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Abstract. The work is devoted to the construction of computational algorithms im-
plementing the method of correction of thermographic images. The correction is
carried out on the basis of solving some ill-posed mixed problem for the Laplace equa-
tion in a cylindrical region of rectangular cross-section. This problem corresponds to
the problem of the analytical continuation of the stationary temperature distribution
as a harmonic function from the surface of the object under study towards the heat
sources. The cylindrical region is bounded by an arbitrary surface and plane. On
an arbitrary surface, a temperature distribution is measured (and thus is known).
It is called a thermogram and reproduces an image of the internal heat-generating
structure. On this surface, which is the boundary of the object under study, convec-
tive heat exchange with the external environment of a given temperature takes place,
which is described by Newton’s law. This is the third boundary condition, which to-
gether with the first boundary condition corresponds to the Cauchy conditions — the
boundary values of the desired function and its normal derivative. The problem is
ill-posed. In this paper, using the Tikhonov regularization method, an approximate
solution of the problem was obtained, stable with respect to the error in the Cauchy
data, and which can be used to build effective computational algorithms. The paper
considers algorithms that can significantly reduce the amount of calculations.

Key words and phrases: thermogram, ill-posed problem, Cauchy problem for the
Laplace equation, integral equation of the first kind, Tikhonov regularization method

1. Introduction

Improving the quality and information content of images obtained by
thermal imaging methods using a thermal imager that registers thermal
electromagnetic radiation from the surface of the object under study in the
infrared range by their mathematical (digital) processing is an urgent problem.
In particular, in medicine, thermal imaging has become an effective diagnostic
tool [1–4]. The image on the thermogram, which is a visualization of the
temperature distribution on the surface of the patient’s body, makes it possible
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to assess functional anomalies in the state of his internal organs. At the
same time, the image on the thermogram in some cases turns out to be
somewhat distorted due to the processes of thermal conductivity and heat
exchange. The paper proposes a method of image correction on a thermogram
within a certain mathematical model. As an adjusted thermogram, the image
of the temperature field on the plane near the density of heat sources is
considered as more accurately transmitting the image of heat sources. It
is proposed to obtain this field as a result of the continuation (similar to
the continuation of gravitational fields in geophysics problems [5]) of the
temperature distribution from the surface from which the initial thermogram
is taken. The problem under consideration is ill-posed, since small errors in
the initial data (the initial thermogram) may correspond to significant errors
in solving the inverse problem. To construct its stable approximate solution,
the Tikhonov regularization method [6] is used.

2. Mathematical model and problem statement

Let’s consider a physical and mathematical model, in which we set the task
of continuing from the boundary of the stationary temperature distribution.
The physical model is a homogeneous heat-conducting body in the form of

a rectangular cylinder, bounded by the surface 𝑆 and containing heat sources
with a time-independent density function that create a stationary temperature
distribution in the body. We associate the density function of heat sources
with the object under study. We assume that a given temperature distribution
(equal to zero) is maintained on the lateral faces of the cylinder, and on the
surface 𝑆 there is convective heat exchange with the external environment of
temperature 𝑈0, described by Newton’s law, according to which the density
of the heat flux at the point of the surface 𝑆 is directly proportional to the
temperature difference inside and outside.
Let’s move on to the mathematical model. In a rectangular cylinder

𝐷∞ = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, −∞ < 𝑧 < ∞} ⊂ ℝ3 (1)

consider a cylindrical region

𝐷(𝐹, ∞) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝐹 (𝑥, 𝑦) < 𝑧 < ∞}, (2)

limited by the surface

𝑆 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝐹(𝑥, 𝑦) < 𝐻}. (3)

We’ll assume that we also know that

𝑎1 < 𝐹(𝑥, 𝑦) < 𝑎2 < 𝐻, (𝑥, 𝑦) ∈ Π, (4)

Π = {(𝑥, 𝑦) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦}. (5)

Let Γ be the set of side faces of the domain 𝐷(𝐹, ∞). In the domain
𝐷(𝐹, ∞) we consider the following mixed boundary value problem for the
Laplace equation
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⎧{{{
⎨{{{⎩

Δ𝑢(𝑀) = 𝜌(𝑀), 𝑀 ∈ 𝐷(𝐹 , ∞),
𝜕𝑢
𝜕𝑛

∣
𝑆

= ℎ(𝑈0 − 𝑢)∣
𝑆
,

𝑢|Γ = 0,
𝑢 limited at 𝑧 → ∞.

(6)

The problem (6) corresponds to the steady-state temperature distribution
created by heat sources with the distribution density function 𝜌, on the
surface 𝑆 — a third boundary condition is set corresponding to convective
heat exchange with a medium of temperature 𝑈0 with a coefficient ℎ, zero
temperature is set at the boundary Γ.
We assume that the function 𝜌 is such that the solution of the problem (6)

exists in 𝐶2(𝐷(𝐹 , ∞)) ⋂ 𝐶1(𝐷(𝐹 , ∞)). In particular, the solution of the
problem (6) allows us to find 𝑢|𝑆, i.e. the temperature distribution of 𝑢 on
the surface 𝑆, which we will call a thermogram.
Now let the thermogram be obtained as a result of measurements. Let

us now set the inverse problem. We set the problem of continuation of the
temperature distribution from the surface towards the sources in order to
obtain an adjusted thermogram as the temperature distribution 𝑢|𝑧=𝐻 on the
plane 𝑧 = 𝐻, closer to the density carrier than the surface 𝑆.
We assume that the carrier of the function 𝜌 is located in the domain

𝑧 > 𝐻, then the solution of the problem (6) in the domain

𝐷(𝐹, 𝐻) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝐹 (𝑥, 𝑦) < 𝑧 < 𝐻} (7)

satisfies the Laplace equation. The set of side faces of the domain 𝐷(𝐹, 𝐻) is
denoted by Γ𝐻.
Inverse problem. Let the function be given within the framework of the

model (6)

𝑓 = 𝑢∣
𝑆
. (8)

It is required to find 𝑢∣
𝑧=𝐻

. Since the value of 𝐻 sufficiently arbitrarily

defines the plane between the support of 𝜌 and the surface 𝑆, then in fact the
inverse problem consists in obtaining a solution 𝑢 in the domain 𝐷(𝐹, 𝐻) of
the boundary value problem

⎧
{{{
⎨
{{{
⎩

Δ𝑢(𝑀) = 0, 𝑀 ∈ 𝐷(𝐹 , 𝐻),
𝑢∣

𝑆
= 𝑓,

𝜕𝑢
𝜕𝑛

∣
𝑆

= ℎ(𝑈0 − 𝑓)∣
𝑆
,

𝑢∣
Γ𝐻

= 0.

(9)

We assume that the function 𝑓 in (8), (9) is taken from the set of solutions
to the direct problem (6), so the solution to the inverse problem exists in

𝐶2(𝐷(𝐹 , 𝐻)) ⋂ 𝐶1(𝐷(𝐹 , 𝐻)).
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Note that in the problem (9) on the surface 𝑆 of the form (3), Cauchy
conditions are set, that is, the boundary values 𝑓 of the desired function 𝑢 and
the values of its normal derivative are set, so the problem (9) has a unique
solution. The boundary 𝑧 = 𝐻 of the domain 𝐷(𝐹, 𝐻) is free and, thus, the
problem (9) is unstable with respect to errors in the data, i.e. ill-posed.

The function 𝑢|𝑧=𝐻 will be considered as an adjusted thermogram. Since
the plane 𝑧 = 𝐻 is located closer to the support of density 𝜌, it should be
expected that the corrected thermogram more accurately conveys information
about the distribution of heat sources than the original thermogram.
Further we give an explicit representation of the exact solution of the

problem (9).

3. Exact solution of the inverse problem

Based on the [7] scheme, an exact solution of the problem (9) is constructed
in [8].

Let 𝜑(𝑀, 𝑃) be the source function of the Dirichlet problem in the cylinder
𝐷∞:

Δ𝑢(𝑃 ) = −𝜌(𝑃 ), 𝑃 ∈ 𝐷∞,
𝑢∣

𝑥=0, 𝑙𝑥
= 0, 𝑢∣

𝑦=0, 𝑙𝑦
= 0,

𝑢 → 0 at |𝑧| → ∞.
(10)

In the domain 𝑧𝑀 < 𝐻 in the cylinder (1), we introduce the notation

Φ(𝑀) = ∫
𝑆

[ℎ(𝑈0 − 𝑓(𝑃 ))𝜑(𝑀, 𝑃) − 𝑓(𝑃) 𝜕𝜑
𝜕𝑛𝑃

(𝑀, 𝑃)] 𝑑𝜎𝑃. (11)

In [8], the following representation of the solution of the problem is ob-
tained (9)

𝑢(𝑀) = 𝑣(𝑀) + Φ(𝑀), 𝑀 ∈ 𝐷(𝐹 , 𝐻), (12)

where the function Φ is calculated on the known functions 𝑓 and 𝑓1, and the
function 𝑣 has the form:

𝑣(𝑀) = −
∞

∑
𝑛,𝑚=1

Φ̃𝑛𝑚(𝑎) exp {𝑘𝑛𝑚(𝑧 − 𝑎)} sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

,

𝑀(𝑥, 𝑦, 𝑧) ∈ 𝐷(−∞, 𝐻),
(13)

where

𝑘𝑛𝑚 = 𝜋(𝑛2

𝑙2𝑥
+ 𝑚2

𝑙2𝑦
)

1/2

(14)

and Φ̃𝑛𝑚(𝑎) — Fourier coefficients of the function Φ(𝑀)

Φ̃𝑛𝑚(𝑎) = 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

Φ(𝑥, 𝑦, 𝑎) sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦 (15)
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on the auxiliary plane:

Π(𝑎) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝑎}, 𝑎 < 𝑎1. (16)

For a Φ function of the form (11) considering that 𝑑𝜎𝑃 = 𝑛1(𝑥𝑃, 𝑦𝑃)𝑑𝑥𝑃𝑑𝑦𝑃,
where the normal n1 to the surface 𝑆 is calculated by the formula

n1 = grad (𝐹(𝑥, 𝑦) − 𝑧) = ∇𝑥𝑦𝐹 − k, 𝑛1 = |n1|, (17)

we will use the representation

Φ(𝑀) = ∫
Π

[ℎ(𝑈0 − 𝑓(𝑥𝑃, 𝑦𝑃))𝜑(𝑀, 𝑃 )∣
𝑃∈𝑆

𝑛1(𝑥𝑃, 𝑦𝑃)−

− 𝑓(𝑥𝑃, 𝑦𝑃)(n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

]𝑑𝑥𝑃𝑑𝑦𝑃. (18)

When calculating the function Φ(𝑀)|𝑀∈Π(𝑎) on the rectangle Π(𝑎) for the
source function 𝜑(𝑀, 𝑃), you can use the formula

𝜑(𝑀, 𝑃) =

= 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=1

𝑒−𝑘𝑛𝑚|𝑧𝑀−𝑧𝑃|

𝑘𝑛𝑚
sin

𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
, (19)

which for 𝑧𝑀 = 𝑎 and 𝑃 ∈ 𝑆 takes the form

𝜑(𝑀, 𝑃) = 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=1

𝑒−𝑘𝑛𝑚(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛𝑚
×

× sin 𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
. (20)

The series converges uniformly, since the exponent is estimated by
exp{−𝑘𝑛𝑚(𝑎1 − 𝑎)}. When calculating the function Φ in (12), the source
function at 𝑎2 < 𝑧𝑀 < 𝐻 and 𝑃 ∈ 𝑆 takes the form

𝜑(𝑀, 𝑃) = 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=1

𝑒−𝑘𝑛𝑚(𝑧𝑀−𝐹(𝑥𝑃,𝑦𝑃))

𝑘𝑛𝑚
×

× sin 𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
. (21)

The series converges uniformly on any fixed plane 𝑧𝑀 = const, since
the exponent is estimated by exp{−𝑘𝑛𝑚(𝑧𝑀 − 𝑎2)}, that is important for
applications. At the points 𝑧𝑀 < 𝑎2, the source function can be calculated
by the reflection method.
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4. Construction of an approximate solution
to the problem

Let the function 𝑓 in the problem (9) be given with an error, that is, instead
of 𝑓, the function 𝑓𝛿 is given, so that

‖𝑓𝛿 − 𝑓‖𝐿2(Π) ⩽ 𝛿. (22)

In this case, the function (11) is calculated approximately

Φ𝛿(𝑀) = ∫
Π

[ℎ(𝑈0 − 𝑓𝛿(𝑥𝑃, 𝑦𝑃))𝜑(𝑀, 𝑃)∣
𝑃∈𝑆

𝑛1(𝑥𝑃, 𝑦𝑃)−

− 𝑓𝛿(𝑥𝑃, 𝑦𝑃)(n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

]𝑑𝑥𝑃𝑑𝑦𝑃. (23)

The approximate solution to the problem (9) is constructed using the
Tikhonov regularization method [6] and in accordance with (12) has the form

𝑢𝛿
𝛼(𝑀) = 𝑣𝛿

𝛼(𝑀) + Φ𝛿(𝑀), 𝑀 ∈ 𝐷(𝐹 , 𝐻), (24)

where Φ𝛿 is a function of the form (23) and

𝑣𝛿
𝛼(𝑀) = −

∞
∑

𝑛,𝑚=1

Φ̃𝛿
𝑛𝑚(𝑎) exp{𝑘𝑛𝑚(𝑧𝑀 − 𝑎)}

1 + 𝛼 exp{2𝑘𝑛𝑚(𝐻 − 𝑎)}
sin

𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
. (25)

Note that the members of the series (25) differs from the members of the

series (13) by the regularizing factor (1 + 𝛼 exp{2𝑘𝑛𝑚(𝐻 − 𝑎)})−1, ensuring
the convergence of the series.
In the numerical solution, the bulk of the calculations is related to the

calculation of the Fourier coefficients of the function Φ𝛿 by the formula (15).
The next section is devoted to the calculation of Fourier coefficients with
a significant reduction in the amount of calculations.

5. Calculation of Fourier coefficients

As follows from the formulas (15), (23), (20), when calculating the Fourier
coefficient for each pair of indices 𝑛 and 𝑚, a superposition of the following
calculations is required: summation of the series for 𝜑, integration on the
surface 𝑆, integration on the rectangle Π(𝑎). Thus, when discretizing [9] the
problem (𝑁𝑥 points on the variable 𝑥, 𝑁𝑦 points on the variable 𝑦) when
calculating Fourier coefficients, about 𝑂(𝑁𝑥𝑁𝑦)4 operations are required.
This is the largest volume of operations when constructing a solution to the
problem (9), during which, in addition to time, there is a loss of accuracy
and an additional error is formed in calculating the Fourier coefficients and
solving the problem as a whole.
It seems advisable to carry out some of these operations analytically,

reducing the subsequent amount of calculations, namely. Let us carry out the
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integration in the formula for calculating the Fourier coefficients (15) under
the sign of the integral in (23) and under the sign of the sum in (20), and use
the orthogonality of the complete system of functions

{sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

}
∞

𝑛,𝑚=1

. (26)

Calculate the Fourier coefficient from the first term in (23)

Φ̃1,𝑛𝑚(𝑎) = 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

Φ1(𝑥, 𝑦, 𝑎) sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦 =

= 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦×

× ∫
Π

[ℎ(𝑈0 − 𝑓𝛿(𝑥𝑃, 𝑦𝑃))𝜑(𝑀, 𝑃)∣
𝑃∈𝑆

𝑛1(𝑥𝑃, 𝑦𝑃)]𝑑𝑥𝑃𝑑𝑦𝑃. (27)

By integrating on the rectangle Π(𝑎) under the sign of the integral on the
rectangle Π, using the representation (20), we calculate the value

4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦𝜑(𝑀, 𝑃 )∣
𝑃∈𝑆

=

= 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛′,𝑚′=1

𝑒−𝑘𝑛′𝑚′(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛′𝑚′
×

× sin 𝜋𝑛′𝑥
𝑙𝑥

sin
𝜋𝑚′𝑦

𝑙𝑦
sin

𝜋𝑛′𝑥𝑃
𝑙𝑥

sin
𝜋𝑚′𝑦𝑃

𝑙𝑦
. (28)

By performing integration under the sign of the sum of uniformly convergent
series and using the orthogonality of the system (26), we obtain

4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦𝜑(𝑀, 𝑃 )∣
𝑃∈𝑆

=

= 4
𝑙𝑥𝑙𝑦

2
𝑙𝑥𝑙𝑦

∞
∑

𝑛′,𝑚′=1

𝑒−𝑘𝑛′𝑚′(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛′𝑚′

𝑙𝑥𝑙𝑦
4

𝛿𝑛𝑛′𝛿𝑚𝑚′ sin
𝜋𝑛′𝑥𝑃

𝑙𝑥
sin

𝜋𝑚′𝑦𝑃
𝑙𝑦

=

= 2
𝑙𝑥𝑙𝑦

𝑒−𝑘𝑛𝑚(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛𝑚
sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
. (29)

Using (29), for the Fourier coefficients (27), replacing integration variables
𝑥𝑃 and 𝑦𝑃 with 𝑥 and 𝑦, we get
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Φ̃1,𝑛𝑚(𝑎) = 2
𝑙𝑥𝑙𝑦𝑘𝑛𝑚

×

× ∫
Π

[ℎ(𝑈0 − 𝑓𝛿(𝑥, 𝑦))𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎)𝑛1(𝑥, 𝑦) sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

] 𝑑𝑥𝑑𝑦. (30)

From the formula (30) it follows that to calculate the Fourier coefficient of
the function Φ on the rectangle Π(𝑎) there is no need to calculate the function
itself. You can use the formula (30), which formally coincides with the formula
(15) for the Fourier coefficients on the system (26) of some function depending
on the Fourier indices and including information about the surface 𝑆 in the
form of a function 𝐹 and the normal 𝑛1 calculated by the formula

𝑛1(𝑥, 𝑦) = √(𝐹 ′
𝑥(𝑥, 𝑦))2 + (𝐹 ′

𝑦(𝑥, 𝑦))2 + 1.

In this case, the number of operations has the order of 𝑂(𝑁𝑥𝑁𝑦)2, that is,
the second order in terms of the number of points, which is two orders of
magnitude less than the direct calculation of the Fourier coefficients by the
formulas (15), (23), (20).

Similarly, the Fourier coefficient of the second term is calculated in the
formula (23)

Φ̃2,𝑛𝑚(𝑎) = 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

Φ2(𝑥, 𝑦, 𝑎) sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦 =

= 4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦×

× ∫
Π

[𝑓𝛿(𝑥𝑃, 𝑦𝑃)(n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

] 𝑑𝑥𝑃𝑑𝑦𝑃. (31)

Using the representation (20), we calculate the value

(n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆,𝑀∈Π(𝑎)

=

= 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛′,𝑚′=1

𝑒−𝑘𝑛′𝑚′(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛′𝑚′
sin

𝜋𝑛′𝑥
𝑙𝑥

×

× sin 𝜋𝑚′𝑦
𝑙𝑦

cos
𝜋𝑛′𝑥𝑃

𝑙𝑥
sin

𝜋𝑚′𝑦𝑃
𝑙𝑦

𝜋𝑛′

𝑙𝑥
𝐹 ′

𝑥(𝑥𝑃, 𝑦𝑃)+

+ 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛′,𝑚′=1

𝑒−𝑘𝑛′𝑚′(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛′𝑚′
sin

𝜋𝑛′𝑥
𝑙𝑥

×

× sin 𝜋𝑚′𝑦
𝑙𝑦

sin
𝜋𝑛′𝑥𝑃

𝑙𝑥
cos

𝜋𝑚′𝑦𝑃
𝑙𝑦

𝜋𝑚′

𝑙𝑦
𝐹 ′

𝑦(𝑥𝑃, 𝑦𝑃)+
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+ 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛′,𝑚′=1
𝑒−𝑘𝑛′𝑚′(𝐹(𝑥𝑃,𝑦𝑃)−𝑎) sin

𝜋𝑛′𝑥
𝑙𝑥

×

× sin 𝜋𝑚′𝑦
𝑙𝑦

sin
𝜋𝑛′𝑥𝑃

𝑙𝑥
sin

𝜋𝑚′𝑦𝑃
𝑙𝑦

. (32)

By integrating on the rectangle Π(𝑎) under the sign of the integral on the
rectangle Π, performing integration under the sign of the sum of a uniformly
convergent series and using the orthogonality of the system (26), we obtain

4
𝑙𝑥𝑙𝑦

∫
Π(𝑎)

sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦 (n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

=

= 2
𝑙𝑥𝑙𝑦

𝑒−𝑘𝑛𝑚(𝐹(𝑥𝑃,𝑦𝑃)−𝑎)

𝑘𝑛𝑚
[cos 𝜋𝑛𝑥𝑃

𝑙𝑥
sin

𝜋𝑚𝑦𝑃
𝑙𝑦

𝜋𝑛
𝑙𝑥

𝐹 ′
𝑥(𝑥𝑃, 𝑦𝑃) +

+ sin
𝜋𝑛𝑥𝑃

𝑙𝑥
cos

𝜋𝑚𝑦𝑃
𝑙𝑦

𝜋𝑚
𝑙𝑦

𝐹 ′
𝑦(𝑥𝑃, 𝑦𝑃) + 𝑘𝑛𝑚 sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
] . (33)

Hence and from (31) follows

Φ̃2,𝑛𝑚(𝑎) = 2𝜋𝑛
𝑙2𝑥𝑙𝑦𝑘𝑛𝑚

∫
Π

𝑓𝛿(𝑥, 𝑦)𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎)×

× 𝐹 ′
𝑥(𝑥, 𝑦) cos 𝜋𝑛𝑥

𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦+

+ 2𝜋𝑚
𝑙𝑥𝑙2𝑦𝑘𝑛𝑚

∫
Π

𝑓𝛿(𝑥, 𝑦)𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎)𝐹 ′
𝑦(𝑥, 𝑦) sin 𝜋𝑛𝑥

𝑙𝑥
cos

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦+

+ 2
𝑙𝑥𝑙𝑦

∫
Π

𝑓𝛿(𝑥, 𝑦)𝑒−𝑘𝑛𝑚(𝐹(𝑥,𝑦)−𝑎) sin
𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

𝑑𝑥𝑑𝑦. (34)

Thus, the Fourier coefficient Φ̃2,𝑛𝑚(𝑎) is calculated as the sum of formally

calculated Fourier coefficients over orthogonal systems

{sin 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

}
∞

𝑛,𝑚=1

, {cos 𝜋𝑛𝑥
𝑙𝑥
sin

𝜋𝑚𝑦
𝑙𝑦

}
∞

𝑛,𝑚=1

,

{sin 𝜋𝑛𝑥
𝑙𝑥
cos

𝜋𝑚𝑦
𝑙𝑦

}
∞

𝑛,𝑚=1

.
(35)

of functions depending, among other things, on the indices of the Fourier
coefficients. In this case, as well as when calculating the Fourier coefficient
from the first term, the number of operations has the order of 𝑂(𝑁𝑥𝑁𝑦)2,
that is, the second order in terms of the number of points, which is two orders
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of magnitude less than the direct calculation of the Fourier coefficients by the
formulas (15), (23), (20).
Summing (30), (34), we get the Fourier coefficient

Φ̃𝑛𝑚(𝑎) = Φ̃1,𝑛𝑚(𝑎) + Φ̃2,𝑛𝑚(𝑎). (36)

According to the remarks to the formulas (30), (34) in general, the number
of operations when calculating the Fourier coefficients using these formulas
relative to the number of 𝑁𝑥𝑁𝑦 points on the thermogram has the order of

𝑂(𝑁𝑥𝑁𝑦)2.

To calculate the Fourier coefficients using the formulas (30), (34), the
Hamming method [10] is used.

6. Conclusion and discussion

Stable solution of the inverse problem (9) can be used for mathematical
processing of thermograms taken with a thermal imager, in particular, in
medicine [4], in order to correct the image on the thermogram. Note that
taking into account the blood flow leads to the need to use the metaharmonic
equation [11, 12] in problem (9). As already mentioned, a thermogram, with
one or another reliability, convey an image of the structure of heat sources
inside the body. Refinement of the image on the thermogram can be carried
out within the framework of the problem (9). In this case, the function 𝑓 is
associated with the original thermogram, and the function 𝑢𝐻 is considered
the result of processing the thermogram. Since the function 𝑢𝐻 represents
the temperature distribution on a plane closer to the studied heat sources
than the original surface 𝑆, we can expect a more accurate reproduction of
the image of the sources on the calculated thermogram 𝑢𝐻. The results of
calculations carried out on a model example show the effectiveness of the
proposed method and algorithm based on the formulas (24), (25), (23), (36),
which can be used to process thermographic images.
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О применении метода Фурье для решения задачи
коррекции термографических изображений

Обаида Бааж

Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Аннотация. Работа посвящена построению вычислительных алгоритмов, ре-
ализующих метод коррекции термографических изображений. Коррекция
осуществляется на основе решения некоторой некорректно поставленной смешан-
ной задачи для уравнения Лапласа в цилиндрической области прямоугольного
сечения. Эта задача соответствует задаче аналитического продолжения стацио-
нарного распределения температуры как гармонической функции с поверхности
исследуемого объекта в сторону источников тепла. Цилиндрическая область огра-
ничена произвольной поверхностью и плоскостью. На произвольной поверхности
измеряется (и таким образом, задано) распределение температуры, называемое
термограммой и воспроизводящее изображение внутренней тепловыделяющей
структуры. На этой поверхности — границе исследуемого объекта — имеет место
конвективный теплообмен с внешней средой заданной температуры, который
описывается законом Ньютона. Это третье краевое условие, которое в сово-
купности с первым краевым условием соответствует заданию условий Коши —
граничным значениям искомой функции и ее нормальной производной. Задача
некорректно поставлена. В статье применением метода регуляризации Тихонова
получено приближённое решение поставленной задачи, устойчивое по отношению
к погрешности к данным Коши, и которое может быть использовано для постро-
ения эффективных вычислительных алгоритмов. В работе рассматриваются
алгоритмы, позволяющие существенно уменьшить объем вычислений.

Ключевые слова: термограмма, некорректная задача, задача Коши для урав-
нения Лапласа, интегральное уравнение первого рода, метод регуляризации
Тихонова




