏(𝑛)} with discrete time 𝑛 = 1, 2, 3, …, where 𝜉(𝑛) takes values from
some discrete set 𝜉(𝑛) = 𝑘 = 1, 2, 3, … and 𝜏(𝑛) takes on non-negative values.

We denote

𝐹(𝑘2, 𝑥; 𝑘1, 𝑦) = 𝑃{𝜉(𝑛 + 1) = 𝑘2, 𝜏(𝑛 + 1) < 𝑥|𝜉(𝑛) = 𝑘1, 𝜏(𝑛) = 𝑦} =
= 𝐹(𝑘2, 𝑥; 𝑘1) = 𝑃𝑘1𝑘2

𝐴𝑘2
(𝑥).

A random stream of homogeneous events 𝑡1 < … < 𝑡𝑛 < 𝑡𝑛+1 < …
will be called the Markov renewal flow or MR-flow given by the matrix of
transition probabilities P and functions 𝐴𝑘(𝑥) distribution of interval lengths
𝜏𝑛+1 = 𝑡𝑛+1 − 𝑡𝑛, for which the equalities 𝜏𝑛+1 = 𝜏𝑛 hold.

To study the MR-flow, we define the process 𝑧(𝑡) as the length of the
interval from the time 𝑡 to the time 𝑡𝑛+1 of the next event in the considered
flow and the process

𝑘(𝑡) = 𝜉(𝑛), 𝑡𝑛 ⩽ 𝑡 < 𝑡𝑛+1,

that is, the process 𝑘(𝑡) on the interval 𝑡𝑛 ⩽ 𝑡 < 𝑡𝑛+1 retains the value that it
received at the beginning of this interval and which coincides with the value
𝜉(𝑛) of the embedded Markov chain.

For a Markov renewal flow, the three-dimensional process {𝑘(𝑡), 𝑧(𝑡), 𝑚(𝑡)}
is Markov, therefore, for its probability distribution

𝑃(𝑘, 𝑧, 𝑚, 𝑡) = 𝑃 {𝑘(𝑡) = 𝑘, 𝑧(𝑡) < 𝑧, 𝑚(𝑡) = 𝑚}
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by the formula of total probability we obtain the equality

𝑃(𝑘, 𝑧 − Δ𝑡, 𝑚, 𝑡 + Δ𝑡) =
= 𝑃(𝑘, 𝑧, 𝑚, 𝑡) − 𝑃(𝑘, Δ𝑡, 𝑚, 𝑡) + ∑

𝜈
𝑃(𝜈, Δ𝑡, 𝑚 − 1, 𝑡)𝑃𝜈𝑘𝐴𝑘(𝑧) + 𝑜(Δ𝑡)

from which it follows that the probability distribution 𝑃(𝑘, 𝑧, 𝑚, 𝑡) is a solution
to the Kolmogorov equations

𝜕𝑃(𝑘, 𝑧, 𝑚, 𝑡)
𝜕𝑡

=

= 𝜕𝑃(𝑘, 𝑧, 𝑚, 𝑡)
𝜕𝑧

− 𝜕𝑃(𝑘, 0, 𝑚, 𝑡)
𝜕𝑧

+ ∑
𝜈

𝜕𝑃(𝜈, 0, 𝑚 − 1, 𝑡)
𝜕𝑧

𝑃𝜈𝑘𝐴𝑘(𝑧). (1)

By defining the functions

𝐻(𝑘, 𝑧, 𝑢, 𝑡) =
∞

∑
𝑚=0

𝑒𝑗𝑢𝑚𝑃(𝑘, 𝑧, 𝑚, 𝑡),

the equations (1) can be rewritten as

𝜕𝐻(𝑘, 𝑧, 𝑢, 𝑡)
𝜕𝑡

= 𝜕𝐻(𝑘, 𝑧, 𝑢, 𝑡)
𝜕𝑧

−𝜕𝐻(𝑘, 0, 𝑢, 𝑡)
𝜕𝑧

+∑
𝜈

𝜕𝐻(𝜈, 0, 𝑢, 𝑡)
𝜕𝑧

𝑒𝑗𝑢𝑃𝜈𝑘𝐴𝑘(𝑧).

The basic equation for a semi-Markov flow has the form

𝜕h(𝑧, 𝑢, 𝑡)
𝜕𝑡

= 𝜕h(𝑧, 𝑢, 𝑡)
𝜕𝑧

+ 𝜕h(0, 𝑢, 𝑡)
𝜕𝑧

(𝑒𝑗𝑢PA(𝑧) − I) , (2)

where P is the matrix of transition probabilities, A(𝑧) = diag [𝐴𝑘(𝑧)], I is
identity diagonal matrix. To find its particular solution, we define the initial
condition in the form

h(𝑧, 𝑢, 0) = r(𝑧),
where r(𝑧) — stationary probability distribution of the values of a two-
dimensional random process {𝑘(𝑡), 𝑧(𝑡)}.

2.2. Finding the distribution r(𝑧)

Vector r(𝑧) is a solution to the equation obtained from (2)

𝜕r(𝑧)
𝜕𝑧

+ 𝜕r(0)
𝜕𝑧

(PA(𝑧) − I) = 0,

therefore it can be written as

r(𝑧) = ∫
𝑧

0

𝜕r(0)
𝜕𝑧

(I−PA(𝑥)) 𝑑𝑥. (3)
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Since 𝑟(𝑘, 𝑧) = 𝑃{𝑘(𝑡) = 𝑘, 𝑧(𝑡) < 𝑧} then r = r(∞). Therefore, we obtain

r = ∫
∞

0

𝜕r(0)
𝜕𝑧

(I−PA(𝑥)) 𝑑𝑥. (4)

By virtue of the necessary condition for the convergence of the improper
integral, we can write down the equality to zero of the integrand at 𝑥 → ∞,
we obtain the system of equations

𝜕r(0)
𝜕𝑧

(I−P) = 0 (5)

for
𝜕r(0)

𝜕𝑧
, where P = A(∞).

Since the system (4) coincides with the system of Kolmogorov equations for
the stationary probability distribution r of values of the embedded Markov
chain, then

𝜕r(0)
𝜕𝑧

= 𝜆r, (6)

where 𝜆 is some multiplicative constant, the value of which is found as follows.
Substituting (6) into (4), we obtain

r = 𝜆 ∫
∞

0
r (P−A(𝑥)) 𝑑𝑥.

Since re = 1 then

𝜆 = 1
∫∞
0

r (P−A(𝑥)) e𝑑𝑥
= 1

∫∞
0

(1 − 𝐹(𝑥)) 𝑑𝑥
. (7)

Equalities (7), (6) and (3) solve the problem of finding the probability
distribution r(𝑧).

3. Mathematical model

Consider a queueing system 𝑀𝑅𝑃 |𝑀|∞ with an unlimited number of
servers of different types, operating in a semi-Markov random environment (see
the figure 1). Arrivals are determined as Markov renewal process, interarrival
periods have cumulative distribution functions 𝐴1(𝑥), 𝐴2(𝑥), … 𝐴𝐾(𝑥) and
the matrix of transition probabilities P = [𝑝𝑖𝑗], 𝑖, 𝑗 = 1, 2, … , 𝐾 — embedded

in the moments of occurrence of events Markov chains with a finite number
of states 𝑘(𝑡) = 1, 2, … , 𝐾. The service discipline is defined as follows: if the
embedded Markov chain is in the state 𝑘(𝑡) = 𝑖, then the incoming customer
will be serviced on the 𝑖-th type server during a random time, exponentially
distributed 𝐹𝑖(𝑥) = 1 − 𝑒−𝜇𝑖𝑥.
The problem is to study a multidimensional random process — numbers

occupied servers of different types in the system at time 𝑡, which is denoted
by i(𝑡) = [𝑖1(𝑡), 𝑖2(𝑡), … , 𝑖𝐾(𝑡)]. The process i(𝑡) is not Markov. For clarity,
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consider the case when the external environment takes only 2 different states.
We define a four-dimensional Markov random process {𝑘(𝑡), 𝑧(𝑡), 𝑖1(𝑡), 𝑖2(𝑡)},
where 𝑧(𝑡) is the length of the interval from the time 𝑡 to the time of the next
event in the stream Markov renewal, 𝑘(𝑡) is a Markov chain embedded with
respect to renewal times.

Figure 1. Queueing system 𝑀𝑅𝑃|𝑀|∞ in a semi-Markov random environment

For research, we will obtain some characteristics for the number of events
occurring in the MR stream.
For the probability distribution

𝑃(𝑘, 𝑧, 𝑖1, 𝑖2, 𝑡) = 𝑃{𝑘(𝑡) = 𝑘, 𝑧(𝑡) < 𝑧, 𝑖1(𝑡) = 𝑖1, 𝑖2(𝑡) = 𝑖2}

we write down the Kolmogorov system of differential equations:

𝜕𝑃(1, 𝑧, 𝑖1, 𝑖2, 𝑡)
𝜕𝑡

= 𝜕𝑃(1, 𝑧, 𝑖1, 𝑖2, 𝑡)
𝜕𝑧

− 𝜕𝑃(1, 0, 𝑖1, 𝑖2, 𝑡)
𝜕𝑧

−

− (𝑖1𝜇1 + 𝑖2𝜇2)𝑃 (1, 𝑧, 𝑖1, 𝑖2, 𝑡) + 𝜕𝑃(1, 0, 𝑖1 − 1, 𝑖2, 𝑡)
𝜕𝑧

𝑝11𝐴1(𝑧)+

+ 𝜕𝑃(2, 0, 𝑖1 − 1, 𝑖2, 𝑡)
𝜕𝑧

𝑝21𝐴1(𝑧) + 𝑃(1, 𝑧, 𝑖1 + 1, 𝑖2, 𝑡)(𝑖1 + 1)𝜇1+

+ 𝑃(1, 𝑧, 𝑖1, 𝑖2 + 1, 𝑡)(𝑖2 + 1)𝜇2,

𝜕𝑃 (2, 𝑧, 𝑖1, 𝑖2, 𝑡)
𝜕𝑡

= 𝜕𝑃(2, 𝑧, 𝑖1, 𝑖2, 𝑡)
𝜕𝑧

− 𝜕𝑃(2, 0, 𝑖1, 𝑖2, 𝑡)
𝜕𝑧

−

− (𝑖1𝜇1 + 𝑖2𝜇2)𝑃 (2, 𝑧, 𝑖1, 𝑖2, 𝑡) + 𝜕𝑃(2, 0, 𝑖1, 𝑖2 − 1, 𝑡)
𝜕𝑧

𝑝22𝐴2(𝑧)+

+ 𝜕𝑃(1, 0, 𝑖1, 𝑖2 − 1, 𝑡)
𝜕𝑧

𝑝12𝐴2(𝑧) + 𝑃(2, 𝑧, 𝑖1 + 1, 𝑖2, 𝑡)(𝑖1 + 1)𝜇1+

+ 𝑃(2, 𝑧, 𝑖1, 𝑖2 + 1, 𝑡)(𝑖2 + 1)𝜇2.

For a stationary probability distribution, we write this system in the form

𝜕𝑃(1, 𝑧, 𝑖1, 𝑖2)
𝜕𝑧

− 𝜕𝑃(1, 0, 𝑖1, 𝑖2)
𝜕𝑧

−

− (𝑖1𝜇1 + 𝑖2𝜇2)𝑃 (1, 𝑧, 𝑖1, 𝑖2) + 𝜕𝑃(1, 0, 𝑖1 − 1, 𝑖2)
𝜕𝑧

𝑝11𝐴1(𝑧)+
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+ 𝜕𝑃(2, 0, 𝑖1 − 1, 𝑖2)
𝜕𝑧

𝑝21𝐴1(𝑧) + 𝑃(1, 𝑧, 𝑖1 + 1, 𝑖2)(𝑖1 + 1)𝜇1+

+ 𝑃(1, 𝑧, 𝑖1, 𝑖2 + 1)(𝑖2 + 1)𝜇2 = 0,

𝜕𝑃(2, 𝑧, 𝑖1, 𝑖2)
𝜕𝑧

− 𝜕𝑃(2, 0, 𝑖1, 𝑖2)
𝜕𝑧

−

− (𝑖1𝜇1 + 𝑖2𝜇2)𝑃 (2, 𝑧, 𝑖1, 𝑖2) + 𝜕𝑃(2, 0, 𝑖1, 𝑖2 − 1)
𝜕𝑧

𝑝22𝐴2(𝑧)+

+ 𝜕𝑃(1, 0, 𝑖1, 𝑖2 − 1)
𝜕𝑧

𝑝12𝐴2(𝑧) + 𝑃(2, 𝑧, 𝑖1 + 1, 𝑖2)(𝑖1 + 1)𝜇1+

+ 𝑃(2, 𝑧, 𝑖1, 𝑖2 + 1)(𝑖2 + 1)𝜇2 = 0.

We introduce partial characteristic functions of the form

𝐻(𝑘, 𝑧, 𝑢1, 𝑢2) =
∞

∑
𝑖1=0

∞
∑
𝑖2=0

𝑒𝑗𝑢1𝑖1𝑒𝑗𝑢2𝑖2𝑃(𝑘, 𝑧, 𝑖1, 𝑖2), where 𝑗 =
√

−1.

Let us write the system of differential equations for the partial characteristic
functions

𝜕𝐻(1, 𝑧, 𝑢1, 𝑢2)
𝜕𝑧

− 𝜕𝐻(1, 0, 𝑢1, 𝑢2)
𝜕𝑧

+

+ 𝑗𝜇1 (1 − 𝑒−𝑗𝑢1) 𝜕𝐻(1, 𝑧, 𝑢1, 𝑢2)
𝜕𝑢1

+ 𝑗𝜇2 (1 − 𝑒−𝑗𝑢2) 𝜕𝐻(1, 𝑧, 𝑢1, 𝑢2)
𝜕𝑢2

+

+ 𝜕𝐻(1, 0, 𝑢1, 𝑢2)
𝜕𝑧

𝑒𝑗𝑢1𝑝11𝐴1(𝑧) + 𝜕𝐻(2, 0, 𝑢1, 𝑢2)
𝜕𝑧

𝑒𝑗𝑢1𝑝21𝐴1(𝑧) = 0,

𝜕𝐻(2, 𝑧, 𝑢1, 𝑢2)
𝜕𝑧

− 𝜕𝐻(2, 0, 𝑢1, 𝑢2)
𝜕𝑧

+

+ 𝑗𝜇1 (1 − 𝑒−𝑗𝑢1) 𝜕𝐻(2, 𝑧, 𝑢1, 𝑢2)
𝜕𝑢1

+ 𝑗𝜇2 (1 − 𝑒−𝑗𝑢2) 𝜕𝐻(2, 𝑧, 𝑢1, 𝑢2)
𝜕𝑢2

+

+ 𝜕𝐻(1, 0, 𝑢1, 𝑢2)
𝜕𝑧

𝑒𝑗𝑢2𝑝12𝐴2(𝑧) + 𝜕𝐻(2, 0, 𝑢1, 𝑢2)
𝜕𝑧

𝑒𝑗𝑢2𝑝22𝐴2(𝑧) = 0

with initial conditions
𝐻(𝑘, 𝑧, 0, 0) = 𝑟(𝑘, 𝑧).

In vector-matrix form, this system will take the form

𝜕h(𝑧, 𝑢1, 𝑢2)
𝜕𝑧

+ 𝜕h(0, 𝑢1, 𝑢2)
𝜕𝑧

(PA(𝑧)B(u) − I) +

+ 𝑗𝜇1 (1 − 𝑒−𝑗𝑢1) 𝜕h(𝑧, 𝑢1, 𝑢2)
𝜕𝑢1

+ 𝑗𝜇2 (1 − 𝑒−𝑗𝑢2) 𝜕h(𝑧, 𝑢1, 𝑢2)
𝜕𝑢2

= 0, (8)
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with initial conditions
h(𝑧, 0, 0) = r(𝑧),

where
h(𝑧, 𝑢1, 𝑢2) = [𝐻(1, 𝑧, 𝑢1, 𝑢2), 𝐻(2, 𝑧, 𝑢1, 𝑢2)] ,

B(u) = [𝑒𝑗𝑢1 0
0 𝑒𝑗𝑢2

] , I = [1 0
0 1

] .

The resulting system of equations (8) is the main one for further research.
Since it is not possible to find an explicit form of a solution to the problem
(8), we will seek the solution under the asymptotic condition of equivalent
growing of service times in the units of servers. This asymptotic condition
means proportional growth of the average service times in both service units
and it is taken from practice.

4. Asymptotic analysis of the first order

We denote 𝜇1 = 𝜖, 𝜇2 = 𝑞𝜖, 𝑞 = const (𝜖 is an infinitesimal quantity).
Then we can write the asymptotic condition of equivalent growing of service
times in the units of servers in the form 𝜇1, 𝜇2 → 0. In (8) we perform the
replacements

h(𝑧, 𝑢1, 𝑢2) = f(𝑧, 𝑤1, 𝑤2, 𝜖), 𝑢1 = 𝜖𝑤1, 𝑢2 = 𝜖𝑤2,

we obtain the matrix equation for f(𝑧, 𝑤1, 𝑤2, 𝜖)

𝜕f(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑧

+ 𝜕f(0, 𝑤1, 𝑤2, 𝜖)
𝜕𝑧

(PA(𝑧)B(u, 𝜖) − I) +

+𝑗 (1 − 𝑒−𝑗𝜖𝑤1) 𝜕f(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑤1

+ 𝑗𝑞 (1 − 𝑒−𝑗𝜖𝑤2) 𝜕f(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑤2

= 0,
(9)

Theorem 1. The limiting solution for 𝜖 → 0 to the equation (9)
f(𝑧, 𝑤1, 𝑤2, 𝜖) has the form

f(𝑧, 𝑤1, 𝑤2, 𝜖) = r(𝑧) exp{𝑗𝜆 (𝑟1𝑤1 + 𝑟2𝑤2
𝑞

)} , (10)

where r(𝑧) = [𝑟1(𝑧), 𝑟2(𝑧)] is the vector of the probability distribution of the
values of the embedded Markov chain, r = [𝑟1, 𝑟2] is vector of stationary
probability distribution of the values of the embedded Markov chain.

Proof. In the equation (9) we carry out the passage to the limit for 𝜖 → 0,
we obtain that f(𝑧, 𝑤1, 𝑤2) is a solution to the equation

𝜕f(𝑧, 𝑤1, 𝑤2)
𝜕𝑧

+ 𝜕f(0, 𝑤1, 𝑤2)
𝜕𝑧

(PA(𝑧) − I) = 0,



E.P. Polin et al., Heterogeneous queueing system with Markov renewal… 113

which defines the vector function r(𝑧), therefore we will seek the function
f(𝑧, 𝑤1, 𝑤2, 𝜖) in the form of the expansion

f(𝑧, 𝑤1, 𝑤2, 𝜖) = r(𝑧)Φ(𝑤1, 𝑤2) + 𝑜(𝜖). (11)

In the equation (9) we carry out the passage to the limit as 𝑧 → ∞,
multiply this equation by the unit column vector e, expand the exponents
in a Maclaurin series up to the first order. In the resulting expression, we
substitute the expansion (11), divide by 𝜖 and carry out the passage to the
limit at 𝜖 → 0, we obtain the equation for the function Φ(𝑤1, 𝑤2)

𝑤1
𝜕Φ(𝑤1, 𝑤2)

𝜕𝑤1
+ 𝑞𝑤2

𝜕Φ(𝑤1, 𝑤2)
𝜕𝑤2

= 𝑗𝜕r(0)
𝜕𝑧

PWeΦ(𝑤1, 𝑤2),

where
𝜕r(0)

𝜕𝑧
= 𝜆r, rP = r, re = 1, 𝜆 = 1

∫∞
0

(1 − rA(𝑥)e) 𝑑𝑥
,W = [𝑤1 0

0 𝑤2
].

The solution will have the following form

Φ(𝑤1, 𝑤2) = exp{𝑗𝜆 (𝑟1𝑤1 + 𝑟2𝑤2
𝑞

)}

Substituting the obtained solution into (11), we get (10).

The theorem is proved. �

By substitution and equality (3), we write down the approximate (asymp-
totic) equality

h(𝑧, 𝑢1, 𝑢2) ≈ f(𝑧, 𝑤1, 𝑤2) = r(𝑧) exp{𝑗𝜆 (𝑟1𝑤1 + 𝑟2𝑤2
𝑞

)} =

= r(𝑧) exp{𝑗𝜆 (𝑟1𝑢1
𝜇1

+ 𝑟2𝑢2
𝜇2

)} .

Let us define the characteristic of the process {𝑖1(𝑡), 𝑖2(𝑡)} in the stationary
mode

ℎ(𝑢1, 𝑢2) = exp{𝑗𝜆 (𝑟1𝑢1
𝜇1

+ 𝑟2𝑢2
𝜇2

)} ,

which we will call the first-order asymptotics of the characteristic functions
of the number of occupied servers in the system.

5. Asymptotic analysis of the second order

In the equation (8) we replace

h(𝑧, 𝑢1, 𝑢2) = h2(𝑧, 𝑢1, 𝑢2) exp{𝑗𝜆 (𝑟1𝑢1
𝜇1

+ 𝑟2𝑢2
𝜇2

)} ,
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we obtain the equation for h2(𝑧, 𝑢1, 𝑢2)

𝜕h2(𝑧, 𝑢1, 𝑢2)
𝜕𝑧

+ 𝜕h2(0, 𝑢1, 𝑢2)
𝜕𝑧

(PA(𝑧)B(u) − I) +

+𝑗𝜇1 (1 − 𝑒−𝑗𝑢1) 𝜕h2(𝑧, 𝑢1, 𝑢2)
𝜕𝑢1

+ 𝑗𝜇2 (1 − 𝑒−𝑗𝑢2) 𝜕h2(𝑧, 𝑢1, 𝑢2)
𝜕𝑢2

−

−𝜆𝑟1 (1 − 𝑒−𝑗𝑢1)h2(𝑧, 𝑢1, 𝑢2) − 𝜆𝑟2 (1 − 𝑒−𝑗𝑢2)h2(𝑧, 𝑢1, 𝑢2) = 0.

(12)

We denote 𝜇1 = 𝜖2, 𝜇2 = 𝑞𝜖2, in (12) we replace

h2(𝑧, 𝑢1, 𝑢2) = f2(𝑧, 𝑤1, 𝑤2, 𝜖), 𝑢1 = 𝜖𝑤1, 𝑢2 = 𝜖𝑤2,

we obtain the equation for f2(𝑧, 𝑤1, 𝑤2, 𝜖)

𝜕f2(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑧

+ 𝜕f2(0, 𝑤1, 𝑤2, 𝜖)
𝜕𝑧

(PA(𝑧)B(w, 𝜖) − I) +

+ 𝑗𝜖 (1 − 𝑒−𝑗𝜖𝑤1) 𝜕f2(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑤1

+ 𝑗𝜖𝑞 (1 − 𝑒−𝑗𝜖𝑤2) 𝜕f2(𝑧, 𝑤1, 𝑤2, 𝜖)
𝜕𝑤2

−

− 𝜆𝑟1 (1 − 𝑒−𝑗𝜖𝑤1) f2(𝑧, 𝑤1, 𝑤2, 𝜖) − 𝜆𝑟2 (1 − 𝑒−𝑗𝜖𝑤2) f2(𝑧, 𝑤1, 𝑤2, 𝜖) = 0.
(13)

Theorem 2. The limiting solution for 𝜖 → 0 to the equation (13)
f2(𝑧, 𝑤1, 𝑤2) has the form

f2(𝑧, 𝑤1, 𝑤2) = r(𝑧) exp{𝑗2

2
(𝜆 (𝑟1𝑤2

1 + 𝑟2
𝑤2

2
𝑞

) +

+𝜅 (𝑟2
1𝑤2

1 + 4𝑟1𝑟2
𝑤1𝑤2
𝑞 + 1

+ 𝑟2
2

𝑤2
2

𝑞
))} , (14)

where 𝜅 = 𝜆2 ∫
∞

0
(rA(𝑥) − r(𝑥)) e𝑑𝑥.

Proof. We will obtain the solution of the equation (14) in the following
form

f2(𝑧, 𝑤1, 𝑤2, 𝜖) = Φ(𝑤1, 𝑤2) (r(𝑧) + 𝑗𝜖(𝑟1𝑤1 + 𝑟2𝑤2)f2(𝑧)) + 𝑜2(𝜖), (15)

where f2(𝑧) satisfies the condition f2(∞)e = 0. Substitute (15) into (13) and
expand the exponents in a series up to the first order. Considering that

𝜕r(𝑧)
𝜕𝑧

+ 𝜕r(0)
𝜕𝑧

(PA(𝑧) − I) = 0,

we obtain the equation for finding the function f2(𝑧)

e
𝜕f2(𝑧)

𝜕𝑧
− 𝜆er(𝑧) + e

𝜕f2(0)
𝜕𝑧

(PA(𝑧) − I) + 𝜆A(𝑧) = 0. (16)
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From the equation (16) we find that

𝜕f2(0)
𝜕𝑧

= 𝜅r, where 𝜅 = 𝜆2 ∫
∞

0
(rA(𝑥) − r(𝑥)) e𝑑𝑥.

Substitute (15) into (13) and expand the exponents in a series up to the
second order. Multiply by e and perform the passage to the limit 𝑧 → ∞, we
obtain the equation for finding the function Φ(𝑤1, 𝑤2)

𝑤1
𝜕Φ(𝑤1, 𝑤2)

𝜕𝑤1
+ 𝑤2𝑞𝜕Φ(𝑤1, 𝑤2)

𝜕𝑤2
=

= Φ(𝑤1, 𝑤2) (−𝜆 (𝑟1𝑤2
1 + 𝑟2𝑤2

2) − 𝜅 (𝑟1𝑤1 + 𝑟2𝑤2)2) . (17)

The solution of the equation (17) has the form

Φ(𝑤1, 𝑤2) =

= exp{𝑗2

2
(𝜆 (𝑟1𝑤2

1 + 𝑟2
𝑤2

2
𝑞

) + 𝜅 (𝑟2
1𝑤2

1 + 4𝑟1𝑟2
𝑤1𝑤2
𝑞 + 1

+ 𝑟2
2

𝑤2
2

𝑞
))} (18)

Substituting the solution (18) into (15) and performing the passage to the
limit 𝜖 → 0, we obtain (14).
The theorem is proved. �

Due to the change, as well as the equality (14) for the function h2(𝑧, 𝑢1, 𝑢2)
we can write down the approximate (asymptotic) equality

h2(𝑧, 𝑢1, 𝑢2) ≈ f2(𝑧, 𝑤1, 𝑤2) =

= r(𝑧) exp{𝑗2

2
(𝜆 (𝑟1

𝑢2
1

𝜇1
+ 𝑟2

𝑢2
2

𝜇2
) +

+𝜅 (𝑟2
1

𝑢2
1

𝜇1
+ 4𝑟1𝑟2

𝑢1𝑢2
𝜇1 + 𝜇2

+ 𝑟2
2

𝑢2
2

𝜇2
))} .

Thus, the characteristic function of the number of occupied servers in the
system under consideration has the form

ℎ2(𝑢1, 𝑢2) = exp{𝑗𝜆 (𝑟1𝑢1
𝜇1

+ 𝑟2𝑢2
𝜇2

) + 𝑗2

2
[𝜆 (𝑟1

𝑢2
1

𝜇1
+ 𝑟2

𝑢2
2

𝜇2
) +

+𝜅 (𝑟2
1

𝑢2
1

𝜇1
+ 4𝑟1𝑟2

𝑢1𝑢2
𝜇1 + 𝜇2

+ 𝑟2
2

𝑢2
2

𝜇2
)]} . (19)

6. Numerical example

Let us consider a numerical example where we can illustrate the accuracy
of approximating formula (19). Consider queueing system with MRP arrivals,
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where the Markov renewal process is given by matrices

P = [0.3 0.7
0.6 0.4

] , A(𝑥) = diag{𝐴1(𝑥), 𝐴2(𝑥)}.

Here 𝐴1(𝑥) and 𝐴2(𝑥) are gamma distribution cdf-s with shape and rate
parameters 𝛼 and 𝛽 that have the following values:

𝛼1 = 0.5, 𝛽1 = 0.25, 𝛼2 = 1.5, 𝛽2 = 1.5.

The service times are exponentially distributed with service rates

𝜇1 = 1 ⋅ 𝜀, 𝜇2 = 2 ⋅ 𝜀

for the the first and the second types of arrivals respectively. Here parameter
𝜀 will be varied to establish the accuracy of approximation (19) accordingly
to the asymptotic condition 𝜀 → 0.
To establish the accuracy of the approximation, we use its comparison with

the results of simulation modeling of the corresponding system. For the error
estimation (difference between the results), we use the Kolmogorov distance

Δ = max
𝑖1,𝑖2∈[0,∞)

∣𝐹approx(𝑖1, 𝑖2) − 𝐹sim(𝑖1, 𝑖2)∣ ,

where 𝐹approx(𝑖1, 𝑖2) is a cdf of Gaussian distribution (19) and 𝐹sim(𝑖1, 𝑖2)
is a cdf built basing on the results of the simulation. The results of the
comparison is presented in the table 1. We see that the Kolmogorov distance
decreases with decreasing of parameter 𝜀, so, approximation (19) becomes
more accurate for small values of this parameter.

Table 1

Kolmogorov distance Δ between the approximation and distribution based

on the simulation results for various values of asymptotic parameter 𝜀

𝜀 0.1 0.05 0.01 0.005 0.001 0.0005 0.0001

Δ 0.1137 0.0501 0.0371 0.0323 0.0253 0.0226 0.0197

For example, if we suppose that error Δ ⩽ 0.05 means that the approxima-
tion is accurate enough then we can conclude that for the considered example,
Gaussian approximation (19) is applicable for values 𝜀 < 0.05.

7. Conclusions

In this paper, the method of asymptotic analysis is used to study a mathe-
matical model of the 𝑀𝑅|𝑀|∞ system functioning under the condition of
a changing environment. The case is considered when a semi-Markov random
environment has 2 different states. It is proved that the asymptotic character-
istic function of the number of occupied servers of each type in the considered
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system is Gaussian with the vector of mathematical expectations

a = [𝜆 𝑟1
𝜇1

, 𝜆 𝑟2
𝜇2

]

and the covariance matrix

K =
⎡
⎢
⎢
⎣

𝜆 𝑟1
𝜇1

+ 𝜅 𝑟2
1

𝜇1
4𝜅 𝑟1𝑟2

𝜇1 + 𝜇2

4𝜅 𝑟1𝑟2
𝜇1 + 𝜇2

𝜆 𝑟2
𝜇2

+ 𝜅 𝑟2
2

𝜇2

⎤
⎥
⎥
⎦

.
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Гетерогенная система массового обслуживания
с входящим потоком марковского восстановления

и временем обслуживания, зависящими от состояний
вложенной цепи Маркова

Е. П. Полин1, 2, С. П. Моисеева1, А. Н. Моисеев1

1Национальный исследовательский Томский государственный университет,
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2Национальный исследовательский Томский политехнический университет,
пр. Ленина, д. 30, Томск, 634050, Россия

Аннотация. В работе рассматривается гетерогенная система массового обслу-
живания с входящим потоком марковского восстановления и неограниченным
числом серверов. Время обслуживания запросов на серверах является положи-
тельной случайной величиной с экспоненциальным распределением вероятностей.
Параметры обслуживания зависят от состояния цепи Маркова в моменты вос-
становления. Следует отметить, что эти параметры не меняют своих значений
до окончания обслуживания. Таким образом, устройства в рассматриваемой
системе являются неоднородными (гетерогенными). Объектом исследования ста-
новится многомерный случайный процесс — количество серверов каждого типа,
обслуживаемых с разной интенсивностью в стационарном режиме. Для иссле-
дования применён метод асимптотического анализа при условии эквивалентно
долгого времени обслуживания. Метод асимптотического анализа реализуется
при построении последовательности асимптотик возрастающего порядка, в кото-
рой асимптотика первого порядка определяет асимптотическое среднее значение
числа занятых серверов. Асимптотика второго порядка позволяет построить гаус-
совскую аппроксимацию распределения вероятностей числа занятых серверов
в системе.

Ключевые слова: система массового обслуживания, случайная среда, поток
марковского восстановления, метод асимптотического анализа


