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Abstract. It is generally accepted that the main obstacle to the application of
Riemannian geometrization of Maxwell’s equations is an insufficient number of
parameters defining a geometrized medium. In the classical description of the
equations of electrodynamics in the medium, a constitutive tensor with 20 components
is used. With Riemannian geometrization, the constitutive tensor is constructed from
a Riemannian metric tensor having 10 components. It is assumed that this discrepancy
prevents the application of Riemannian geometrization of Maxwell’s equations. It is
necessary to study the scope of applicability of the Riemannian geometrization of
Maxwell’s equations. To determine whether the lack of components is really critical
for the application of Riemannian geometrization. To determine the applicability of
Riemannian geometrization, the most common variants of electromagnetic media
are considered. The structure of the dielectric and magnetic permittivity is written
out for them, the number of significant components for these tensors is determined.
Practically all the considered types of electromagnetic media require less than ten
parameters to describe the constitutive tensor. In the Riemannian geometrization of
Maxwell’s equations, the requirement of a single impedance of the medium is critical.
It is possible to circumvent this limitation by moving from the complete Maxwell’s
equations to the approximation of geometric optics. The Riemannian geometrization
of Maxwell’s equations is applicable to a wide variety of media types, but only for
approximating geometric optics.

Key words and phrases: geometrization of Maxwell’s equations, permeability
tensor, dielectric constant, magnetic permeability, geometric optics

1. Introduction

With the advent of the model Cayley—Klein [1, 2] the formalism of non-
Euclidean spaces became used to describe physical models. This approach
received popularity after the creation Einstein’s general theory of relativ-
ity [3]. At the same time, there were attempts to geometrize Maxwell’s
electrodynamics [4-6].

However, this approach remained quite marginal until the golden age
of theory of relativity [7, §|.
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This direction became popular again in the new century and gave rise to
the development of transformational optics [9-12]. However, it became visible
that Riemannian geometry is insufficient for geometrization of Maxwell’s
equations [13, 14].

In this paper, the author expects to figure out what could hinder the
application of Riemannian geometrization of Maxwell’s equations and what is
the scope of its applicability. To do this, we consider different electromagnetic
media options and the limitations imposed by them are studied for possible
geometrizations.

1.1. Article structure

In paragraph 1.2 we provide basic notation and conventions used in the
article. In the section 1.3 we consider the limitation only for the case of
a local linear medium. In the section 2 the constitutive tensor is formulated
in a six-dimensional space. This is being done for clarity, to represent it
as a matrix 6 x 6. In the section 3 the reader is reminded of Riemannian
geometrization of Maxwell’s equations.

1.2. Notations and conventions

1. Greek indexes («, () will relate to a four-dimensional space and in

a component form will have the following values: o = 0, 3.

2. Latin indexes from the middle of the alphabet (i, j, k) will refer to
three-dimensional space and in component form will have the following
values: i = 1, 3.

3. In uppercase Latin letters denote the indices of the six-dimensional spaces:
I1=1,6.

4. To write the equations of electrodynamics in the work is used symmetrical
CGS system [15].

1.3. The variations of physical environment

It is possible to consider several options for setting the constitutive laws
depending on the medium (see Table 1).

Table 1
Constitutive laws depending on the medium
Medium type Local case Non-local case
Linear medium GoP = X*BW‘SFW; G(x) = //\(ac, s) A\ F(s)ds
Non-linear medium | G*% = A(F,5) G(x) = /)\(.’E,F(S)) ds

Tensors F,, 53 and G# have a sense of curvature in cotangent (7*X) and
tangent (7°X) bundles.
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In the linear local case, the tensors F,, 5 and G*P are connected using fourth
rang tensors.

In the linear non-local case, the connection is carried out using an integral
kernel. However, in the presence of translational symmetry, the linear nonlocal
case is reduced to the linear local case using the Fourier transform [16]. The
non-local linear relationship between F' and G looks in this case as follows:

G(x) = //\(ac,s) A F(s)ds. (1)

In the case of translational invariance A\(z, s) = A(z — s) the relationship
between F' and G will have the form:

Gaﬁ(w, kz) = Aaﬁ'yS ((-"-)7 kz’)F'yé(wa kz) (2)

In the case of a nonlinear medium, it is assumed that through the lin-

earization procedure, a tensor term similar to the local linear case can be

distinguished in it.
Thus, it seems sufficient to consider only the local linear case.

2. Structure of the constitutive tensor

2.1. Representation of the constitutive tensor in space R*

The constitutive tensor )\355 is a 4-tensor. We assume that the mapping

A : A2M — Ay,M is linear and local. Then it can be represented in the
following form:
GoP = X\POF, . (3)

Here \*579 is a constitutive tensor containing information about both
permeability and permittivity and electromagnetic connection [4-6, 17]. Tt

can be seen that A*#79 has the following symmetry:
\eB78 — M\laBl[vd]
To clarify the symmetry, the tensor A*#7? can be represented as follows:
A@BY0 — (1) \aBys 1 (2) \aBvd 4 (3) \aByd
The components of the tensor have the following symmetry:

(W) yaBvs — \([eBllvd))  (2) yabrd — \leBlvd]] - (3) \aBrd — )[aBvd],

Obviously, in this case A*?7® has 36 independent components, ()\*87
has 20 independent components (principal part), ' X*#7 has 15 independent
components (skewon), ¥ \*#79 has one independent component (azion).
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We will consider only part of (W A\*3¥_ For this case, we write down the
material equations:

J
H;=(u ), B+ ®]E

2 2

D' =eE; +WyiBI,

(4)

where € and p* are the tensors of dielectric and magnetic permeability, (1)7;-
and (2)7;- are cross terms.

Taking into account the structure of the tensors F,, 5 and GB, as well as
the constraints equations, we write:

()
Here the alternating tensor is denoted by e, ;.

2.2. Representation of constitutive tensors in A,(R?) and A%(R*"*)
spaces

Consider vector spaces A?(R**) and A,(R*) as typical layers of bundles
A2M and A, M and we will make the transition to a six-dimensional space.
Basis A,(R?*) in this case has the form ¢;, I =1, ...,6, and the basis A2?(R**)
consists of components ¢!, I = 1,...,6. Let 0,5 = 0,...,3 be the basis in

R*, and 0#, = 0,...,3 — the basis in R**. Define the basis (; in 4,(R?*) as
follows:

1 .
Ci :50/\5Z7 Ci+3 - §€ij(sj/\5k, Z,],k: 1,...,3, (6)

and basis ¢! in A%(R*) in form
(=8O NG, (= e NG, k=13 (7)

Then the intensity of the electromagnetic field F' can be represented as
follows: . ,
F=E(+ B, (8)

MY such as

We split the tensor
A = (1))\IJ T (2))\IJ + (3))\1‘].
The components of the tensor A’ have the following symmetry:

(M) \IJ — \IJI) _ )\gjl,], 2)\[J — )\[IJ], (B)\J — )\Ilgju,

~ 0 i
I = I .
[ 0
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We indicate the number of components in these tensors:

— WA has 20 components;
— @AY has 15 components;
— GIXN has 1 component.

Let’s write out the main part of the constitutive tensor:

—gti (1)72‘, . B
W\ = ((2) i~ 7, Pij = (,u 1>z‘j' (9)
Vi o Hij

Later in this article we will omit the left index of the main part of the con-
stitutive tensor.

3. Riemannian geometrization of Maxwell’s equations

We assume that the bundle has the structure of a Riemannian manifold.
In this case, we can introduce a Riemannian metric on the manifold, which:

— is symmetric: g, = g(ap);
— is consistent with connection: V_g¢*? := 0.

This statement is equivalent to the fact that we use connection Levi—-Civitas.

We introduce an effective metric based on the bundle g, 3. Then the metric
is induced into layers and the Lagrangian of the electromagnetic field can be
written in the form of the Yanngills Lagrangian:

1
L= GBF . — —A /=
 167c af 2 ol ’

which is equivalent to the following entry

1
L=——gg"F, 4 F 5,/—g— —A i \/=g.

Let’s construct the tensor A*27% as follows:

« (e V g (0% (0% \% _g « (67

Then the material equations will take the following form (for symmetry
reasons):

(6% g (6% (6%
G =2 5=(g"9" — g*° g™ ) F.y.

In the case of writing by components, we get the following expressions:
. /=g s o V=9, 0i y
GO’L — 5 <googz]_g()290])FOj + 5 <ngg k—g%g ]>ij7
qii = N9 v—9
2 2

(10)

<giogjk_g0jgik)FOk + (gikgjl_gilgjk)Fkl‘
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Formally, it is possible to write out an expression for the permittivity:

eil = —/=g(g" g% gO9) (11)
and the expression for magnetic permeability:
(L 1)ij = V=9 mnicri;9" g™ (12)

Thus the geometrized connection equations in coordinates have the following

form:
D' =cYE; + MBI,
H, = (p'),;B + (Q)VgEjv
el = —\/=g(g"0 g gYg%), (13)
(WD) = V=9 mmiEr; g™ 9™,
Wt = @t = /=geg9" g™

Statement. Let the space be represented as IRfl = R! x R3. Then in
Riemannian geometrization, under the condition ¢g° = 0, the equality holds

gl = p. (14)

Proof. Note that A;; =€,,,,,6,;9" g™ is an algebraic complement for g*/.
Then

e ()i = —vV=99" 97 V=92 i€ ripg™t g™ = gg°° det{g"}&} = 6}

It follows that £¥ = p%. 0

Then the geometrized constitutive tensor has the following form:

M = , 7. (15)
((2)%? (8—1>ij
Consider the limitations of this approach:

1. Since the metric tensor g;; has 10 components, the geometrized constitu-
tive tensor cannot have more than 10 independent components.
2. Given the constitutive equations, only media with a single impedance
can be considered.
However, the geometrized version can be used to approximate geometric
optics when the dielectric € and magnetic p;; permeability are not used
separately. Instead, in the approximation of geometric optics, the refractive

index of the medium is used:
nh = \/eLub. (16)
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In this case, the geometrized constitutive tensor has the following form:

(T
A= @ (L) (17)
72 \/ﬁm

4. Examples of media
4.1. Linear isotropic media

The most elementary electromagnetic media are linear isotropic media,
such as classical vacuum. The term isotropic refers to invariance with respect
to spatial rotations in the selected frame of reference. The rotation of any
closed system as a whole does not change its physical properties. There is
no particular direction in space with respect to which there is any special
symmetry. All directions are equal. The electromagnetic properties of the
medium do not depend on the direction. In this case, the elements of the
tensor A7 are represented as:

€ =e(a")8,  fiyy; = (n Tt (2"))dy;, Wyi=0, Byl =0

(2

or in matrix form:

A — (@)oY 0 . (18)
0 et (),

In this case, the permeability matrix contains only two independent compo-
nents in the laboratory reference frame. Function e(z?) is called the dielectric
constant of the medium. Function p(z?) is called the magnetic permeability
of the medium. When these functions are constant in the selected frame of
reference, the medium is called homogeneous.

The classical electromagnetic vacuum is assumed to be linear, isotropic and
homogeneous. Its dielectric constant (in the SI system) is denoted by ¢, and
the magnetic permeability is denoted by p.

The application of a geometrized constitutive tensor is possible in the
approximation of geometric optics. In this case A’/ will have the form:

— /(oY 0
Y ey
In this case, the permeability matrix contains only one independent com-
ponent.

4.2. Linear optical medium

It is assumed that the permittivity € can be inhomogeneous and (or)
anisotropic. Heterogeneity is most common when matrix components are
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piecewise constant and undergo discontinuities at the interface of heteroge-
neous media. Since the magnetic permeability of optical media is neglected,
they are considered to be dielectric media:

(n™1). =6 (20)

17

If the permittivity €% is anisotropic, but at the same time symmetrical,
then it is possible to determine the main reference point in which it takes the
form of a diagonal matrix:

e := diag(e,,e,,¢,)- (21)

Yy -z

The diagonal elements represented by the main permittivity are in this
case the eigenvalues of the matrix

b =g (22)

Since the matrix % is symmetric, then the eigenvalues exist and are valid,
and the eigenvectors are orthogonal.
Media variants:

— when all eigenvalues are equal, the medium is called isotropic;

— when two eigenvalues are equal, and the third is different from them, the
medium is called uniaxial anisotropic;

— when all three eigenvalues are unequal, the medium is called biaxial
anisotropic.

More generally, the magnetic permeability is not singular:
(1), = diag((u "), (070, (1)), (23)

and A7 can be represented as a matrix:

M = diag (—¢,(27), =, (2), —e,(x"), g ' (), p, (@), 4 (27)). - (24)

The application of a geometrized constitutive tensor is possible in the
approximation of geometric optics. Then the tensor A7 will take the form:

1 1
M =diag | —v/n,(a?) —y\/ 1y (), —\/n \/n =) \/ny(mi)’\/”z(xl

In this case, the permeability matrix contains three independent compo-
nents.

4.3. Bi-isotropic media

The special properties of these media are due to the connection between
electric and magnetic fields, which can be described by some defining relations.
Bi-isotropic media can change the polarization of light either by refraction
or by transmission [18]. These media are similar to isotropic media, but the
cross terms are not zero.
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The coupling equations in the case of an isotropic medium have the following
form:

D' = eg"E; + 9. B,
H; = (5 )9, B’ + 79/ E;.
The elements of the tensor A/’ have the form:

gij zg(xi)gij, (IU/71>

(25)

= (@) gy VAt =A(at)gh, @yl =q(at)gl.

ij
In matrix form, the tensor A7 for a bi-isotropic medium will have the form:
(i i i\ i
AT — ( s@)g? ) ) . (26)
y(x')g;  p(xt)g,

For the case of geometric optics, the tensor A7 for a bi-isotropic medium
will take the form:

AT — (— n(a')g?  (at)g; ) (27)

v(z")g] nt/? (xi)gij

The permeability matrix in this case contains two independent components.

4.4. Bi-anisotropic media

In bi-anisotropic media, the dielectric constant, magnetic permeability, and
coupling coefficient are complete tensors. In this case , the coupling equations
have the following form:

J
. . (28)
(-1 2
H; = (u);;B’ + )%JEj‘
The elements of the tensor A7 take the form
eli=e(at), (uh), = (@), M=), Py =q]().

In matrix form, the tensor A’/ for a bi-isotropic medium has the form:
N = (‘5?‘7("”5 %) ) . (29)
i (") (M_l)ij (z°)

For the case of geometric optics, the tensor A\’ for a bi-anisotropic medium

is represented as:
_ (WRTE) )
" _< ) () (@) (30)

(]
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In this case, the permeability matrix contains twenty independent compo-
nents.
Thus, the following conclusions can be drawn:

— in most practical cases, it is necessary to take into account less than ten

components of the tensor \'7;
— for the case of an anisotropic medium, more than ten components of the
constitutive tensor should be taken into account.

5. Conclusion

When applying the Riemannian geometrization of Maxwell’s equations, two
significant obstacles arise.

It is usually considered that the main obstacle to the application of Rie-
mannian geometrization of Maxwell’s equations is an insufficient number of
parameters defining a geometrized medium. It is known that in the classical
description of the equations of electrodynamics in the medium, a constitu-
tive tensor with 20 components is used, and in Riemannian geometrization,
the constitutive tensor is constructed from a Riemannian metric tensor with
only 10 components. Thus, most authors point out that the main limitation
of the application of Maxwell’s geometrized theory is the number of free com-
ponents in the constitutive tensor. However, this is not the case. It is enough
to consider the most popular variants of electromagnetic media to make sure
that in practically used cases the number of components is significantly less
than ten.

Another limitation is that Maxwell’s geometrized theory in the case of
Riemannian geometrization requires that the medium has a unit impedance.
This restriction is too strong in the general case. It seems that the geometrized
Maxwell theory in the case of Riemannian geometrization is not applicable in
the case of the complete Maxwell theory and in the case of the approximation
of the wave equation. But this limitation can be circumvented by switching
to the approximation of geometric optics, since in this case the impedance of
the medium is not taken into account.

Thus, we can conclude that Maxwell’s geometrized theory in the case
of Riemannian geometrization is applicable to the description of Maxwell’s
theory, but mainly for the case of approximation of geometric optics.
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Tenzop npoHUIIAEMOCTEl B T€eOMETPU30BAHHON TE€OpUU
MakcseJsia

A. B. KopoabkoBa

Poccutickuti ynusepcumem, dpyorcbvl Hapodos,
ya. Murayzo-Maxaas, 0. 6, Mockea, 117198, Poccus

Awnnoranusi. Cauraercsd, 9TO OCHOBHBIM IIPEISTCTBUEM K ITPUMEHEHUI0 PUMAHO-
BOil reomerpusanyy ypapHenuii MakcBesia aBaseTCS HEIOCTATOTHOE KOJMIECTBO
ImapaMeTpoB, 33/Ial0INX T'eOMeTPU30BaHHYy0 cpey. [Ipu KiaccuyeckoM onmcanum
YPaBHEHUIT J1eKTPOINHAMUKH B CpeJle MCIOIb3yeTCsl TEH30P ITPOHUIIAEMOCTE, mMe-
rormuit 20 xomroneHT. Ilpm pmMaHOBOU TeoMeTpHU3aINU TEH30D MPOHUIIAEMOCTEN
CTPOUTCS U3 PUMAHOBOTO METPUYECKOI'0 TEH30pPa, UMEIOMIETO TOJABKO 10 KOMIIOHEHT.
[Ipenmonaraercss, 9T0 JAHHOE HECOOTBETCTBHE MEIIAET IMPUMEHEHHWIO PUMAHOBOM
reoMeTpu3anuu ypapHeHHit MakcBenna. B crarbe mpenjioKeHO ONpenennTh, Aeii-
CTBUTE/JIBHO JIU HEJOCTATOK KOMIIOHEHT SBJISAETCA KPUTUIECKUM JJIsl ITPUMEHEHU S
puMaHoBO# reoMerpu3aiuu ypaBuenuit Makcsema. g onpenenenus obractu npu-
MEHUMOCTHA PUMAaHOBO! T'€OMETPHU3AIUU PACCMOTPEHBI HAnb0JIee PACIIPOCTPAHEHHDBIE
BapUAHTHI JIEKTPOMATHUTHBIX cpefl. [[JsT HUX BBIMCAHA CTPYKTYPa IUIJIEKTPUYe-
CKOY M MarHUTHOH IIPOHUIIAEMOCTEN, OIIPEJICJICHO KOJIMYECTBO 3HAYAIIUX KOMIIOHEHT
JJId 9TUX TEeH30POB. I_IOKaBaHO7 9TO IMPaKTUYIECKN BCE€ PACCMOTPEHHBIC TUIILI JICK-
TPOMATHUTHBIX CPEJl TPEOYIOT MEHee JIeCSTU ITapaMeTPOB Jjis OIUCAHUS TEH30pa
mponuraemocreii. 1Ipu pumanosoit reomerpusanuu ypasHenuit Makcsenna Kpu-
TUYECKUM ABJISETCs TPebOBaHUE €IMHUYHOrO MMIeanca cpeiabl. OOoiTH JaHHOe
orpaHUYeHre BO3MOXKHO ITyTEM IIepexoia OT MOJHbIX ypaBHennit MakcBesura K mipu-
OJIM>KEHUIO TeOMeTpUYdecKoil onrtuku. llokazaHo, 9T0 puMaHOBA TeOMETPHU3AIUS
ypaBuenuit MakcBesa npuMeHrMAa it OOJBIIIOTO Pa3HOOOpa3us THUIIOB CPEIbI,
HO TOJIBKO JIJIf IPUOJINKEHIS NeOMETPUYECKON OIITHKH.

KiaroueBbie cioBa: reoMeTpusalnud ypaBHeHI/IfI MaKCBe.TLHa, TEH30pD IIPpOHUIlaeMO-
CTeI'?’I7 JAUJICEKTPpUYIECKad IMTPOHUIIAEMOCTb, MarHuTHad ITPOHUITIA€MOCTb, reOMeTpu4ie-
CKad OIITHUKAQ



