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Abstract. The article considers the application of the method of continued boundary
conditions to the two-dimensional problem of diffraction of electromagnetic waves by
a dielectric body with a cross section of complex geometry and to the problem of
diffraction by a Janus sphere in the form of a permeable sphere partially covered by an
absolutely soft or an absolutely rigid spherical screen. The results of calculating the
scattering pattern for a large set of bodies of different geometry, including fractal-like
scatterers, are obtained. It is illustrated that in the case of a smooth body boundary,
the algorithm based on the Fredholm equations of the 1st kind makes it possible
to obtain results with greater accuracy than for equations of the 2nd kind. The
correctness of the method was confirmed by verifying the implementation of the
optical theorem for various bodies and by comparing with the results of calculations
obtained by other methods.

Key words and phrases: the method of continued boundary conditions, diffraction
of waves on bodies of complex geometry, Janus sphere

1. Introduction

In the modern theory of diffraction, there is a growing need for the effective
solution of increasingly complex problems, the construction of adequate
mathematical models for a wide range of phenomena and processes. This, in
turn, requires the development of increasingly universal methods for solving
diffraction problems.
In this paper, the method of continued boundary conditions (MCBC) [1] is

considered. In MCBC, the surface on which the observation point is chosen,
denoted by 𝑆𝛿, is located outside the scatterer at some sufficiently small
distance 𝛿 from its boundary 𝑆, which is the carrier of the (auxiliary) current
and over which integration is carried out. Due to the analyticity of the
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wave field, the boundary condition will be approximately satisfied on the
surface 𝑆𝛿, and as a result, the diffraction problem is solved in an approximate
formulation.
The advantages of MCBC are its versatility and simplicity. Moreover, the

universality of the MCBC manifests itself, firstly, in the absence of restrictions
on the geometry of the scatterer (including it is applicable both for scatterers
with border breaks and for thin screens), and secondly, in the possibility of
reducing the boundary value problem to Fredholm integral equations of the
1st, and of the 2nd kind [2]. In addition, when solving problems of diffraction
on thin screens with the help of MCBC, it is easy to reduce the original
boundary value problem to integral equations, both in the case of E- and
in the case of H-polarization of the incident field (or problems of diffraction
by bodies, on the boundary of which both the Dirichlet conditions and the
Neumann conditions are satisfied). This is much more difficult to do, for
example, when using the method of current integral equations. Another
advantage of the MCBC is the ability to use various basis functions when
solving the corresponding integral equations.
However, MCBC is an approximate approach, and computational algorithms

based on MCBC have a lower convergence rate than, for example, algorithms
based on discrete source method (in cases where the latter is applicable). At
the same time, it is possible to improve the accuracy when using various basic
functions (for example, splines) within the framework of the MCBC.

As an example of the application of MCBC, the problem of wave diffraction
by a dielectric body of complex geometry is considered, which is very relevant
and remains relatively poorly studied due to the complexity of its solution.
The results of modeling the characteristics of wave scattering by dielectric
bodies are of great interest in such areas as, for example, the optics of
inhomogeneous media, laser flaw detection, the design of absorbing coatings,
etc. [3].

The problem of diffraction on the Janus sphere in the form of a penetra-
ble sphere partially covered by an absolutely soft or absolutely rigid spherical
screen is also considered. Janus particles are of great interest in antenna en-
gineering, medicine, and biology [4, 5]. Despite the practical significance of
Janus particles, the scattering of waves by such structures has been stud-
ied rather poorly. There are a number of works in the literature devoted
to both acoustic and electromagnetic problems of diffraction on the Janus
sphere [6–9].

2. Solution of the problem of wave diffraction
by a dielectric body of complex geometry

Let primary electromagnetic field E0,H0, be incident on an infinitely long
magnetodielectric cylinder with a generator parallel to axis 𝑂𝑧 and guide 𝑆.
The geometry of the problem is shown in figure 1. Consider the case of
E-polarization, when electric field intensity vector E has only one compo-
nent 𝐸𝑧 (below denoted by the letter 𝑈− or 𝑈+) parallel to the cylindrical
body generator. The following coupling conditions will then take place at
the boundary of the scatterer:
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𝑈+∣
𝑆

= 𝑈−|𝑆 ,
𝜕𝑈+
𝜕𝑛

∣
𝑆

= 𝜅𝜕𝑈−
𝜕𝑛

∣
𝑆

, (1)

where 𝑈+ is the field inside the cylinder; 𝑈− = 𝑈0 +𝑈1 is the full field outside

the body, where 𝑈0 is falling and 𝑈1 is scattered (secondary) fields; 𝜕/𝜕𝑛 is
differentiation in the direction of the normal internal to 𝑆; and 𝜅 = 𝜇𝑖/𝜇𝑒,
where 𝜇𝑖 and 𝜇𝑒 are the relative magnetic permeabilities of the media inside

and outside the body, respectively. The external medium (𝐷𝑒 = ℝ2\�̄�,
�̄� = 𝐷 ∪ 𝑆, where 𝐷 is the area bounded by curve 𝑆) and the medium inside
the cylinder are assumed to be homogeneous, linear, and isotropic. At infinity,
the standard radiation conditions for the scattered field are assumed to be
met.

Figure 1. The geometry of the diffraction problem

Let us use the following representations to solve the Helmholtz equation in
regions 𝐷 and 𝐷𝑒, respectively [10]:

𝑈−(r) = 𝑈0(r) + ∫
𝑆

{𝜕𝑈−(r′)
𝜕𝑛′ 𝐺−(r; r′) − 𝑈−(r′)𝜕𝐺−(r; r′)

𝜕𝑛′ } 𝑑𝑠′,

𝑈+(r) = − ∫
𝑆

{
𝜕𝑈+(r′)

𝜕𝑛′ 𝐺+(r; r′) − 𝑈+(r′)
𝜕𝐺+(r; r′)

𝜕𝑛′ } 𝑑𝑠′,
(2)

in which 𝐺±(r; r′) = 1
4𝑖

𝐻(2)
0 (𝑘±|r− r′|) are the fundamental solutions of the

scalar Helmholtz equation in ℝ2 with material parameters of the media 𝐷𝑒
and 𝐷, respectively, 𝑘+ and 𝑘− are the wavenumbers of the medium inside and
outside the scatterer. Demanding, in accordance with MCBC, the fulfillment

of conditions Eqs. (1) to be met on contour 𝑆−
𝛿 located in ℝ2\�̄�, and on

contour 𝑆+
𝛿 located in area 𝐷 (see figure 1) using equations (2), we obtain

the following systems of the Fredholm integral equations of the first or second
kind, respectively:
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∫
𝑆

{𝜕𝑈(r′)
𝜕𝑛′ (𝐺−(r−; r′) + 𝜅𝐺+(r+; r′)) −

−𝑈(r′) (𝜕𝐺−(r−; r′)
𝜕𝑛′ +

𝜕𝐺+(r+; r′)
𝜕𝑛′ )} 𝑑𝑠′ = −𝑈0(r−),

∫
𝑆

{𝜕𝑈(r′)
𝜕𝑛′ (𝜕𝐺−(r−; r′)

𝜕𝑛
+

𝜕𝐺+(r+; r′)
𝜕𝑛

) −

−𝑈(r′) (𝜕2𝐺−(r−; r′)
𝜕𝑛𝜕𝑛′ + 1

𝜅
𝜕2𝐺+(r+; r′)

𝜕𝑛𝜕𝑛′ )} 𝑑𝑠′ = −𝜕𝑈0(r−)
𝜕𝑛

,

(3)

𝑈(r) = 1
2

𝑈0(r−) + 1
2

∫
𝑆

{𝜕𝑈(r′)
𝜕𝑛′ (𝐺−(r−; r′) − 𝜅𝐺+(r+; r′)) −

−𝑈(r′) (𝜕𝐺−(r−; r′)
𝜕𝑛′ −

𝜕𝐺+(r+; r′)
𝜕𝑛′ )} 𝑑𝑠′,

𝜕𝑈(r)
𝜕𝑛

= 1
1 + 𝜅

𝜕𝑈0(r−)
𝜕𝑛

+ 1
1 + 𝜅

∫
𝑆

{𝜕𝑈(r′)
𝜕𝑛′ (𝜕𝐺−(r−; r′)

𝜕𝑛
−

−𝜅
𝜕𝐺+(r+; r′)

𝜕𝑛
) − 𝑈(r′) (𝜕2𝐺−(r−; r′)

𝜕𝑛𝜕𝑛′ −
𝜕2𝐺+(r+; r′)

𝜕𝑛𝜕𝑛′ )} 𝑑𝑠′,

(4)

where observation points 𝑀(r±) belong to contours 𝑆±
𝛿 and point 𝑀(r) ∈ 𝑆

and it is denoted that 𝑈 = 𝑈−. Note that the contours that are separated from
𝑆 by a fairly small distance 𝛿 are most often chosen as 𝑆±

𝛿 ; i.e., equidistant
contours are considered [1, 10]. Further, to solve system of equations (3), (4),
the Krylov–Bogolyubov method is used. A generalization of the method to
the problem of diffraction by a cylindrical body located in a homogeneous
magnetodielectric half-space is given in [11].

Let us consider the results of numerical modeling. Thereafter, we will
assume that the body is irradiated by a plane wave. As an example, let us
first consider the diffraction problem on an elliptical cylinder, a cylinder with
a quadrifolium cross section, and a cylinder with a rectangular cross-section.
Figure 2 shows the angular dependences of the scattering pattern for the
corresponding geometry obtained for the following values of the problem

parameters: 𝑘𝛿 = 10−4, 𝜑0 = 0, 𝜇𝑖 = 1, 𝜀𝑖 = 4 (the material parameters of
the external medium are 𝜇𝑒 = 1, 𝜀𝑒 = 1 everywhere). The dimensions of the
bodies had the following values: the semiaxis or half the side lengths of the
rectangle 𝑘𝑎 = 5, 𝑘𝑏 = 1 and the 𝑘𝑎 = 5, 𝜏 = 0.5 parameters for the body
with a cross section in the form of a quadrifolium. The results were compared
with the patterns constructed using the modified discrete source method [10,
12]. Note that the modified discrete source method cannot be directly applied
to the problem of the diffraction on bodies that have boundary breaks, and so
the contour of the axial section of the body was approximated by a smooth
contour to solve the problem using the modified discrete source method [12].
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Note also that the modified discrete source method provides high accuracy of
calculation for bodies with a smooth border, such as ellipses, multifoil, etc.

(a) Elliptical cylinder (b) Body with a cross section in the

form of a quadrifolium

(c) Body with a rectangular cross

section

Figure 2. The angular dependence of the scattering pattern for different bodies:

(1) the modified discrete source method and (2) the continued boundary conditions method

Figures 3 and 4 illustrate the angular dependences of the scattering pattern
for the fractal-like cylinders with a cross section in the form of a Koch
snowflake and Sierpinski curve (first iteration) [13] at the problem parameters

of 𝑘𝛿 = 10−4, 𝜇𝑖 = 1, 𝜀𝑖 = 4. The maximum cross-sectional size of a body
with a cross section in the form of the Koch snowflake and a body with a cross
section in the form of the Sierpinski curve on the 𝑥 axis was 𝑘𝐿 = 10. Two
different angles of incidence 𝜑0 = 0 and 𝜑0 = 45∘ were considered. As follows
from the figures for the geometry under study, the maximum points of the
angular dependences of the scattering pattern roughly coincide with the angles
of incidence of the plane wave. It can also be seen that the dependences of
the pattern for both a body with a section in the form of the Koch snowflake
and a body with a section in the form of the Sierpinski curve have quite large
side lobes.

Figure 3. The angular dependence

of the scattering pattern for a body with

a cross section in the form of a Koch

snowflake. The angle of incidence of

the wave (1) 𝜑0 = 0 and (2) 𝜑0 = 45∘

Figure 4. The angular dependence

of the scattering pattern for a body with

a cross section in the form of a Sierpinski

curve. The angle of incidence of the wave

(1) 𝜑0 = 0 and (2) 𝜑0 = 45∘
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Table 1 shows the differences in the scattering pattern modules of the
specified geometry obtained by two methods: using the modified discrete
source method and the continued boundary conditions method. As can be
seen from the table 1, the difference in results decreases as the number of
basic functions used increases. It also follows from the given data that for
bodies with a smooth boundary, the use of the Fredholm equations of the 1st
kind is more preferable, due to faster convergence. In the case of a body with
a rectangular section, the use of Fredholm equations of the 2nd kind gives
better results.

Table 1

Comparison of the results obtained using the modified discrete source method

and the continued boundary conditions method

N

System of integral equations

of the first kind

System of integral equations

of the second kind

absolute error relative error absolute error relative error

Diffraction on an elliptical cylinder

48 1.295⋅10-2 2.038% 1.453⋅10-1 24.297%

96 1.904⋅10-3 0.230% 4.183⋅10-2 7.238%

192 6.096⋅10-4 0.067% 1.144⋅10-2 2.003%

288 5.834⋅10-4 0.075% 5.539⋅10-3 0.977%

384 5.607⋅10-4 0.075% 3.450⋅10-3 0.612%

Diffraction on a body with a cross section in the form of a quadrifolium

48 1.643⋅10-1 10.411% 3.836⋅10-1 21.169%

96 2.499⋅10-2 1.442% 9.462⋅10-2 5.125%

192 5.802⋅10-3 0.325% 2.534⋅10-2 1.370%

288 2.984⋅10-3 0.166% 1.143⋅10-2 0.619%

384 2.176⋅10-3 0.121% 6.474⋅10-3 0.351%

Diffraction on a body with a rectangular cross section

48 3.498⋅10-2 4.781% 5.035⋅10-2 6.795%

96 1.466⋅10-2 1.956% 1.417⋅10-2 1.715%

192 7.358⋅10-3 0.879% 4.773⋅10-3 0.466%

288 5.229⋅10-3 0.561% 3.122⋅10-3 0.248%

384 4.219⋅10-3 0.429% 2.641⋅10-3 0.208%
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3. Solution to the problem of wave diffraction
on the Janus sphere

Let us consider the mathematical formulation of the problem. Let a ho-
mogenous sphere of radius 𝑎 be covered with an infinitely thin spherical screen
𝑆 with an opening angle 2𝜃𝐽. We introduce a spherical coordinate system in
which the 𝑧 is directed along the axis of the considered body of revolution
(the Janus sphere). The geometry of the problem is depicted in figure 5.

Figure 5. Axial section of a Janus sphere

We suppose that the wavenumbers and medium densities outside and inside
the sphere are equal to 𝑘1, 𝜇1 and 𝑘2, 𝜇2, respectively. Thus, the wave field
outside and inside the sphere satisfies the homogeneous Helmholtz equations

Δ𝑈 + 𝑘2
1𝑈 = 0, 𝑟 > 𝑎,

Δ𝑈 + 𝑘2
2𝑈 = 0, 0 < 𝑟 < 𝑎,

(5)

where 𝑟 is the radial coordinate in the spherical coordinate system. For the
sake of brevity, we consider only the case of an absolutely soft spherical screen.
Then the boundary conditions on the surface of the screen have the form

𝑈∣
𝑟=𝑎, 𝜃<𝜃𝐽

= 0. (6)

At 𝜃 ∈ (𝜃𝐽, 𝜋), the matching conditions are satisfied:

[𝑈] = 0, [ 1
𝜇

𝜕𝑈
𝜕𝑟

] = 0, (7)

where 𝜇 is the density (𝜇 = 𝜇1 for 𝑟 > 𝑎, 𝜇 = 𝜇2 for 𝑟 < 𝑎) and the square
brackets indicate a jump of the corresponding quantity. We assume that the
Janus sphere is irradiated by a plane wave, which has the form

𝑈inc = exp (−𝑖𝑘1𝑟 (sin 𝜃 sin 𝜃0 cos𝜑 + cos 𝜃 cos 𝜃0)) . (8)

Here, 𝜃0 is the angle of incidence of the plane wave. The scattered field 𝑈1

satisfies the radiation condition at infinity. The total field also satisfies the
Meixner condition at the edge of the spherical screen.
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Let us apply the MCBC for solving the posed diffraction problem. For this
purpose, we represent the field outside the permeable sphere in the form

𝑈(r) = 𝑈0(r) − ∫
𝑆

𝐽(r′)𝐺(r, r′)𝑑𝑠′. (9)

Here, 𝑈0(r) is the primary field determined from the solution of the diffraction
problem on the sphere in the absence of the screen,

𝐽(r′) ≡ 𝐽(𝜃′, 𝜑′) = [ 𝜕𝑈
𝜕𝑟′ ]

𝑟=𝑎
𝜃<𝜃𝐽

.

In equations (9) 𝐺(r, r′) is the Green function of the permeable sphere; for
𝑟 > 𝑎, it has the form

𝐺 = 𝐺0 + 𝐺1, (10)

where

𝐺0 = 𝑒−𝑖𝑘1𝑅

4𝜋𝑅
, 𝑅 = |r− r′| , (11)

𝐺1 = 𝑘1
4𝜋𝑖

∞
∑
𝑛=0

(2𝑛 + 1)𝑉𝑛𝐻(2)
𝑛 (𝑘1𝑟′)𝐻(2)

𝑛 (𝑘1𝑟)𝑃𝑛(cos 𝛾), (12)

cos 𝛾 = sin 𝜃 sin 𝜃′ cos(𝜑 − 𝜑′) + cos 𝜃 cos 𝜃′, (13)

𝑉𝑛 = 𝜇12𝐽𝑛(𝑘1𝑎)𝜂𝑛(𝑘2𝑎) − 𝜂𝑛(𝑘1𝑎)𝐽𝑛(𝑘2𝑎)
𝜉𝑛(𝑘1𝑎)𝐽𝑛(𝑘2𝑎) − 𝜇12𝐻(2)

𝑛 (𝑘1𝑎)𝜂𝑛(𝑘2𝑎)
, (14)

𝜇12 = 𝜇1
𝜇2

, 𝜂𝑛(𝑥) = 𝑥𝐽 ′
𝑛(𝑥), 𝜉𝑛(𝑥) = 𝑥𝐻(2)′

𝑛 (𝑥), (15)

and 𝐽𝑛(𝑥), 𝐻(2)
𝑛 (𝑥) are the spherical Bessel and Hankel functions, respectively,

𝑃𝑛(𝑥) — Legendre polynomials. Note that the primary field outside the
sphere has the form

𝑈0(r) = 𝑈inc(r) +
∞

∑
𝑛=−∞

𝑖−𝑛(2𝑛 + 1)𝑉𝑛𝐻(2)
𝑛 (𝑘1𝑟)𝑃𝑛(cos 𝛾0), (16)

where cos 𝛾0(𝜃, 𝜑) = sin 𝜃 sin 𝜃0 cos𝜑 + cos 𝜃 cos 𝜃0.

According to the standard scheme of the MCBC, we then substitute for-
mula (9) into boundary condition (6) imposed on the auxiliary surface 𝑆𝛿
shifted by a small distance 𝛿 from the surface 𝑆 [1, 10, 14]. As a result,
the problem will be reduced to solving a two-dimensional Fredholm inte-
gral equation of the first kind, which has the following form in spherical
coordinates:

2𝜋

∫
0

𝜃𝐽

∫
0

𝐾(𝜃, 𝜑, 𝜃′, 𝜑′)𝐽(𝜃′, 𝜑′) sin 𝜃′𝑑𝜃′𝑑𝜑′ = 𝐵(𝜃, 𝜑),

𝜃 ∈ [0, 𝜃𝐽] , 𝜑 ∈ [0, 2𝜋] ,

(17)



D.V. Krysanov, Application of the method of continued boundary… 239

where 𝐾(𝜃, 𝜑, 𝜃′, 𝜑′) = 𝑎2 𝐺|𝑟′=𝑎,𝑟=𝑎+𝛿, 𝐵(𝜃, 𝜑) = 𝑈0∣
𝑟=𝑎+𝛿

.

Equation (17) was solved using a piecewise-constant approximation of an
unknown function with subsequent application of the Krylov–Bogolyubov
method. The kernel of Eq. (17) was found using the acceleration of the con-
vergence of series (12). In order to speed up the convergence of this series,
the asymptotic behavior of the n-th term of the series as 𝑛 → ∞ was distin-
guished (this quantity can be called the singular part of the Green’s function).
The singular part of the Green’s function was summarized analytically using
the generating function of the Legendre polynomials. The remaining (regular)
part of the Green’s function was a fairly fast convergent series. A detailed
derivation of the main relations, as well as the case of an absolutely rigid
screen, was considered in [15].
Let us consider results of the numerical simulation. The results of calculating

the intensity of the scattered field in the far zone for the Janus sphere were
compared with the results obtained using the T-matrix method, which are
given in [9]. The acoustic problem of diffraction was considered [9]. The
wavenumbers and densities of the media inside and outside the sphere were
equal to 𝑘1 = 1, 𝜇1 = 1 and 𝑘2 = 1.5, 𝜇2 = 1.5, respectively. Parameter 𝛿 in
using the MCBC was taken to be 10−3 in all cases. The angle of incidence
of the primary wave 𝜃0 = 0∘. Sphere radius 𝑘1𝑎 = 6. The half-opening angle
was equal to 𝜃𝐽 = 90∘. The number of collocation points along both angular
coordinates 𝑁1 = 25, 𝑁2 = 100. Figure 6 shows the angular dependences of
the scattered field intensity obtained using the T-matrix method (curve 1)
and using the proposed approach based on the MCBC (curve 2). It can be
seen from Fig. 6 that the results coincide with graphic accuracy in the case of
the Dirichlet condition. Due to the presence of the second normal derivative
of the Green’s function in the case of the Neumann condition on the screen,
the accuracy of calculating the diagram using the MCBC is somewhat lower
than in the case of the Dirichlet condition. For the considered problem, the
accuracy of the optical theorem was verified. Calculations showed that the
relative error in the fulfillment of the optical theorem did not exceed 2%.

(a) absolutely soft spherical screen (b) absolutely rigid spherical screen

Figure 6. Angular dependences of the intensity of the scattered field of a Janus sphere

in the form of a penetrable sphere partially covered with spherical screen, obtained using

the T-matrix method and using an algorithm based on MCBC
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Figure 7 depicts angular dependences of the scattered field intensity on the
opening angle of the spherical screen. Curve 1 corresponds to diffraction by
a permeable sphere not covered by a screen. Curve 6 in the figures shows
the dependences obtained for the intensity upon diffraction of a plane wave
by an absolutely soft (Fig. 7a) or absolutely rigid (Fig. 7b) sphere of the
corresponding wave size using the modified discrete source method (MDSM)
[16]. Curves 2–5 correspond to screen half-opening angles equal to 45°, 90°,
135°, and 179°. The wave size of the Janus sphere and the angle of incidence
of the wave are 𝑘1𝑎 = 6, 𝜃0 = 0. The material parameters of the media and
wavenumbers are the same as for previous figure. It can be seen from the
figure that in the case when the screen almost completely covers the sphere
(curve 5), the scattered field intensity graph coincides with the results for
a perfectly reflecting sphere, which corresponds to the physical picture of
the phenomenon under consideration. It is also seen that in all cases there
is a sharp intensity maximum in the direction of the angle of incidence of
the plane wave. In the case of a soft screen, the magnitude of the maximum
has the greatest value for 𝜃𝐽 = 179∘ (that is, when the screen degenerates
into a sphere). In the absence of a screen (that is, in the case of diffraction
by a permeable sphere), the maximum in the direction of wave incidence is
even greater (than for a covered sphere). In the backscattering direction (at
𝜃 = 180∘), there is also an intensity maximum, which takes on the largest
values at 𝜃𝐽 = 45∘ and 𝜃𝐽 = 90∘. In the case of an absolutely rigid screen,
the value of the intensity maximum in the direction of incidence of a plane
wave is much greater for 𝜃𝐽 = 45∘ compared to other screen opening angles.
The backscatter level is also maximum at 𝜃𝐽 = 45∘.

(a) Absolutely soft spherical screen (b) Absolutely rigid spherical screen

Figure 7. Angular dependences of the intensity of the scattered field of the Janus sphere

for different opening angles of a spherical screen covering it

4. Conclusions

Based on the method of continued boundary conditions, an algorithm for
solving the two-dimensional problem of plane wave diffraction by dielectric
bodies with complex cross-sectional geometry is shown. A comparison is made
with the results obtained using modified discrete source method. It is shown
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that the MCBC makes it possible to obtain the results of scattering diagram
calculations with a sufficiently high accuracy. The results of calculating the
scattering diagram for a large set of bodies of different geometry, including
fractal-like scatterers, are obtained. It is illustrated that in the case of
a smooth body boundary, the algorithm based on the Fredholm equations of
the 1st kind allows obtaining results with greater accuracy than for equations
of the 2nd kind.
An algorithm for solving the scalar diffraction problem on the Janus sphere

is shown on the basis of the MCBC. The results of calculating the intensity of
the scattered field obtained using the proposed method are compared with the
results found using the T-matrix method. It has been shown that the results
coincide well. The angular dependences of the intensity of the scattered
field for various opening angles of the reflecting screen are constructed and
studied. A significant difference is shown between the behavior of the angular
dependences of the intensity in the case of an absolutely soft and absolutely
rigid screen.
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Применение метода продолженных граничных
условий к решению задач дифракции на различных

типах частиц сложной структуры

Д. В. Крысанов

Московский технический университет связи и информатики,
ул. Авиамоторная, д. 8а, Москва, 111024, Россия

Аннотация. В статье рассмотрено применение метода продолженных граничных
условий к двумерной задаче дифракции электромагнитных волн на диэлектриче-
ском теле с поперечным сечением сложной геометрии и к задаче дифракции на
сфере Януса в виде проницаемого шара, частично покрытого абсолютно мягким
или абсолютно жёстким сферическим экраном. Получены результаты расчёта
диаграммы рассеяния для большого набора тел разной геометрии, в том числе
фракталоподобных рассеивателей. Проиллюстрировано, что в случае гладкой
границы тела алгоритм на основе уравнений Фредгольма 1-го рода позволя-
ет получать результаты с большей точностью, чем для уравнений 2-го рода.
Корректность метода подтверждена при помощи проверки выполнения оптиче-
ской теоремы для различных тел и путём сравнения с результатами расчётов,
полученных другими методами.

Ключевые слова: метод продолженных граничных условий, дифракция волн
на телах сложной геометрии, сфера Януса




