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Abstract. It is generally accepted that the main obstacle to the application of
Riemannian geometrization of Maxwell’s equations is an insufficient number of
parameters defining a geometrized medium. In the classical description of the
equations of electrodynamics in the medium, a constitutive tensor with 20 components
is used. With Riemannian geometrization, the constitutive tensor is constructed from
a Riemannian metric tensor having 10 components. It is assumed that this discrepancy
prevents the application of Riemannian geometrization of Maxwell’s equations. It is
necessary to study the scope of applicability of the Riemannian geometrization of
Maxwell’s equations. To determine whether the lack of components is really critical
for the application of Riemannian geometrization. To determine the applicability of
Riemannian geometrization, the most common variants of electromagnetic media
are considered. The structure of the dielectric and magnetic permittivity is written
out for them, the number of significant components for these tensors is determined.
Practically all the considered types of electromagnetic media require less than ten
parameters to describe the constitutive tensor. In the Riemannian geometrization of
Maxwell’s equations, the requirement of a single impedance of the medium is critical.
It is possible to circumvent this limitation by moving from the complete Maxwell’s
equations to the approximation of geometric optics. The Riemannian geometrization
of Maxwell’s equations is applicable to a wide variety of media types, but only for
approximating geometric optics.

Key words and phrases: geometrization of Maxwell’s equations, permeability
tensor, dielectric constant, magnetic permeability, geometric optics

1. Introduction

With the advent of the model Cayley–Klein [1, 2] the formalism of non-
Euclidean spaces became used to describe physical models. This approach
received popularity after the creation Einstein’s general theory of relativ-
ity [3]. At the same time, there were attempts to geometrize Maxwell’s
electrodynamics [4–6].
However, this approach remained quite marginal until the golden age

of theory of relativity [7, 8].
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This direction became popular again in the new century and gave rise to
the development of transformational optics [9–12]. However, it became visible
that Riemannian geometry is insufficient for geometrization of Maxwell’s
equations [13, 14].
In this paper, the author expects to figure out what could hinder the

application of Riemannian geometrization of Maxwell’s equations and what is
the scope of its applicability. To do this, we consider different electromagnetic
media options and the limitations imposed by them are studied for possible
geometrizations.

1.1. Article structure

In paragraph 1.2 we provide basic notation and conventions used in the
article. In the section 1.3 we consider the limitation only for the case of
a local linear medium. In the section 2 the constitutive tensor is formulated
in a six-dimensional space. This is being done for clarity, to represent it
as a matrix 6 × 6. In the section 3 the reader is reminded of Riemannian
geometrization of Maxwell’s equations.

1.2. Notations and conventions

1. Greek indexes (𝛼, 𝛽) will relate to a four-dimensional space and in

a component form will have the following values: 𝛼 = 0, 3.
2. Latin indexes from the middle of the alphabet (𝑖, 𝑗, 𝑘) will refer to

three-dimensional space and in component form will have the following

values: 𝑖 = 1, 3.
3. In uppercase Latin letters denote the indices of the six-dimensional spaces:

𝐼 = 1, 6.
4. To write the equations of electrodynamics in the work is used symmetrical

CGS system [15].

1.3. The variations of physical environment

It is possible to consider several options for setting the constitutive laws
depending on the medium (see Table 1).

Table 1

Constitutive laws depending on the medium

Medium type Local case Non-local case

Linear medium 𝐺𝛼𝛽 = 𝜆𝛼𝛽𝛾𝛿𝐹𝛾𝛿 𝐺(𝑥) = ∫ 𝜆(𝑥, 𝑠) ∧ 𝐹(𝑠) d𝑠

Non-linear medium 𝐺𝛼𝛽 = 𝜆(𝐹𝛾𝛿) 𝐺(𝑥) = ∫ 𝜆(𝑥, 𝐹(𝑠)) d𝑠

Tensors 𝐹𝛼𝛽 and 𝐺𝛼𝛽 have a sense of curvature in cotangent (𝑇 ∗𝑋) and

tangent (𝑇 𝑋) bundles.



A.V. Korolkova, Constitutive tensor in the geometrized Maxwell theory 307

In the linear local case, the tensors 𝐹𝛼𝛽 and 𝐺𝛼𝛽 are connected using fourth
rang tensors.

In the linear non-local case, the connection is carried out using an integral
kernel. However, in the presence of translational symmetry, the linear nonlocal
case is reduced to the linear local case using the Fourier transform [16]. The
non-local linear relationship between 𝐹 and 𝐺 looks in this case as follows:

𝐺(𝑥) = ∫ 𝜆(𝑥, 𝑠) ∧ 𝐹(𝑠) d𝑠 . (1)

In the case of translational invariance 𝜆(𝑥, 𝑠) = 𝜆(𝑥 − 𝑠) the relationship
between 𝐹 and 𝐺 will have the form:

𝐺𝛼𝛽(𝜔, 𝑘𝑖) = 𝜆𝛼𝛽𝛾𝛿(𝜔, 𝑘𝑖)𝐹𝛾𝛿(𝜔, 𝑘𝑖). (2)

In the case of a nonlinear medium, it is assumed that through the lin-
earization procedure, a tensor term similar to the local linear case can be
distinguished in it.

Thus, it seems sufficient to consider only the local linear case.

2. Structure of the constitutive tensor

2.1. Representation of the constitutive tensor in space ℝ4

The constitutive tensor 𝜆𝛼𝛽
𝛾𝛿 is a 4-tensor. We assume that the mapping

𝜆 ∶ Λ2𝑀 → Λ2𝑀 is linear and local. Then it can be represented in the
following form:

𝐺𝛼𝛽 = 𝜆𝛼𝛽𝛾𝛿𝐹𝛾𝛿. (3)

Here 𝜆𝛼𝛽𝛾𝛿 is a constitutive tensor containing information about both
permeability and permittivity and electromagnetic connection [4–6, 17]. It

can be seen that 𝜆𝛼𝛽𝛾𝛿 has the following symmetry:

𝜆𝛼𝛽𝛾𝛿 = 𝜆[𝛼𝛽][𝛾𝛿].

To clarify the symmetry, the tensor 𝜆𝛼𝛽𝛾𝛿 can be represented as follows:

𝜆𝛼𝛽𝛾𝛿 = (1)𝜆𝛼𝛽𝛾𝛿 + (2)𝜆𝛼𝛽𝛾𝛿 + (3)𝜆𝛼𝛽𝛾𝛿.

The components of the tensor have the following symmetry:

(1)𝜆𝛼𝛽𝛾𝛿 = 𝜆([𝛼𝛽][𝛾𝛿]), (2)𝜆𝛼𝛽𝛾𝛿 = 𝜆[[𝛼𝛽][𝛾𝛿]], (3)𝜆𝛼𝛽𝛾𝛿 = 𝜆[𝛼𝛽𝛾𝛿].

Obviously, in this case 𝜆𝛼𝛽𝛾𝛿 has 36 independent components, (1)𝜆𝛼𝛽𝛾𝛿

has 20 independent components (principal part), (2)𝜆𝛼𝛽𝛾𝛿 has 15 independent

components (skewon), (3)𝜆𝛼𝛽𝛾𝛿 has one independent component (axion).
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We will consider only part of (1)𝜆𝛼𝛽𝛾𝛿. For this case, we write down the
material equations:

{
𝐷𝑖 = 𝜀𝑖𝑗𝐸𝑗 + (1)𝛾𝑖

𝑗𝐵𝑗,
𝐻𝑖 = (𝜇−1)

𝑖𝑗
𝐵𝑗 + (2)𝛾𝑗

𝑖 𝐸𝑗,
(4)

where 𝜀𝑖𝑗 and 𝜇𝑖𝑗 are the tensors of dielectric and magnetic permeability, (1)𝛾𝑖
𝑗

and (2)𝛾𝑖
𝑗 are cross terms.

Taking into account the structure of the tensors 𝐹𝛼𝛽 and 𝐺𝛼𝛽, as well as
the constraints equations, we write:

𝐹0𝑖 = 𝐸𝑖, 𝐺0𝑖 = −𝐷𝑖,
𝐺𝑖𝑗 = −𝑒𝑖𝑗𝑘𝐻𝑘, 𝐹𝑖𝑗 = −𝑒𝑖𝑗𝑘𝐵𝑘.

(5)

Here the alternating tensor is denoted by 𝑒𝑖𝑗𝑘.

2.2. Representation of constitutive tensors in 𝐴2(ℝ4) and 𝐴2(ℝ4∗)
spaces

Consider vector spaces 𝐴2(ℝ4∗) and 𝐴2(ℝ4) as typical layers of bundles
Λ2𝑀 and Λ2𝑀 and we will make the transition to a six-dimensional space.

Basis 𝐴2(ℝ4) in this case has the form 𝜁𝐼, 𝐼 = 1, … , 6, and the basis 𝐴2(ℝ4∗)
consists of components 𝜁𝐼, 𝐼 = 1, … , 6. Let 𝛿𝜇, 𝜇 = 0, … , 3 be the basis in

ℝ4, and 𝛿𝜇, 𝜇 = 0, … , 3 — the basis in ℝ4∗. Define the basis 𝜁𝐼 in 𝐴2(ℝ4) as
follows:

𝜁𝑖 = 𝛿0 ∧ 𝛿𝑖, 𝜁𝑖+3 = 1
2

𝜀𝑖𝑗𝑘𝛿𝑗 ∧ 𝛿𝑘, 𝑖, 𝑗, 𝑘 = 1, … , 3, (6)

and basis 𝜁𝐼 in 𝐴2(ℝ4∗) in form

𝜁𝑖 = 𝛿0 ∧ 𝛿𝑖, 𝜁𝑖+3 = 1
2

𝜀𝑖𝑗𝑘𝛿𝑗 ∧ 𝛿𝑘, 𝑖, 𝑗, 𝑘 = 1, … , 3. (7)

Then the intensity of the electromagnetic field 𝐹 can be represented as
follows:

𝐹 = 𝐸𝑖𝜁𝑖 + 𝐵𝑖𝜁𝑖+3. (8)

We split the tensor 𝜆𝐼𝐽 such as

𝜆𝐼𝐽 = (1)𝜆𝐼𝐽 + (2)𝜆𝐼𝐽 + (3)𝜆𝐼𝐽.

The components of the tensor 𝜆𝐼𝐽 have the following symmetry:

(1)𝜆𝐼𝐽 = 𝜆(𝐼𝐽) − 𝜆𝐾
𝐾

̃𝐼𝐼𝐽, (2)𝜆𝐼𝐽 = 𝜆[𝐼𝐽], (3)𝜆𝐼𝐽 = 𝜆𝐾
𝐾

̃𝐼𝐼𝐽,

̃𝐼 ∶= (
0 𝐼 𝑖𝑗

𝐼 𝑖𝑗 0
).
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We indicate the number of components in these tensors:

— (1)𝜆𝐼𝐽 has 20 components;

— (2)𝜆𝐼𝐽 has 15 components;

— (3)𝜆𝐼𝐽 has 1 component.

Let’s write out the main part of the constitutive tensor:

(1)𝜆𝐼𝐽 = (−𝜀𝑖𝑗 (1)𝛾𝑖
𝑗

(2)𝛾𝑗
𝑖 ̃𝜇𝑖𝑗

), ̃𝜇𝑖𝑗 ∶= (𝜇−1)
𝑖𝑗

. (9)

Later in this article we will omit the left index of the main part of the con-
stitutive tensor.

3. Riemannian geometrization of Maxwell’s equations

We assume that the bundle has the structure of a Riemannian manifold.
In this case, we can introduce a Riemannian metric on the manifold, which:

— is symmetric: 𝑔𝛼𝛽 ∶= 𝑔(𝛼𝛽);

— is consistent with сonnection: ∇𝛼𝑔𝛼𝛽 ∶= 0.
This statement is equivalent to the fact that we use connection Levi–Civitas.
We introduce an effective metric based on the bundle 𝑔𝛼𝛽. Then the metric

is induced into layers and the Lagrangian of the electromagnetic field can be
written in the form of the Yang–Mills Lagrangian:

𝐿 = − 1
16𝜋𝑐

𝐺𝛼𝛽𝐹𝛼𝛽 − 1
𝑐2 𝐴𝛼𝑗𝛼√−𝑔,

which is equivalent to the following entry

𝐿 = − 1
16𝜋𝑐

𝑔𝛼𝛾𝑔𝛽𝛿𝐹𝛼𝛽𝐹𝛾𝛿
√−𝑔 − 1

𝑐2 𝐴𝛼𝑗𝛼√−𝑔.

Let’s construct the tensor 𝜆𝛼𝛽𝛾𝛿 as follows:

𝜆𝛼𝛽𝛾𝛿 = √−𝑔𝑔𝛼𝛽𝑔𝛾𝛿 =
√−𝑔

2
(𝑔𝛼𝛾𝑔𝛽𝛿 + 𝑔𝛼𝛿𝑔𝛽𝛾) +

√−𝑔
2

(𝑔𝛼𝛾𝑔𝛽𝛿 − 𝑔𝛼𝛿𝑔𝛽𝛾).

Then the material equations will take the following form (for symmetry
reasons):

𝐺𝛼𝛽 =
√−𝑔

2
(𝑔𝛼𝛾𝑔𝛽𝛿 − 𝑔𝛼𝛿𝑔𝛽𝛾)𝐹𝛾𝛿.

In the case of writing by components, we get the following expressions:

𝐺0𝑖 =
√−𝑔

2
(𝑔00𝑔𝑖𝑗–𝑔0𝑖𝑔0𝑗)𝐹0𝑗 +

√−𝑔
2

(𝑔0𝑗𝑔𝑖𝑘–𝑔0𝑘𝑔𝑖𝑗)𝐹𝑗𝑘,

𝐺𝑖𝑗 =
√−𝑔

2
(𝑔𝑖0𝑔𝑗𝑘–𝑔0𝑗𝑔𝑖𝑘)𝐹0𝑘 +

√−𝑔
2

(𝑔𝑖𝑘𝑔𝑗𝑙–𝑔𝑖𝑙𝑔𝑗𝑘)𝐹𝑘𝑙.
(10)
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Formally, it is possible to write out an expression for the permittivity:

𝜀𝑖𝑗 = −√−𝑔(𝑔00𝑔𝑖𝑗–𝑔0𝑖𝑔0𝑗) (11)

and the expression for magnetic permeability:

(𝜇−1)𝑖𝑗 = √−𝑔𝜀𝑚𝑛𝑖𝜀𝑘𝑙𝑗𝑔𝑛𝑘𝑔𝑚𝑙. (12)

Thus the geometrized connection equations in coordinates have the following
form:

𝐷𝑖 = 𝜀𝑖𝑗𝐸𝑗 + (1)𝛾𝑖
𝑗𝐵𝑗,

𝐻𝑖 = (𝜇−1)𝑖𝑗𝐵𝑗 + (2)𝛾𝑗
𝑖 𝐸𝑗,

𝜀𝑖𝑗 = −√−𝑔(𝑔00𝑔𝑖𝑗–𝑔0𝑖𝑔0𝑗),
(𝜇−1)𝑖𝑗 = √−𝑔𝜀𝑚𝑛𝑖𝜀𝑘𝑙𝑗𝑔𝑛𝑘𝑔𝑚𝑙,
(1)𝛾𝑖

𝑗 = (2)𝛾𝑖
𝑗 = √−𝑔𝜀𝑘𝑙𝑗𝑔0𝑘𝑔𝑖𝑙.

(13)

Statement. Let the space be represented as ℝ4 = ℝ1 × ℝ3. Then in
Riemannian geometrization, under the condition 𝑔0𝑖 = 0, the equality holds

𝜀𝑖𝑗 = 𝜇𝑖𝑗. (14)

Proof. Note that Δ𝑖𝑗 = 𝜀𝑚𝑛𝑖𝜀𝑘𝑙𝑗𝑔𝑛𝑘𝑔𝑚𝑙 is an algebraic complement for 𝑔𝑖𝑗.
Then

𝜀𝑖𝑗(𝜇−1)𝑖𝑝 = −√−𝑔𝑔00𝑔𝑖𝑗√−𝑔𝜀𝑚𝑛𝑖𝜀𝑘𝑙𝑝𝑔𝑛𝑘𝑔𝑚𝑙 = 𝑔𝑔00 det{𝑔𝑘𝑙}𝛿𝑗
𝑝 = 𝛿𝑗

𝑝.

It follows that 𝜀𝑖𝑗 = 𝜇𝑖𝑗. �

Then the geometrized constitutive tensor has the following form:

𝜆𝐼𝐽 = (
−𝜀𝑖𝑗 (1)𝛾𝑖

𝑗
(2)𝛾𝑗

𝑖 (𝜀−1)
𝑖𝑗

). (15)

Consider the limitations of this approach:

1. Since the metric tensor 𝑔𝑖𝑗 has 10 components, the geometrized constitu-

tive tensor cannot have more than 10 independent components.
2. Given the constitutive equations, only media with a single impedance

can be considered.

However, the geometrized version can be used to approximate geometric
optics when the dielectric 𝜀𝑖𝑗 and magnetic 𝜇𝑖𝑗 permeability are not used

separately. Instead, in the approximation of geometric optics, the refractive
index of the medium is used:

𝑛𝑖
𝑗 = √𝜀𝑖

𝑘𝜇𝑘
𝑗 . (16)
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In this case, the geometrized constitutive tensor has the following form:

𝜆𝐼𝐽 = ⎛⎜
⎝

−(
√

𝑛)𝑖𝑗 (1)𝛾𝑖
𝑗

(2)𝛾𝑗
𝑖 ( 1√

𝑛)
𝑖𝑗

⎞⎟
⎠

. (17)

4. Examples of media

4.1. Linear isotropic media

The most elementary electromagnetic media are linear isotropic media,
such as classical vacuum. The term isotropic refers to invariance with respect
to spatial rotations in the selected frame of reference. The rotation of any
closed system as a whole does not change its physical properties. There is
no particular direction in space with respect to which there is any special
symmetry. All directions are equal. The electromagnetic properties of the
medium do not depend on the direction. In this case, the elements of the
tensor 𝜆𝐼𝐽 are represented as:

𝜀𝑖𝑗 = 𝜀(𝑥𝑖)𝛿𝑖𝑗, ̃𝜇𝑖𝑗 ∶= (𝜇−1(𝑥𝑖))𝛿𝑖𝑗, (1)𝛾𝑖
𝑗 = 0, (2)𝛾𝑗

𝑖 = 0

or in matrix form:

𝜆𝐼𝐽 = (−𝜀(𝑥𝑖)𝛿𝑖𝑗 0
0 𝜇−1(𝑥𝑖)𝛿𝑖𝑗

). (18)

In this case, the permeability matrix contains only two independent compo-
nents in the laboratory reference frame. Function 𝜀(𝑥𝑖) is called the dielectric
constant of the medium. Function 𝜇(𝑥𝑖) is called the magnetic permeability
of the medium. When these functions are constant in the selected frame of
reference, the medium is called homogeneous.
The classical electromagnetic vacuum is assumed to be linear, isotropic and

homogeneous. Its dielectric constant (in the SI system) is denoted by 𝜀0, and
the magnetic permeability is denoted by 𝜇0.
The application of a geometrized constitutive tensor is possible in the

approximation of geometric optics. In this case 𝜆𝐼𝐽 will have the form:

𝜆𝐼𝐽 = (
−√𝑛(𝑥𝑖)𝛿𝑖𝑗 0

0 1
√𝑛(𝑥𝑖)𝛿𝑖𝑗

). (19)

In this case, the permeability matrix contains only one independent com-
ponent.

4.2. Linear optical medium

It is assumed that the permittivity 𝜀𝑖𝑗 can be inhomogeneous and (or)
anisotropic. Heterogeneity is most common when matrix components are
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piecewise constant and undergo discontinuities at the interface of heteroge-
neous media. Since the magnetic permeability of optical media is neglected,
they are considered to be dielectric media:

(𝜇−1)
𝑖𝑗

= 𝛿𝑖𝑗. (20)

If the permittivity 𝜀𝑖𝑗 is anisotropic, but at the same time symmetrical,
then it is possible to determine the main reference point in which it takes the
form of a diagonal matrix:

𝜀𝑖𝑗 ∶= diag(𝜀𝑥, 𝜀𝑦, 𝜀𝑧). (21)

The diagonal elements represented by the main permittivity are in this
case the eigenvalues of the matrix

𝜀𝑖
𝑗 = 𝜀𝑖𝑘𝑔𝑗𝑘. (22)

Since the matrix 𝜀𝑖𝑗 is symmetric, then the eigenvalues exist and are valid,
and the eigenvectors are orthogonal.
Media variants:

— when all eigenvalues are equal, the medium is called isotropic;
— when two eigenvalues are equal, and the third is different from them, the

medium is called uniaxial anisotropic;
— when all three eigenvalues are unequal, the medium is called biaxial

anisotropic.

More generally, the magnetic permeability is not singular:

(𝜇−1)
𝑖𝑗

= diag((𝜇−1)𝑥, (𝜇−1)𝑦, (𝜇−1)𝑧), (23)

and 𝜆𝐼𝐽 can be represented as a matrix:

𝜆𝐼𝐽 = diag (−𝜀𝑥(𝑥𝑖), −𝜀𝑦(𝑥𝑖), −𝜀𝑧(𝑥𝑖), 𝜇−1
𝑥 (𝑥𝑖), 𝜇−1

𝑦 (𝑥𝑖), 𝜇−1
𝑧 (𝑥𝑖)). (24)

The application of a geometrized constitutive tensor is possible in the

approximation of geometric optics. Then the tensor 𝜆𝐼𝐽 will take the form:

𝜆𝐼𝐽 =diag
⎛⎜⎜
⎝

−√𝑛𝑥(𝑥𝑖), −√𝑛𝑦(𝑥𝑖), −√𝑛𝑧(𝑥𝑖), 1
√𝑛𝑥(𝑥𝑖)

, 1

√𝑛𝑦(𝑥𝑖)
, 1
√𝑛𝑧(𝑥𝑖)

⎞⎟⎟
⎠

.

In this case, the permeability matrix contains three independent compo-
nents.

4.3. Bi-isotropic media

The special properties of these media are due to the connection between
electric and magnetic fields, which can be described by some defining relations.
Bi-isotropic media can change the polarization of light either by refraction
or by transmission [18]. These media are similar to isotropic media, but the
cross terms are not zero.
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The coupling equations in the case of an isotropic medium have the following
form:

𝐷𝑖 = 𝜀𝑔𝑖𝑗𝐸𝑗 + 𝛾𝑔𝑖
𝑗𝐵𝑗,

𝐻𝑖 = (𝜇−1)𝑔𝑖𝑗𝐵𝑗 + 𝛾𝑔𝑗
𝑖 𝐸𝑗.

(25)

The elements of the tensor 𝜆𝐼𝐽 have the form:

𝜀𝑖𝑗 = 𝜀(𝑥𝑖)𝑔𝑖𝑗, (𝜇−1)
𝑖𝑗

∶= (𝜇−1(𝑥𝑖))𝑔𝑖𝑗, (1)𝛾𝑖
𝑗 = 𝛾(𝑥𝑖)𝑔𝑖

𝑗, (2)𝛾𝑗
𝑖 = 𝛾(𝑥𝑖)𝑔𝑗

𝑖 .

In matrix form, the tensor 𝜆𝐼𝐽 for a bi-isotropic medium will have the form:

𝜆𝐼𝐽 = (−𝜀(𝑥𝑖)𝑔𝑖𝑗 𝛾(𝑥𝑖)𝑔𝑖
𝑗

𝛾(𝑥𝑖)𝑔𝑗
𝑖 𝜇−1(𝑥𝑖)𝑔𝑖𝑗

). (26)

For the case of geometric optics, the tensor 𝜆𝐼𝐽 for a bi-isotropic medium
will take the form:

𝜆𝐼𝐽 = (−√𝑛(𝑥𝑖)𝑔𝑖𝑗 𝛾(𝑥𝑖)𝑔𝑖
𝑗

𝛾(𝑥𝑖)𝑔𝑗
𝑖 𝑛−1/2(𝑥𝑖)𝑔𝑖𝑗

). (27)

The permeability matrix in this case contains two independent components.

4.4. Bi-anisotropic media

In bi-anisotropic media, the dielectric constant, magnetic permeability, and
coupling coefficient are complete tensors. In this case , the coupling equations
have the following form:

𝐷𝑖 = 𝜀𝑖𝑗𝐸𝑗 + (1)𝛾𝑖
𝑗𝐵𝑗,

𝐻𝑖 = (𝜇−1)𝑖𝑗𝐵𝑗 + (2)𝛾𝑗
𝑖 𝐸𝑗.

(28)

The elements of the tensor 𝜆𝐼𝐽 take the form

𝜀𝑖𝑗 ∶= 𝜀𝑖𝑗(𝑥𝑖), (𝜇−1)
𝑖𝑗

∶= (𝜇−1(𝑥𝑖))
𝑖𝑗

, (1)𝛾𝑖
𝑗 = 𝛾𝑖

𝑗(𝑥𝑖), (2)𝛾𝑗
𝑖 = 𝛾𝑗

𝑖 (𝑥𝑖).

In matrix form, the tensor 𝜆𝐼𝐽 for a bi-isotropic medium has the form:

𝜆𝐼𝐽 = (−𝜀𝑖𝑗(𝑥𝑖) 𝛾𝑖
𝑗(𝑥𝑖)

𝛾𝑗
𝑖 (𝑥𝑖) (𝜇−1)𝑖𝑗(𝑥𝑖)

). (29)

For the case of geometric optics, the tensor 𝜆𝐼𝐽 for a bi-anisotropic medium
is represented as:

𝜆𝐼𝐽 = ⎛⎜
⎝

−(
√

𝑛)𝑖𝑗(𝑥𝑖) 𝛾𝑖
𝑗(𝑥𝑖)

𝛾𝑗
𝑖 (𝑥𝑖) (𝑛−1/2)

𝑖𝑗
(𝑥𝑖)

⎞⎟
⎠

. (30)
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In this case, the permeability matrix contains twenty independent compo-
nents.
Thus, the following conclusions can be drawn:

— in most practical cases, it is necessary to take into account less than ten

components of the tensor 𝜆𝐼𝐽;
— for the case of an anisotropic medium, more than ten components of the

constitutive tensor should be taken into account.

5. Conclusion

When applying the Riemannian geometrization of Maxwell’s equations, two
significant obstacles arise.
It is usually considered that the main obstacle to the application of Rie-

mannian geometrization of Maxwell’s equations is an insufficient number of
parameters defining a geometrized medium. It is known that in the classical
description of the equations of electrodynamics in the medium, a constitu-
tive tensor with 20 components is used, and in Riemannian geometrization,
the constitutive tensor is constructed from a Riemannian metric tensor with
only 10 components. Thus, most authors point out that the main limitation
of the application of Maxwell’s geometrized theory is the number of free com-
ponents in the constitutive tensor. However, this is not the case. It is enough
to consider the most popular variants of electromagnetic media to make sure
that in practically used cases the number of components is significantly less
than ten.
Another limitation is that Maxwell’s geometrized theory in the case of

Riemannian geometrization requires that the medium has a unit impedance.
This restriction is too strong in the general case. It seems that the geometrized
Maxwell theory in the case of Riemannian geometrization is not applicable in
the case of the complete Maxwell theory and in the case of the approximation
of the wave equation. But this limitation can be circumvented by switching
to the approximation of geometric optics, since in this case the impedance of
the medium is not taken into account.
Thus, we can conclude that Maxwell’s geometrized theory in the case

of Riemannian geometrization is applicable to the description of Maxwell’s
theory, but mainly for the case of approximation of geometric optics.
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Тензор проницаемостей в геометризованной теории
Максвелла

А. В. Королькова

Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Аннотация. Считается, что основным препятствием к применению римано-
вой геометризации уравнений Максвелла является недостаточное количество
параметров, задающих геометризованную среду. При классическом описании
уравнений электродинамики в среде используется тензор проницаемостей, име-
ющий 20 компонент. При римановой геометризации тензор проницаемостей
строится из риманового метрического тензора, имеющего только 10 компонент.
Предполагается, что данное несоответствие мешает применению римановой
геометризации уравнений Максвелла. В статье предложено определить, дей-
ствительно ли недостаток компонент является критическим для применения
римановой геометризации уравнений Максвелла. Для определения области при-
менимости римановой геометризации рассмотрены наиболее распространённые
варианты электромагнитных сред. Для них выписана структура диэлектриче-
ской и магнитной проницаемостей, определено количество значащих компонент
для этих тензоров. Показано, что практически все рассмотренные типы элек-
тромагнитных сред требуют менее десяти параметров для описания тензора
проницаемостей. При римановой геометризации уравнений Максвелла кри-
тическим является требование единичного импеданса среды. Обойти данное
ограничение возможно путём перехода от полных уравнений Максвелла к при-
ближению геометрической оптики. Показано, что риманова геометризация
уравнений Максвелла применима для большого разнообразия типов среды,
но только для приближения геометрической оптики.

Ключевые слова: геометризация уравнений Максвелла, тензор проницаемо-
стей, диэлектрическая проницаемость, магнитная проницаемость, геометриче-
ская оптика


