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Abstract. The paper considers mathematical methods of correction of thermographic
images (thermograms) in the form of temperature distribution on the surface of the
object under study, obtained using a thermal imager. The thermogram reproduces
the image of the heat-generating structures located inside the object under study.
This image is transmitted with distortions, since the sources are usually removed from
its surface and the temperature distribution on the surface of the object transmits
the image as blurred due to the processes of thermal conductivity and heat exchange.
In this paper, the continuation of the temperature function as a harmonic function
from the surface deep into the object under study in order to obtain a temperature
distribution function near sources is considered as a correction principle. This
distribution is considered as an adjusted thermogram. The continuation is carried out
on the basis of solving the Cauchy problem for the Laplace equation — an ill-posed
problem. The solution is constructed using the Tikhonov regularization method. The
main part of the constructed approximate solution is presented as a Fourier series by
the eigenfunctions of the Laplace operator. Discretization of the problem leads to
discrete Fourier series. A modification of the Hamming method for summing Fourier
series and calculating their coefficients is proposed.

Key words and phrases: thermogram, ill-posed problem, Cauchy problem for the
Laplace equation, Tikhonov regularization method, discrete Fourier series

1. Introduction

Thermal imaging methods are widely used in medicine as a means of early
diagnostics [1–4]. Visualization (thermogram) of the temperature distribution
on the surface of the patient’s body contains information about sources of
heat inside the body associated with the functioning of internal organs. In
particular, it contains information about temperature anomalies associated
with pathologies of internal organs. The image on the thermogram, as a rule,

© Laneev E.B., BaajO., 2022

This work is licensed under a Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by-nc/4.0/legalcode



E.B. Laneev, O. Baaj, On a modification of the Hamming method... 343

is distorted due to the process of thermal conductivity, heat exchange and
the relative remoteness of heat sources from the surface of the body.
Within the framework of the chosen mathematical model, it is possible to

correct the image on the thermogram in order to increase the effectiveness
of diagnostics. Since the evolution of the temperature distribution in the
patient’s body is relatively slow, it makes it possible to use stationary models,
in particular, models of harmonic temperature distribution. As an adjusted
thermogram, we will consider the temperature distribution near the sources
obtained by the continuation of the harmonic function from the boundary
(similar to the continuation of gravitational fields in geophysics problems [5]).

In [6], based on the method [7], one of the possible solutions to such
a problem is proposed. The problem, as ill-posed, is solved using the Tikhonov
regularization method [8]. When forming computational algorithms, discrete
Fourier series [9, 10] are used, the coefficients of which are calculated from
functions depending on the coefficient number [11]. To sum up such series,
a modification of the Hamming method [9] is proposed here.

2. Mathematical model and inverse problem

As a mathematical model, we consider a homogeneous heat-conducting
body in the form of a rectangular cylinder

𝐷(𝐹, ∞) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝐹 (𝑥, 𝑦) < 𝑧 < ∞} ⊂ ℝ3, (1)

limited by the surface

𝑆 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝐹(𝑥, 𝑦)}. (2)

We’ll assume that we also know that

𝑎1 < 𝐹(𝑥, 𝑦) < 𝑎2 < 𝐻, (𝑥, 𝑦) ∈ Π, (3)

Π = {(𝑥, 𝑦) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦}. (4)

The domain 𝐷(𝐹, ∞) contains heat sources with a time-independent density
function 𝜌, creating a stationary (harmonic) temperature distribution in the
body. We associate the density function of heat sources with the anomalies
under study. We assume that on side faces Γ of the cylindrical domain
𝐷(𝐹, ∞) a temperature equal to zero is maintained, and on the surface 𝑆 of
the form (2) there is convective heat exchange with the external environment
of temperature 𝑈0, described by Newton’s law, according to which the density
of the heat flux at the point of the surface 𝑆 it is directly proportional to the
temperature difference inside and outside.
It should be borne in mind from a physical point of view that despite the

fact that the density of sources does not depend on time, the heat released
by them is diverted across the boundary, the overall temperature distribution
does not change over time, although the distribution gradient corresponds to
stationary heat flows.
In the domain 𝐷(𝐹, ∞) of the form (1), the temperature distribution is

the solution of a mixed boundary value problem for the Laplace equation
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⎧{{{
⎨{{{⎩

Δ𝑢(𝑀) = 𝜌(𝑀), 𝑀 ∈ 𝐷(𝐹 , ∞),
𝜕𝑢
𝜕𝑛

∣
𝑆

= ℎ(𝑈0 − 𝑢)∣
𝑆
,

𝑢|Γ = 0,
𝑢 is bounded at 𝑧 → ∞.

(5)

We assume that the function 𝜌 is such that the solution of the problem (5)

exists in 𝐶2(𝐷(𝐹 , ∞)) ⋂ 𝐶1(𝐷(𝐹 , ∞)). In particular, the solution of the
problem (5) allows us to find 𝑢|𝑆, i.e. the temperature distribution 𝑢 on the
surface of 𝑆, which we will call a thermogram.

Now let the thermogram be obtained as a result of measurements and
the density of 𝜌 is unknown. Let us now set the inverse problem. We
set the problem of continuation of the temperature distribution from the
surface towards the sources in order to obtain an adjusted thermogram as
the temperature distribution 𝑢|𝑧=𝐻 on the plane 𝑧 = 𝐻, closer to the density
carrier than the surface 𝑆. The plane 𝑧 = 𝐻 is related to the surface 𝑆 by the
condition (3).

We assume that the carrier of the function 𝜌 is located in the domain
𝑧 > 𝐻, then the solution of the problem (5) in the domain

𝐷(𝐹, 𝐻) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝐹 (𝑥, 𝑦) < 𝑧 < 𝐻} (6)

satisfies the Laplace equation. The set of side faces of the domain 𝐷(𝐹, 𝐻) is
denoted by Γ𝐻.

Inverse problem. Let the function be given within the framework of the
model (5)

𝑓 = 𝑢|𝑆, (7)

and the density of 𝜌 is unknown. It is required to find 𝑢|𝑧=𝐻. It is required
to find 𝑢|𝑧=𝐻.

Since the value of 𝐻 sufficiently arbitrarily defines the plane between the
support of 𝜌 and the surface 𝑆, then in fact the inverse problem consists
in obtaining a solution 𝑢 in the domain 𝐷(𝐹, 𝐻) (6) of the boundary value
problem

⎧{{{
⎨{{{⎩

Δ𝑢(𝑀) = 0, 𝑀 ∈ 𝐷(𝐹 , 𝐻),
𝑢|𝑆 = 𝑓,
𝜕𝑢
𝜕𝑛

∣
𝑆

= ℎ(𝑈0 − 𝑓)∣
𝑆
,

𝑢|Γ𝐻
= 0.

(8)

We assume that the function 𝑓 in (7), (8) is taken from the set of solutions
to the direct problem (5), so the solution to the inverse problem exists in

𝐶2(𝐷(𝐹 , 𝐻)) ⋂ 𝐶1(𝐷(𝐹 , 𝐻)).
Note that in the problem (8) on the surface 𝑆 of the form (2), Cauchy

conditions are set, that is, the boundary values 𝑓 of the desired function 𝑢 and
the values of its normal derivative are set, so the problem (8) has a unique
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solution. The boundary 𝑧 = 𝐻 of the domain 𝐷(𝐹, 𝐻) is free and, thus, the
problem (8) is unstable with respect to errors in the data, i.e. ill-posed.

The function 𝑢|𝑧=𝐻 will be considered as an adjusted thermogram. Since
the plane 𝑧 = 𝐻 is located closer to the support of density 𝜌, it should be
expected that the corrected thermogram more accurately conveys information
about the distribution of heat sources than the original thermogram.

3. Approximate solution of the inverse problem.

Let the function 𝑓 in the problem (8) be given with an error, that is, instead

of 𝑓, the function 𝑓𝛿 is given, so that

‖𝑓𝛿 − 𝑓‖𝐿2(Π) ⩽ 𝛿.

In [6], an approximate solution of the ill-posed problem (8) is constructed
in the form

𝑢𝛿
𝛼(𝑀) = 𝑣𝛿

𝛼(𝑀) + Φ𝛿(𝑀), 𝑀 ∈ 𝐷(𝐹 , 𝐻), (9)

where function (integral over a rectangle Π of the form (4)))

Φ𝛿(𝑀) = ∫
Π

[ℎ(𝑈0 − 𝑓𝛿(𝑥𝑃, 𝑦𝑃))𝜑(𝑀, 𝑃)∣
𝑃∈𝑆

𝑛1(𝑥𝑃, 𝑦𝑃)−

− 𝑓𝛿(𝑥𝑃, 𝑦𝑃)(n1, ∇𝑃 𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

]𝑑𝑥𝑃 𝑑𝑦𝑃 (10)

is calculated using the problem (8) data, the Dirichlet problem source function

𝜑(𝑀, 𝑃) = 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=1

𝑒−𝑘𝑛𝑚|𝑧𝑀−𝑧𝑃|

𝑘𝑛𝑚
×

× sin
𝜋𝑛𝑥𝑀

𝑙𝑥
sin

𝜋𝑚𝑦𝑀
𝑙𝑦

sin
𝜋𝑛𝑥𝑃

𝑙𝑥
sin

𝜋𝑚𝑦𝑃
𝑙𝑦

in the cylinder

𝐷∞ = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, −∞ < 𝑧 < ∞} ⊂ ℝ3,

the normal to the surface 𝑆 of the form (2)

n1 = grad (𝐹(𝑥, 𝑦) − 𝑧) = ∇𝑥𝑦𝐹 − k, 𝑛1 = |n1|.

The function 𝑣𝛿
𝛼, which is an approximation to the density potential 𝜌 [12]

was obtained in [6] using the Tikhonov regularization method [5]

𝑣𝛿
𝛼(𝑀) = −

∞
∑

𝑛,𝑚=1

Φ̃𝛿
𝑛𝑚(𝑎) exp{𝑘𝑛𝑚(𝑧𝑀 − 𝑎)}

1 + 𝛼 exp{2𝑘𝑛𝑚(𝐻 − 𝑎)}
sin

𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
, (11)
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where 𝛼 > 0,

𝑘𝑛𝑚 = 𝜋(𝑛2

𝑙2𝑥
+ 𝑚2

𝑙2𝑦
)

1/2

,

Φ̃𝛿
𝑛𝑚(𝑎) — Fourier coefficients of the function Φ𝛿(𝑀) of the form (10)

Φ̃𝛿
𝑛𝑚(𝑎) = 4

𝑙𝑥𝑙𝑦
∫
Π

Φ𝛿(𝑥, 𝑦, 𝑎) sin 𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦

𝑙𝑦
𝑑𝑥𝑑𝑦, 𝑎 < 𝑎1. (12)

For the Fourier coefficients Φ̃𝛿
𝑛𝑚(𝑎) in [11] the expression

Φ̃𝛿
𝑛𝑚(𝑎) = Φ̃𝛿

1,𝑛𝑚(𝑎) + Φ̃𝛿
2,𝑛𝑚(𝑎) (13)

is obtained, where

Φ̃𝛿
1,𝑛𝑚(𝑎) = 4

𝑙𝑥𝑙𝑦
∫
Π

[ℎ(𝑈0 − 𝑓𝛿(𝑥, 𝑦))×

× 𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎)

2𝑘𝑛𝑚
𝑛1(𝑥, 𝑦) sin 𝜋𝑛𝑥

𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

]𝑑𝑥𝑑𝑦, (14)

Φ̃𝛿
2,𝑛𝑚(𝑎) =

= 4
𝑙𝑥𝑙𝑦

∫
Π

𝑓𝛿(𝑥, 𝑦)𝜋𝑛𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎)

2𝑙𝑥𝑘𝑛𝑚
𝐹 ′

𝑥(𝑥, 𝑦) cos 𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦

𝑙𝑦
𝑑𝑥𝑑𝑦+

+ 4
𝑙𝑥𝑙𝑦

∫
Π

𝑓𝛿(𝑥, 𝑦)𝜋𝑚𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎)

2𝑙𝑦𝑘𝑛𝑚
𝐹 ′

𝑦(𝑥, 𝑦) sin 𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
𝑑𝑥𝑑𝑦+

+ 2
𝑙𝑥𝑙𝑦

∫
Π

𝑓𝛿(𝑥, 𝑦)𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎) sin
𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦

𝑙𝑦
𝑑𝑥𝑑𝑦. (15)

Thus, the Fourier coefficients Φ̃𝛿
𝑛𝑚(𝑎) are calculated as the sum of formally

calculated Fourier coefficients in accordance with (12) over orthogonal systems

{sin 𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦

𝑙𝑦
}

∞

𝑛,𝑚=1

, {cos 𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦

𝑙𝑦
}

∞

𝑛,𝑚=1

,

{sin 𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
}

∞

𝑛,𝑚=1

,
(16)

of functions depending, apart from the arguments 𝑥 and 𝑦, on the number
𝑛𝑚 of the Fourier coefficients.
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4. Formation of an approximate solution based
on discrete Fourier series

When discretizing the [13] problem (8) and performing numerical calcula-
tions using the formulas (11), (13), (14), (15) it is natural to pass to calculating
the values of the approximate solution of the problem (8) on the grid of the
values of the arguments 𝑥 and 𝑦

𝜔 = {(𝑥𝑖, 𝑦𝑗) ∶ 𝑥𝑖 = 𝑖𝑙𝑥
𝑁𝑥

, 𝑖 = 0, 1, … , 𝑁𝑥, 𝑦𝑗 =
𝑗𝑙𝑦
𝑁𝑦

, 𝑗 = 0, 1, … , 𝑁𝑦} . (17)

In this case, there is no need to use infinite Fourier series. One can pass to
discrete Fourier series [9, 10], in this case two-dimensional.
The discrete Fourier series has an interpolation property, that is, the discrete

Fourier series (by definition, representing a finite sum) with coefficients
calculated by the corresponding formulas coincides on the grid with the values
of the function. For example, if on the grid

𝑥𝑖 = 𝑖 𝑙
𝑁

, 𝑖 = 0, 1, … , 𝑁, (18)

the grid function 𝑓 = (𝑓0, 𝑓1, … , 𝑓𝑁−1, 𝑓𝑁) is given (when expanding into
a discrete Fourier series in terms of sines, we assume that 𝑓0 = 𝑓𝑁 = 0). Then
the function 𝑓 can be represented by a discrete Fourier series in terms of
sines [10]

𝑓𝑖 =
𝑁−1
∑
𝑖=1

𝑏𝑘 sin
𝜋𝑘𝑥𝑖

𝑙
=

𝑁−1
∑
𝑖=1

𝑏𝑘 sin
𝜋𝑘𝑖
𝑁

, 𝑖 = 0, 1, … , 𝑁, (19)

where the coefficients 𝑏𝑘 are calculated by the formula (equivalent to the
trapezoid formula for the corresponding integral in the theory of Fourier
series):

𝑏𝑘 = 2
𝑁

𝑁−1
∑
𝑖=1

𝑓𝑖 sin
𝜋𝑘𝑖
𝑁

, 𝑘 = 1, … , 𝑁 − 1. (20)

In other words, if the discrete series coefficients are calculated in accordance
with the formula (20), then the discrete series (19) is exactly equal to the
values of the function 𝑓𝑖, 𝑖 = 0, 1, … , 𝑁.
Applying discrete Fourier series to the approximate solution (9) on the

grid (17) for each fixed 𝑧, 𝑎2 < 𝑧 < 𝐻, will lead to the formula for 𝑣𝛿
𝛼:

(𝑣𝛿
𝛼)

𝑖𝑗
(𝑧) = −

𝑁𝑦−1

∑
𝑚=1

𝑁𝑥−1

∑
𝑛=1

Φ̃𝛿
𝑛𝑚(𝑎) exp{𝑘𝑛𝑚(𝑧 − 𝑎)}

1 + 𝛼 exp{2𝑘𝑛𝑚(𝐻 − 𝑎)}
sin

𝜋𝑛𝑖
𝑁𝑥

sin
𝜋𝑚𝑗
𝑁𝑦

,

𝑖 = 0, … , 𝑁𝑥, 𝑗 = 0, … , 𝑁𝑦.
(21)

In this case, the integrals in calculating Φ̃𝛿
𝑛𝑚(𝑎) by the formulas (13), (15),

(14) it is natural to replace with formulas corresponding to the calculation of
the coefficients of the discrete Fourier series of the form
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Φ̃𝛿
𝑛𝑚(𝑎) = 4

𝑁𝑥𝑁𝑦

𝑁𝑥−1

∑
𝑖=1

𝑁𝑦−1

∑
𝑗=1

𝑓𝑖𝑗(𝑛, 𝑚) sin 𝜋𝑛𝑖
𝑁𝑥

sin
𝜋𝑚𝑗
𝑁𝑦

+

+ 4
𝑁𝑥𝑁𝑦

𝑁𝑥−1

∑
𝑖=1

𝑁𝑦−1

∑
𝑗=1

𝑔𝑖𝑗(𝑛, 𝑚) cos 𝜋𝑛𝑖
𝑁𝑥

sin
𝜋𝑚𝑗
𝑁𝑦

+

+ 4
𝑁𝑥𝑁𝑦

𝑁𝑥−1

∑
𝑖=1

𝑁𝑦−1

∑
𝑗=1

𝑝𝑖𝑗(𝑛, 𝑚) sin 𝜋𝑛𝑖
𝑁𝑥

cos
𝜋𝑚𝑗
𝑁𝑦

, (22)

(𝑛 = 1, 2, … , 𝑁𝑥 − 1, 𝑚 = 1, 2, … , 𝑁𝑦 − 1) on the grid 𝜔 of the form (17). To

simplify the notation of integrands in integrals corresponding to systems (16),
the notation 𝑓, 𝑔, 𝑝 is introduced. A feature of calculating the coefficients
of a discrete series in this case is that the functions 𝑓, 𝑔, 𝑝, in addition to
the arguments 𝑥𝑖 and 𝑦𝑗, depend on the indices 𝑛 and 𝑚 of the Fourier

coefficients.

5. Summation of a discrete Fourier series and
calculation of its coefficients by the Hamming method

Here we give some modification of the Hamming method [9] and its proof,
related to the representation of a function as a discrete Fourier series in terms
of sines or cosines on the interval [0, 𝑙].
We now assume that the coefficients of the discrete series of some grid

function 𝑤

𝑤𝑖 =
𝑁−1
∑
𝑘=1

𝑏𝑘 sin
𝜋𝑘𝑖
𝑁

, 𝑖 = 0, 1, … , 𝑁 (23)

are calculated formally in accordance with (20), where the values of the
function 𝑓 formally depend on the number 𝑘 of the coefficient 𝑏𝑘, i.e.

𝑏𝑘 = 2
𝑁

𝑁−1
∑
𝑖=1

𝑓𝑖(𝑘) sin 𝜋𝑘𝑖
𝑁

= 2
𝑁

𝑁
∑
𝑖=0

𝑓𝑖(𝑘) sin 𝜋𝑘𝑖
𝑁

, 𝑘 = 1, … , 𝑁 − 1 (24)

while maintaining the condition

𝑓0(𝑘) = 𝑓𝑁(𝑘) = 0. (25)

Let us show that the idea of Hamming algorithm [9] for calculating coeffi-
cients 𝑏𝑘 of a discrete Fourier series (23) is also applicable to this situation,
that is, to calculating the sum (24).
We fix the number 𝑘 of the Fourier coefficient. Let us denote for brevity

𝑡𝑘 = 𝜋𝑘/𝑁 and consider the recurrent formulas

⎧{
⎨{⎩

𝑈0 = 0,
𝑈1 = 𝑓𝑁(𝑘),
𝑈𝑚 = (2 cos 𝑡𝑘) 𝑈𝑚−1 − 𝑈𝑚−2 + 𝑓𝑁−𝑚+1(𝑘), 𝑚 = 2, 3, … , 𝑁.

(26)
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Our task is to show that the Fourier coefficients 𝑏𝑘 of the form (24) of the
function 𝑤 of the form (23) can be calculated by the formula

𝑏𝑘 = 2
𝑁

𝑁
∑
𝑖=0

𝑓𝑖(𝑘) sin 𝜋𝑘𝑖
𝑁

= 2
𝑁

𝑈𝑁 sin 𝑡𝑘, (27)

where 𝑈𝑁 is calculated by recurrent formulas (26).

For simplicity of notation, the dependence of 𝑈𝑚 on 𝑘 is not indicated.
Note also that the recurrent formulas (26) use the values 𝑓𝑁(𝑘), … , 𝑓1(𝑘), the
value 𝑓0(𝑘) is not used when forming 𝑈𝑁.

Algorithm (26), (27) obviously allows to avoid calculation of sines in (24)
with argument 𝜋𝑘𝑖/𝑁 when changing indices 𝑖 and 𝑘.

Let us represent the function 𝑓(𝑘) as a sum of functions 𝑓 (𝑖)(𝑘), each of
which is a vector with zero coordinates, except for the coordinate with number
𝑖 equal to 𝑓𝑖(𝑘), that generally speaking, not equal to zero:

𝑓(𝑘) =
𝑁

∑
𝑖=0

𝑓 (𝑖)(𝑘),

𝑓 (𝑖)(𝑘) = (𝑓 (𝑖)
0 (𝑘), … , 𝑓 (𝑖)

𝑁 (𝑘)) = (0, 0, … , 0, 𝑓𝑖(𝑘), 0, … , 0) .
(28)

Note that if the upper and lower indices do not coincide, the coordinate of

the function 𝑓 (𝑖)(𝑘) is equal to zero. Note also that when the grid function is

represented by a sine series, due to (25) 𝑓 (0)(𝑘) = 𝑓 (𝑁)(𝑘) = (0, 0, … , 0).

We apply the recursive formulas (26) to each function 𝑓 (𝑖)(𝑘), 𝑖 =
0, 1, 2, … , 𝑁 (for a fixed 𝑘), denoting result as 𝑈 (𝑖):

⎧
{
⎨
{
⎩

𝑈 (0)
0 = 0,

𝑈 (0)
1 = 𝑓 (0)

𝑁 (𝑘),

𝑈 (0)
𝑚 = 2 cos 𝑡𝑘𝑈 (0)

𝑚−1 − 𝑈 (0)
𝑚−2 + 𝑓 (0)

𝑁−𝑚+1(𝑘), 𝑚 = 2, 3, … , 𝑁,

⎧
{
⎨
{
⎩

𝑈 (1)
0 = 0,

𝑈 (1)
1 = 𝑓 (1)

𝑁 (𝑘),

𝑈 (1)
𝑚 = 2 cos 𝑡𝑘𝑈 (1)

𝑚−1 − 𝑈 (1)
𝑚−2 + 𝑓 (1)

𝑁−𝑚+1(𝑘), 𝑚 = 2, 3, … , 𝑁,
…

⎧
{
⎨
{
⎩

𝑈 (𝑖)
0 = 0,

𝑈 (𝑖)
1 = 𝑓 (𝑖)

𝑁 (𝑘),

𝑈 (𝑖)
𝑚 = 2 cos 𝑡𝑘𝑈 (𝑖)

𝑚−1 − 𝑈 (𝑖)
𝑚−2 + 𝑓 (𝑖)

𝑁−𝑚+1(𝑘), 𝑚 = 2, 3, … , 𝑁,
…
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⎧
{
⎨
{
⎩

𝑈 (𝑁)
0 = 0,

𝑈 (𝑁)
1 = 𝑓 (𝑁)

𝑁 (𝑘),

𝑈 (𝑁)
𝑚 = 2 cos 𝑡𝑘𝑈 (𝑁)

𝑚−1 − 𝑈 (𝑁)
𝑚−2 + 𝑓 (𝑁)

𝑁−𝑚+1(𝑘), 𝑚 = 2, 3, … , 𝑁.
Summing up the corresponding parts of all equalities, due to the linearity

of the recursive formulas, we obtain

⎧
{{{{
⎨
{{{{
⎩

𝑁
∑
𝑖=0

𝑈 (𝑖)
0 = 0,

𝑁
∑
𝑖=0

𝑈 (𝑖)
1 =

𝑁
∑
𝑖=0

𝑓 (𝑖)
𝑁 (𝑘),

𝑁
∑
𝑖=0

𝑈 (𝑖)
𝑚 = 2 cos 𝑡𝑘

𝑁
∑
𝑖=0

𝑈 (𝑖)
𝑚−1 −

𝑁
∑
𝑖=0

𝑈 (𝑖)
𝑚−2 +

𝑁
∑
𝑖=0

𝑓 (𝑖)
𝑁−𝑚+1(𝑘), 𝑚 = 2, 3, … , 𝑁.

Considering (28) for the sum 𝑓 (𝑖)(𝑘) and taking the notation

𝑁
∑
𝑖=0

𝑈 (𝑖)
𝑚 = 𝑈𝑚, 𝑚 = 0, … , 𝑁, (29)

we obtain the recurrent formulas (26). Thus, to prove the formula (27), it

suffices to calculate 𝑈 (𝑖)
𝑁 for all 𝑖 = 0, … , 𝑁.

Let us calculate 𝑈 (𝑖)
𝑁 , singling out the cases 𝑖 = 0, 1, 𝑁 separately. Applying

the recurrent formulas (26) to 𝑓 (𝑖)(𝑘) for 𝑖 = 0, 1 gives

⎧{{{{{
⎨{{{{{⎩

𝑈 (0)
0 = 0,

𝑈 (0)
1 = 𝑓 (0)

𝑁 (𝑘) = 0,

𝑈 (0)
2 = 𝑓 (0)

𝑁−1(𝑘) = 0,
…

𝑈 (0)
𝑁−1 = 𝑓 (0)

2 (𝑘) = 0,

𝑈 (0)
𝑁 = 𝑓 (0)

1 (𝑘) = 0 = 𝑉 (0)
0 ,

⎧{{{{{
⎨{{{{{⎩

𝑈 (1)
0 = 0,

𝑈 (1)
1 = 𝑓 (1)

𝑁 (𝑘) = 0,

𝑈 (1)
2 = 𝑓 (1)

𝑁−1(𝑘) = 0,
…

𝑈 (1)
𝑁−1 = 𝑓 (1)

2 (𝑘) = 0 = 𝑉 (1)
0 ,

𝑈 (1)
𝑁 = 𝑓 (1)

1 (𝑘) = 𝑓1(𝑘) = 𝑉 (1)
1 .

(30)

Applying the recurrent formulas (26) to 𝑓 (𝑖)(𝑘) for 𝑖 = 𝑁 gives

⎧
{{
⎨
{{
⎩

𝑈 (𝑁)
0 = 0 = 𝑉 (𝑁)

0 ,

𝑈 (𝑁)
1 = 𝑓 (𝑁)

𝑁 (𝑘) = 𝑓𝑁(𝑘) = 𝑉 (𝑁)
1 ,

…

𝑈 (𝑁)
𝑚 = (2 cos 𝑡𝑘)𝑉 (𝑁)

𝑚−1 − 𝑉 (𝑁)
𝑚−2, 𝑚 = 2, 3, … , 𝑁.

(31)

Note that for all values of 𝑚 = 2, 3, … , 𝑁 in (31) the value 𝑓 (𝑁)
𝑁−𝑚+1(𝑘) = 0,

since the upper index is not equal to the lower one.
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Applying the recurrent formulas (26) to 𝑓 (𝑖)(𝑘) for 𝑖 = 2, … , 𝑁 − 1 gives

⎧{{{{
⎨{{{{⎩

𝑈 (𝑖)
0 = 0,

…

𝑈 (𝑖)
𝑁−𝑖 = 𝑓 (𝑖)

𝑁−(𝑁−𝑖)+1(𝑘) = 𝑓 (𝑖)
𝑖+1(𝑘) = 0 = 𝑉 (𝑖)

0 ,

𝑈 (𝑖)
𝑁−𝑖+1 = 𝑓 (𝑖)

𝑁−(𝑁−𝑖+1)+1(𝑘) = 𝑓 (𝑖)
𝑖 (𝑘) = 𝑓𝑖(𝑘) = 𝑉 (𝑖)

1 ,

𝑈 (𝑖)
𝑁−𝑖+𝑚 = (2 cos 𝑡𝑘)𝑉 (𝑖)

𝑚−1 − 𝑉 (𝑖)
𝑚−2, 𝑚 = 2, 3, … , 𝑖.

(32)

Here we took into account that 𝑓 (𝑖)
𝑁−(𝑁−𝑖+𝑚)+1(𝑘) = 𝑓 (𝑖)

𝑖+1−𝑚(𝑘) = 0, 𝑚 =
2, 3, … , 𝑖, because the upper and lower indices do not match.

In the formulas (30), (31), (32) we introduced the notation

𝑈 (𝑖)
𝑁−𝑖+𝑚 = 𝑉 (𝑖)

𝑚 , 𝑖 = 0, … , 𝑁, 𝑚 = 0, 1, 2, … , 𝑖. (33)

It is easy to see that quantities 𝑉 (𝑖)
𝑚 are calculated using the same formulas

(26), “skipping” the first 𝑁 − 𝑖 − 1 zeros for 𝑈 (𝑖)
𝑚 . The introduction of the

quantity 𝑉 (𝑖)
𝑚 allows us to obtain an explicit formula for it:

𝑉 (𝑖)
𝑚 = 𝑓𝑖(𝑘)sin𝑚𝑡𝑘

sin 𝑡𝑘
, 𝑚 = 0, 1, … , 𝑖, (34)

for each 𝑖 = 0, 1, … , 𝑁.
Let us prove it using the method of induction for 𝑚. As follows from (30),

(32), this equality holds for 𝑚 = 0, 1. Let’s prove it for 𝑚 = 0, 1, … , 𝑖. Let
equality (34) hold for 𝑚 − 2 and 𝑚 − 1. Let’s prove for 𝑚.

𝑉 (𝑖)
𝑚 = (2 cos 𝑡𝑘)𝑉 (𝑖)

𝑚−1 − 𝑉 (𝑖)
𝑚−2 =

= 𝑓𝑖(𝑘) [2 cos 𝑡𝑘
sin(𝑚 − 1)𝑡𝑘

sin 𝑡𝑘
− sin(𝑚 − 2)𝑡𝑘

sin 𝑡𝑘
] =

= 𝑓𝑖(𝑘) [sin𝑚𝑡𝑘 + sin(𝑚 − 2)𝑡𝑘 − sin(𝑚 − 2)𝑡𝑘
sin 𝑡𝑘

] = 𝑓𝑖(𝑘)sin𝑚𝑡𝑘
sin 𝑡𝑘

.

Note that from (33), in particular, 𝑈 (𝑖)
𝑁 = 𝑉 (𝑖)

𝑖 and from the formula (34)
for 𝑚 = 𝑖 we obtain

𝑈 (𝑖)
𝑁 = 𝑉 (𝑖)

𝑖 = 𝑓𝑖(𝑘)sin 𝑖𝑡𝑘
sin 𝑡𝑘

. (35)

Summing according to (29) with 𝑚 = 𝑁, and using (24), we obtain

𝑈𝑁 =
𝑁

∑
𝑖=0

𝑈 (𝑖)
𝑁 =

𝑁
∑
𝑖=0

𝑉 (𝑖)
𝑖 = 1

sin 𝑡𝑘

𝑁
∑
𝑖=0

𝑓𝑖(𝑘) sin 𝑖𝑡𝑘 = 𝑏𝑘
1

sin 𝑡𝑘

𝑁
2

.

From here we obtain the formula (27).
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Let us now proceed to calculating the coefficients of the discrete Fourier
series of the grid function 𝑤 in cosine expansion. On the same grid (18)
consider the discrete Fourier series in cosines expansion [10]

𝑤𝑖 = 𝑎0
2

+
𝑁−1
∑
𝑘=1

𝑎𝑘 cos
𝜋𝑘𝑖
𝑁

+ 𝑎𝑁
2

(−1)𝑖, 𝑖 = 0, 1, … , 𝑁, (36)

whose coefficients 𝑎𝑘 are calculated on the basis of the grid function 𝑓 de-
pending on the number 𝑘 by the formula

𝑎𝑘 = 2
𝑁

(𝑓0(𝑘)
2

+
𝑁−1
∑
𝑖=1

𝑓𝑖(𝑘) cos 𝜋𝑘𝑖
𝑁

+ 𝑓𝑁(𝑘)
2

(−1)𝑘) . (37)

We introduce the grid function

̃𝑓(𝑘) = (𝑓0(𝑘)
2

, 𝑓1(𝑘), 𝑓2(𝑘), … , 𝑓𝑁−1(𝑘), 𝑓𝑁(𝑘)
2

) , (38)

that differs from 𝑓 in that the current and last coordinates are divided in half.

Replacing 𝑓 in (26) with ̃𝑓, we get formulas (33), (34).

Note that the recurrent formulas (30) for 𝑖 = 0 imply 𝑈 (0)
𝑁 = 0, 𝑈 (0)

𝑁−1 = 0.
For 𝑖 = 1, 2, … , 𝑁 from (33), (34) we obtain

𝑈 (𝑖)
𝑁−1 = 𝑉 (𝑖)

𝑖−1 = ̃𝑓𝑖(𝑘)sin(𝑖 − 1)𝑡𝑘
sin 𝑡𝑘

, 𝑖 = 1, 2, … , 𝑁. (39)

Consider the following construction (summation starts from 𝑖 = 1, since
𝑈 (0)

𝑁 = 𝑈 (0)
𝑁−1 = 0):

cos 𝑡𝑘𝑈𝑁 − 𝑈𝑁−1 + ̃𝑓0(𝑘) = cos 𝑡𝑘

𝑁
∑
𝑖=1

𝑈 (𝑖)
𝑁 −

𝑁
∑
𝑖=1

𝑈 (𝑖)
𝑁−1 + ̃𝑓0(𝑘) =

=
𝑁

∑
𝑖=1

[cos 𝑡𝑘𝑈 (𝑖)
𝑁 − 𝑈 (𝑖)

𝑁−1] + ̃𝑓0(𝑘).

Replacing 𝑈 (𝑖)
𝑁 and 𝑈 (𝑖)

𝑁−1 according to formulas (35) and (39), we obtain

cos 𝑡𝑘𝑈𝑁 − 𝑈𝑁−1 + ̃𝑓0(𝑘) =
𝑁

∑
𝑖=1

[cos 𝑡𝑘𝑉 (𝑖)
𝑖 − 𝑉 (𝑖)

𝑖−1] + ̃𝑓0(𝑘) =

=
𝑁

∑
𝑖=1

̃𝑓𝑖(𝑘)cos 𝑡𝑘 sin 𝑖𝑡𝑘 − sin(𝑖 − 1)𝑡𝑘
sin 𝑡𝑘

+ ̃𝑓0(𝑘) =

=
𝑁

∑
𝑖=1

̃𝑓𝑖(𝑘)cos 𝑡𝑘 sin 𝑖𝑡𝑘 − cos 𝑡𝑘 sin 𝑖𝑡𝑘 + sin 𝑡𝑘 cos 𝑖𝑡𝑘
sin 𝑡𝑘

+ ̃𝑓0(𝑘) =
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=
𝑁

∑
𝑖=1

̃𝑓𝑖(𝑘) cos 𝑖𝑡𝑘 + ̃𝑓0(𝑘) = ̃𝑓0(𝑘) +
𝑁−1
∑
𝑖=1

̃𝑓𝑖(𝑘) cos 𝑖𝑡𝑘 + ̃𝑓𝑁(𝑘) cos𝑁𝑡𝑘 =

= 𝑓0(𝑘)
2

+
𝑁−1
∑
𝑖=1

𝑓𝑖(𝑘) cos 𝑖𝑡𝑘 + 𝑓𝑁(𝑘)
2

(−1)𝑘.

From here according to (37) we obtain a formula for the coefficients of the
discrete Fourier series in the cosine expansion

𝑎𝑘 = 2
𝑁

[cos 𝑡𝑘𝑈𝑁 − 𝑈𝑁−1 + ̃𝑓0(𝑘)] = 2
𝑁

[cos 𝑡𝑘𝑈𝑁 − 𝑈𝑁−1 + 𝑓0(𝑘)
2

] , (40)

moreover, the quantities 𝑈𝑁 and 𝑈𝑁−1 are calculated by the formulas (26),

in which the grid function 𝑓 is replaced by ̃𝑓, which is related to 𝑓 by the
formula (38).
Note that the formulas (26), (27) can also be used to sum the Fourier series

(23), since the formulas (24) and (23) differ only by a factor. Note that when
summing the series (23), we, of course, do not obtain 𝑓(𝑘), but we obtain
some function 𝑤. Accordingly, the formulas (26), (40) can also be used to
sum the Fourier series (36), since the formulas (37) and (36) differ only by
the multiplier.
The formulas (26), (27), (40) can be used for two-dimensional discrete

Fourier series both for calculating the coefficients and for summing the Fourier
series (21). In this case, the formulas (26), (27) for each fixed pair 𝑛𝑚 are
applied sequentially over each index 𝑖 and 𝑗 corresponding to the variables 𝑥
and 𝑦.
The formulas (26), (40) for calculating the coefficients of the discrete

Fourier series in cosine expansion, of course, are also valid in the case when
𝑓0 = 𝑓𝑁 = 0, which corresponds to the formulas (22).

6. Conclusion and discussion

Formulas (21), (22), (26), (27), (40) as a solution to the problem (8) can
be used for mathematical processing of thermograms taken with a thermal
imager in medicine [4] in order to correct the image on the thermogram. Note
that taking into account the influence of blood flow leads to the need to use
the metaharmonic equation [14], [15] in problem (8).
The thermogram, with one or another certainty, conveys an image of the

structure of heat sources inside the body. However, within the framework of
the task (8), the image on the thermogram can be refined. In this case, we

consider the function 𝑓𝛿 as the original thermogram, and the function 𝑣𝛿
𝛼|𝑧=𝐻

as the corrected thermogram. Since the function 𝑣𝛿
𝛼|𝑧=𝐻 is the temperature

distribution on a plane closer to the investigated heat sources than the original
surface 𝑆, we can expect a more accurate reproduction of the source image
on the calculated thermogram 𝑣𝛿

𝛼|𝑧=𝐻.
The results of calculations performed on a model example show the effec-

tiveness of the proposed method and algorithm based on the formulas (9),
(10), (11), (13) that can be used for processing thermal images.
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Note that the method of summation of discrete Fourier series, described in
Section 5, can be used to solve other problems, the solutions of which can
be obtained in the form of Fourier series in terms of eigenfunctions of the
Laplace operator in a rectangle.
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Об одной модификации метода Хемминга
суммирования дискретных рядов Фурье

и её применение для решения задачи коррекции
термографических изображений

Е. Б. Ланеев, Обаида Бааж

Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Аннотация. В работе рассматриваются математические методы коррекции тер-
мографических изображений (термограмм), полученных с помощью тепловизора,
в виде распределения температуры на поверхности исследуемого объекта. Термо-
грамма воспроизводит изображение тепловыделяющих структур, расположенных
внутри исследуемого объекта. Это изображение передаётся с искажениями, так
как источники, как правило, удалены от его поверхности и распределение тем-
пературы на поверхности объекта передаёт изображение как размытое за счёт
процессов теплопроводности и теплопереноса. В работе в качестве принципа
коррекции рассматривается продолжение функции температуры как гармониче-
ской функции с поверхности вглубь исследуемого объекта с целью получения
функции распределения температуры вблизи источников. Такое распределение
рассматривается как скорректированная термограмма. Продолжение функции
температуры осуществляется на основе решения задачи Коши для уравнения
Лапласа — некорректно поставленной задачи. Построение решения проводится
с использованием метода регуляризации Тихонова. Основная часть построен-
ного приближённого решения представлена в виде ряда Фурье по собственным
функциям оператора Лапласа. Дискретизация задачи приводит к дискретным
рядам Фурье. Для суммирования рядов Фурье и вычисления коэффициентов
в работе предложена модификация метода Хемминга.

Ключевые слова: термограмма, некорректная задача, задача Коши для
уравнения Лапласа, метод регуляризации Тихонова, дискретный ряд Фурье


