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Abstract. The paper presents a study of three queuing systems with a threshold
renovation mechanism and an inverse service discipline. In the model of the first type,
the threshold value is only responsible for activating the renovation mechanism (the
mechanism for probabilistic reset of claims). In the second model, the threshold value
not only turns on the renovation mechanism, but also determines the boundaries of
the area in the queue from which claims that have entered the system cannot be
dropped. In the model of the third type (generalizing the previous two models), two
threshold values   are used: one to activate the mechanism for dropping requests, the
second — to set a safe zone in the queue. Based on the results obtained earlier, the
main time-probabilistic characteristics of these models are presented. With the help
of simulation modeling, the analysis and comparison of the behavior of the considered
models were carried out.

Key words and phrases: queuing system, active queue management, renovation
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1. Introduction

According to [1] the problem of congestion avoidance for communication
networks does not have a satisfying solution, so the development and the
analysis of new active queue management (AQM) algorithms appears to be
the actual task for researches [2]–[13] and practitioners [14]–[24].

In this paper we will consider queuing systems with probabilistic renovation
mechanism, which allows to adjust the number of packets in the system
by dropping (resetting) them from the queue depending on the ratio of
a certain control parameter with specified thresholds [25], [26] at the moment
of the end of service on the device (server) [27]–[29] in contrast to standard
RED algorithm, when a possible reset occurs at the time of the next packet
arrival and the control parameter is an exponentially weighted average queue
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length [30]–[34]. In our models the renovation mechanism uses one or two
thresholds (which determine as the place in the buffer from which the packets
are dropped, but also the place to which the reset of packets occurs).

The previous works devoted to the analysis of queuing systems with thresh-
old based renovation are [35]–[38]. In [35], [36] some aspects of using the
renovation mechanism (different types of renovation, definitions and brief
overview were also given) with one or several thresholds as the mathematical
models of active queue management mechanisms were considered. Some re-
sults of comparing classic RED algorithm with renovation mechanism were
presented. In [37] two queuing models with threshold based renovation mecha-
nism were presented: in the first model the threshold value is only responsible
for activating the renovation mechanism (the mechanism for probabilistic re-
set of claims), in the second model the threshold value not only turns on the
renovation mechanism, but also determines the boundaries of the area in the
queue from which claims that have entered the system cannot be dropped.
In [38] the queuing system with two threshold values (one to activate the
mechanism for dropping requests, the second — to set a safe zone in the
queue) for renovation mechanism was investigated. All three queuing systems
have been studied for the service discipline FCFS (First Come First Served),
and in this article we will present some results for the discipline LCFS (Last
Come First Served). The study will again be carried out using embedded
Markov chains. We will not consider in detail the derivation of the stationary
distribution of the number of customers (which does not depend on the ser-
vice discipline and presented in [37], [38]) and will focus only on the service
(reset) probabilities and on time characteristics.

The structure of the article is following. In the section 2 the results for the
queuing model, where the threshold value is only responsible for activating
the renovation mechanism, are presented; the section 3 is devoted to the
queuing model, in which the threshold value not only turns on the renovation
mechanism, but also determines the boundaries of the area in the queue from
which claims that have entered the system cannot be dropped. In section 4
the characteristics for the queuing system with two threshold values (one to
activate the mechanism for dropping requests, the second — to set a safe
zone in the queue) for renovation mechanism are presented. In section 5 the
results of GPSS simulation are considered. The last section 6 concludes the
paper with the short discussion.

2. The first model

Consider the 𝐺𝐼/𝑀/1/∞ queuing system, shown in the figure 1, with
the implemented renovation mechanism and a threshold value 𝑄1, which
determines the boundary in the queue, starting from which the dropping of
customers begins. If the current number of packets in the system 𝑖 ⩽ 𝑄1 + 1
(the threshold value 𝑄1 is not been overcome), then none of the packets will
be dropped from the queue. If the current number of packets in the system
𝑖 ⩾ 𝑄1 + 1, then with probability 𝑞 the packet finishing the service can drop
all packets from the queue and leave the system, or with probability 𝑝 = 1 − 𝑞
the serviced packet simply leaves the system.
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Figure 1. Queuing system model

2.1. The service probability and the loss probability for a received
packet

Let 𝑝(loss) be the probability that the packet received in the system will

be dropped by renovation mechanism and let 𝑝(loss)

𝑖 be the probability that
a packet arriving and finding in the system exactly 𝑖 packets will be dropped.

Let 𝑝(loss)

𝑖 (𝑥) be the probability that in a time less than 𝑥 a packet that
finds other 𝑖 packets in the system will be dropped. Then:

𝑝(loss)

𝑖 =
∞

∫
0

𝑝(loss)

𝑖,0 (𝑥)𝑑𝑥,

where 𝑝(loss)

𝑖,𝑗 (𝑥) is the probability that in time less than 𝑥 the packet, before

which there are 𝑖 other packets in the queue and after which there are other 𝑗
packets, will be dropped, 𝑖, 𝑗 ⩾ 0.

Let 𝜏 (loss)

𝑖,𝑗 (𝑥) be the probability density functions and let 𝜌(loss)

𝑖,𝑗 (𝑠) be the

Laplace–Stieltjes transforms. Then:

𝜏 (loss)

𝑖,𝑗 (𝑥) = (𝑝(loss)

𝑖,𝑗 (𝑥))
′

𝑥
, 𝜌(loss)

𝑖,𝑗 (𝑠) =
∞

∫
0

𝜏 (loss)

𝑖,𝑗 (𝑥)𝑑𝑥.

a) If 𝑖 + 𝑗 + 1 ⩽ 𝑄1 the threshold is not crossed, then:

𝜏 (loss)

𝑖,𝑗 (𝑥) =
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦)𝜏 (loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

b.1) If 𝑖 + 𝑗 + 1 > 𝑄1, 𝑖 + 1 ⩽ 𝑄1, then:

𝜏 (loss)

𝑖,𝑗 (𝑥) =
min(𝑗,𝑖+𝑗+1−𝑄1)

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥 ⋅ 𝑝𝑘−1 ⋅ 𝑞 ⋅ 𝐴(𝑥)+

+
𝑦

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝min(𝑘,𝑖+1+𝑗−𝑄1)𝑑𝐴(𝑦)𝜏 (loss)

𝑖,𝑗 (𝑥 − 𝑦).
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b.2) If 𝑖 + 𝑗 + 1 > 𝑄1, 𝑖 + 1 > 𝑄1, then:

𝜏 (loss)

𝑖,𝑗 (𝑥) =
𝑗

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥 ⋅ 𝑝𝑘−1 ⋅ 𝑞 ⋅ 𝐴(𝑥)+

+
𝑦

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑘𝑑𝐴(𝑦)𝜏 (loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

Then for the Laplace–Stieltjes transforms 𝜌(loss)

𝑖,𝑗 (𝑠) we have:

a) If 𝑖 + 𝑗 + 1 ⩽ 𝑄1, then:

𝜌(loss)

𝑖,𝑗 (𝑠) =
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜌(loss)

𝑖,𝑗−𝑘+1(𝑠).

b.1) If 𝑖 + 𝑗 + 1 > 𝑄1, 𝑖 + 1 ⩽ 𝑄1, then:

𝜌(loss)

𝑖,𝑗 (𝑠) =
min(𝑗,𝑖+1+𝑗−𝑄1)

∑
𝑘=1

(−1)𝑘−1𝜇𝑘

(𝑘 − 1)!
𝛼(𝑘−1)(𝜇 + 𝑠) ⋅ 𝑝𝑘−1 ⋅ 𝑞+

+
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝑝min(𝑘,𝑖+𝑗+1−𝑄1)𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜌(loss)

𝑖,𝑗−𝑘+1(𝑠).

b.2) If 𝑖 + 𝑗 + 1 > 𝑄1, 𝑖 + 1 > 𝑄1, then:

𝜌(loss)

𝑖,𝑗 (𝑠) =
𝑗

∑
𝑘=1

(−1)𝑘−1𝜇𝑘

(𝑘 − 1)!
𝛼(𝑘−1)(𝜇 + 𝑠) ⋅ 𝑝𝑘−1 ⋅ 𝑞+

+
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝑝𝑘𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜌(loss)

𝑖,𝑗−𝑘+1(𝑠).

2.2. Time characteristics of the system

Let 𝑊 (serv)(𝑥) and 𝑊 (loss)(𝑥) be the distribution functions of the time spent
in the queue by the served and dropped packets.

2.2.1. Time characteristics for a served packet

𝑊 (serv)

𝑖,𝑗 (𝑥) — the intermediary distribution function of the time spent by

the served packet in the queue, if there are 𝑖 other packets in the queue before
the considered one and there are 𝑗 others after it. Then

𝑊 (serv)(𝑥) = (
∞

∑
𝑖=0

𝜋𝑖𝑊
(serv)

𝑖,0 (𝑥)) ⋅ 1
𝑝(serv)

,
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where steady-state probabilities 𝜋𝑖 (𝑖 ⩾ 0𝑓) are defined in [37], [38]. For

densities 𝑤(serv)

𝑖,𝑗 (𝑥) = (𝑊 (serv)

𝑖,𝑗 (𝑥))
′
, we will consider several cases.

a) Consider the case when 𝑖 + 𝑗 + 1 > 𝑄1, 0 ⩽ 𝑖 < 𝑄1

𝑤(serv)

𝑖,𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝑝(serv)

𝑖+1,𝑗𝐴(𝑥)+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝min(𝑘,𝑗+𝑖+1−𝑄1)𝑑𝐴(𝑦)𝑤(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦),

𝑝min(𝑘,𝑗+𝑖+1−𝑄1) =
⎧{
⎨{⎩

𝑝𝑘, 𝑘 ⩽ 𝑗 + 𝑖 + 1 − 𝑄1,
𝑝𝑗+1+𝑖−𝑄1,𝑘>𝑗+𝑖−𝑄1 .

b) Let’s move on to the case when 𝑖 ⩾ 𝑄1

𝑤(serv)

𝑖,𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝑝𝑗𝐴(𝑥) +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦)𝑤(serv)

𝑖,𝑗 (𝑥 − 𝑦).

If 𝑖 + 𝑗 + 1 ⩾ 𝑄1 the threshold is not crossed, then:

𝑤(serv)

𝑖,𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝐴(𝑥) +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦)𝑤(serv)

𝑖,𝑗 (𝑥 − 𝑦).

The Laplase–Stieltjes transforms for derived densities.

If 𝑖 + 𝑗 + 1 ⩽ 𝑄1, then:

𝜔(serv)

𝑖,𝑗 (𝑠) = (−1)𝑗𝜇𝑗+1

𝑗!
𝛼(𝑗)(𝜇 + 𝑠) +

𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝛼(𝑘)(𝜇 + 𝑠)𝜔(serv)

𝑖,𝑗−𝑘+1(𝑠),

𝜔(serv)

𝑖,𝑗 (𝑠) =
∞

∫
0

𝑤(serv)

𝑖,𝑗 (𝑥)𝑒−𝑠𝑥𝑑𝑥 — Laplace–Stieltjes transform.

If 0 ⩽ 𝑖 < 𝑄1, but 𝑖 + 𝑗 + 1 > 𝑄1, then:

𝜔(serv)

𝑖,𝑗 (𝑠) = (−1)𝑗𝜇𝑗+1

𝑗!
𝛼(𝑗)(𝜇 + 𝑠) ⋅ 𝑝𝑗+𝑖+1−𝑄1+

+
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝑝min(𝑘,𝑗+𝑖+1−𝑄1) ⋅ 𝜔(serv)

𝑖,𝑗−𝑘+1(𝑠).
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If 𝑖 ⩾ 𝑄1, then:

𝜔(serv)

𝑖,𝑗 (𝑠) = (−1)𝑗𝜇𝑗+1

𝑗!
𝛼(𝑗)(𝜇+𝑠)⋅𝑝𝑗 +

𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝛼(𝑘)(𝜇+𝑠)⋅𝑝𝑘 ⋅𝜔(serv)

𝑖,𝑗−𝑘+1(𝑠).

2.2.2. Time characteristics for a dropped packet

𝑊 (loss)

𝑖,𝑗 (𝑥) — the intermediary distribution function of the time spent by

the dropped packet in the queue, if there are 𝑖 other packets in the queue
before the considered one and there are 𝑗 others after it. Then

𝑊 (loss)(𝑥) = (
∞

∑
𝑖=0

𝜋𝑖𝑊
(loss)

𝑖,0 (𝑥)) ⋅ 1
𝑝(loss)

.

For densities 𝑤(loss)

𝑖,𝑗 (𝑥) = (𝑊 (loss)

𝑖,𝑗 (𝑥))
′
, we also will consider several cases.

a) The first case is when 𝑖+1+𝑗 ⩽ 𝑄1, so the selected packet can be dropped
only due to the reception of new packets in the system and overcoming the
threshold value

𝑤(loss)

𝑖,𝑗 (𝑥) =
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦)𝑤(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

b) for the second case, when 𝑖 + 1 + 𝑗 > 𝑄1, (𝑖 + 1 ⩽ 𝑄1), several subcases
should be considered:

b.1)

𝑤(loss)

𝑖,𝑗 (𝑥) =
min(𝑖,𝑖+1+𝑗−𝑄1)

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥 ⋅ 𝑝𝑘−1 ⋅ 𝑞 ⋅ 𝐴(𝑥)+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝min(𝑘,𝑖+1+𝑗−𝑄1)𝑑𝐴(𝑦)𝑤(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

b.2) If 𝑖 + 1 > 𝑄1, then:

𝑤(loss)

𝑖,𝑗 (𝑥) =
𝑗

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥 ⋅ 𝑝𝑘−1 ⋅ 𝑞 ⋅ 𝐴(𝑥)+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑘𝑑𝐴(𝑦)𝑤(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

The Laplase–Stieltjes transforms for derived densities.
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a) For the case when 𝑖 + 𝑗 + 1 ⩽ 𝑄1 we have

𝜔(loss)

𝑖,𝑗 (𝑠) =
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜔(loss)

𝑖,𝑗−𝑘+1(𝑠).

b) For the case when 𝑖 + 𝑗 + 1 > 𝑄1, 𝑖 + 1 ⩽ 𝑄1 we obtain:

b.1)

𝜔(loss)

𝑖,𝑗 (𝑠) =
min(𝑗,𝑖+1+𝑗−𝑄1)

∑
𝑘=1

(−1)𝑘−1𝜇𝑘

(𝑘 − 1)!
𝛼(𝑘−1)(𝜇 + 𝑠) ⋅ 𝑝𝑘−1 ⋅ 𝑞+

+
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝑝min(𝑘,𝑖+𝑗+1−𝑄1)𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜔(loss)

𝑖,𝑗−𝑘+1(𝑠).

b.2)

𝜔(loss)

𝑖,𝑗 (𝑠) =
𝑗

∑
𝑘=1

(−1)𝑘−1𝜇𝑘

(𝑘 − 1)!
𝛼(𝑘−1)(𝜇 + 𝑠) ⋅ 𝑝𝑘−1 ⋅ 𝑞+

+
𝑗

∑
𝑘=0

(−1)𝑘𝜇𝑘

𝑘!
𝑝𝑘𝛼(𝑘)(𝜇 + 𝑠) ⋅ 𝜔(loss)

𝑖,𝑗−𝑘+1(𝑠).

3. The second model

The second queuing model is also 𝐺𝐼/𝑀/1/∞ queuing system, shown in
the figure 2, with the implemented renovation mechanism, but the threshold
value 𝑄1 determines the boundary in the queue, starting from which the
dropping of customers begins and also determines the safe zone from where
packets cannot be dropped.

Figure 2. Queuing system model 2

If the current number of packets in the system 𝑖 is less or equal to 𝑄1 + 1
(the threshold value 𝑄1 has not been overcome), then none of the packets will
be dropped from the queue. If the current number of packets in the system
𝑖 is greater then 𝑄1 + 1, then with probability 𝑞 the packet, finishing the
service and leaving the system, will drop all packets from the queue (outside
the safe zone), or with probability 𝑝 = 1 − 𝑞 the serviced packet simply leaves
the system.
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Let 𝜋𝑖 be the steady-state probability distribution of the embedded Markov
chain that the packet comming into the system will find in it 𝑖 other packets
(𝑖 ⩾ 0) [37], [38].

Let 𝑝(loss) and 𝑝(serv) be the probability that the received packet in the
system will be dropped from the queue or will be transferred to service device.

The 𝑝(serv)

𝑖 is the auxiliary probability that the packet will be served if it
finds other 𝑖 packets in the system.

𝑝(serv) =
∞

∑
𝑖=0

𝑝(serv)

𝑖 ⋅ 𝜋𝑖 = 1 − 𝜋𝑄1+1 ⋅ 𝑞
(1 − 𝑔)(1 − 𝑝𝑔)

.

𝑝(loss) = 1 − 𝑝(serv) = 1 − (1 − 𝜋𝑄1+1 ⋅ 𝑞
(1 − 𝑔)(1 − 𝑝𝑔)

) ,

𝑝(loss) = 𝜋𝑄1+1 ⋅ 𝑞
(1 − 𝑔)(1 − 𝑝𝑔)

.

3.1. Time characteristics of the system

3.1.1. Time characteristics for serviced packets

𝑊 (serv)(𝑥) is the cumulative waiting time distribution function for the

accepted into the system packet, 𝑊 (serv)

𝑖 (𝑥) is the cumulative waiting time
distribution function for the accepted into the system packet, if at the moment
of its arrival there were 𝑖 other packets in the system. Then:

𝑊 (serv)(𝑥) = 1
𝑝(serv)

∞
∑
𝑖=0

𝑊 (serv)

𝑖 (𝑥) ⋅ 𝜋𝑖,

w
(serv)

𝑖 (𝑥) = (𝑊 (serv)

𝑖 (𝑥))
′

— probability density function.

The auxiliary functions 𝑊 (serv)

𝑖,𝑗 (𝑥) and w
(serv)

𝑖,𝑗 (𝑥) = (𝑊 (serv)

𝑖,𝑗 (𝑥))
′
(𝑖, 𝑗 ⩾ 0)

are the distribution functions and the densities of distribution functions of
the time spent by the served packet in the queue, if there were 𝑖 other packets
in the queue before the considered one and 𝑗 others after it.

a) If 𝑖 = 0, then the cumulative distribution functions 𝑊 (serv)

𝑖 (𝑥) = 1, (𝑥 =
0). b) If 0 < 𝑖 ⩽ 𝑄1 — (the safe zone is not completely filled) then the
received in the system packet will be in the safe zone (cannot be dropped).
Then

w
(serv)

𝑖 (𝑥) = 𝜇𝑒−𝜇𝑥 ⋅ 𝐴(𝑥) +
𝑥

∫
0

𝑒−𝜇𝑦𝑑(𝑦) ⋅ w
(serv)

𝑖,1 (𝑥 − 𝑦).

b.1) 0 < 𝑖 + 𝑗 ⩽ 𝑄1, 𝑗 > 0 (taking into account the packets that came after
ours), the threshold value 𝑄1 has not been overcome in the queue, that is,



168 DCM&ACS. 2022, 30 (2) 160–182

the renovation mechanism has not turned on. Then

w
(serv)

𝑖𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥 ⋅ 𝐴(𝑥) +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

b.2) 𝑄1 < 𝑗 + 1 (𝑗 > 0) the renovation mechanism was activated, but our
packet is in a safe zone. Then

w
(serv)

𝑖𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑝𝑗−(𝑄1−𝑖)+1 ⋅ 𝐴(𝑥) + 𝜇𝑄1−𝑖+1𝑥𝑄1−𝑖

(𝑄1 − 𝑖)!
⋅ 𝑞𝑒−𝜇𝑥 ⋅ 𝐴(𝑥)+

+
1+(𝑗−(𝑄1−𝑖)−1)

∑
𝑘=1

̃𝜋𝑘(𝑗 − (𝑄1 − 𝑖) − 𝑘) ⋅ 𝜇𝑘+𝑄1−𝑖𝑥𝑘+𝑄1−𝑖−1

(𝑘 + 𝑄1 − 𝑖 − 1)!
𝑒−𝜇𝑥 ⋅ 𝐴(𝑥)+

+
𝑥

∫
0

𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w
(serv)

𝑖,𝑗+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗−(𝑄1−𝑖)−1

∑
𝑘=1

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑘𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=1−(𝑄1−𝑖)

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑖−𝑄1−𝑖𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦),

w
(serv)

𝑖𝑗 (𝑥) =
𝑗−(𝑄1−1)

∑
𝑘=1

̃𝜋𝑘(𝑗 − (𝑄1 − 𝑖) − 𝑘) ⋅ 𝜇𝑘+𝑄1−𝑖𝑥𝑘+𝑄1−𝑖−1

(𝑘 + 𝑄1 − 𝑖 − 1)!
𝑒−𝜇𝑥 ⋅ 𝐴(𝑥)

+
𝑥

∫
0

𝑗−(𝑄1−𝑖)−1

∑
𝑘=1

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑘𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=1−(𝑄1−𝑖)

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅ 𝑝𝑖−𝑄1−𝑖𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

c) 𝑖 ⩾ 𝑄1 + 1 — at the time of receipt of our packet, the safe zone is filled
and there are packets outside the safe zone — the renovation mechanism is
enabled. Then

w
(serv)

𝑖,0 (𝑥) = 𝜇𝑒−𝜇𝑥𝑝 ⋅ 𝐴(𝑥) +
𝑥

∫
0

𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w
(serv)

𝑖,1 (𝑥 − 𝑦),

w
(serv)

𝑖,𝑗 (𝑥) = 𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝑝𝑗+1𝐴(𝑥)+

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦⋅𝑝𝑘𝑑𝐴(𝑦)⋅w(serv)

𝑖,𝑗−𝑘+1(𝑥−𝑦).
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3.1.2. Time characteristics for dropped packets

Let 𝑊 (loss)(𝑥) be the cumulative distribution functions of the time spent
by the packet in the queue before dropping.

𝑊 (loss)(𝑥) = 1
𝑝(loss)

⋅
∞

∑
𝑖=0

𝑊 (loss)

𝑖 (𝑥)𝜋𝑖.

𝑊 (loss)

𝑖 (𝑥) is the conditional probability that in a time less than 𝑥 the packet
that has found exactly 𝑖 of other packets in the system will be dropped from

the queue. The auxiliary functions 𝑊 (loss)

𝑖,𝑗 (𝑥) and w
(loss)

𝑖,𝑗 (𝑥) = (𝑊 (loss)

𝑖,𝑗 (𝑥))
′

(𝑖, 𝑗 ⩾ 0) are the distribution functions and the densities of distribution
functions of the time spent by the dropped packet in the system, if there were
𝑖 other packets in the queue before the considered one and 𝑗 others after it.
a) 0 ⩽ 𝑖 ⩽ 𝑄1 (that is, the system was either empty, or at least there was

one free space in the safe zone)

𝑊 (loss)

𝑖 (𝑥) = 0.

b) 𝑄1 < 𝑖 (𝑖 ⩾ 𝑄1 + 1)

w
(loss)

𝑖,0 (𝑥) = 𝜇𝑒−𝜇𝑥𝑞 ⋅ 𝐴(𝑥) +
𝑥

∫
0

𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w
(loss)

𝑖,1 (𝑥 − 𝑦),

w
(loss)

𝑖,𝑗 (𝑥)
𝑗+1

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥 ⋅ ̃𝜋𝑘(𝑗 + 𝑖 − 𝑄1 − 𝑘)𝐴(𝑥)+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦 ⋅

𝑗−𝑘

∑
𝑙=0

𝜋𝑘(𝑙)𝑑𝐴(𝑦) ⋅ w
(loss)

𝑖,𝑗−𝑘−𝑙+1(𝑥).

4. The third model

Consider the 𝐺𝐼/𝑀/1/∞ queuing system, shown in the figure 3.

Figure 3. Queuing system model 3

In this section, a single-server queueing system with an infinite queue
capacity and two threshold values is considered. Threshold values:
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— 𝑄1 — the threshold value in the queue, when overcoming which by the
queue length packets (from 𝑄1 + 1) will be dropped from the queue with
a probability 𝑞.

— 𝑄2 — the threshold value in the queue to which packets are dropped (i.e.
packets standing in the queue up to the 𝑄2 threshold are not dropped).

4.1. The service probability and loss probability of the received
packet

Let’s introduce the probability 𝑝(serv) that the packet, entering the system,

will be served, auxiliary probabilities 𝑝(serv)

𝑖 (𝑖 ⩾ 0) of incoming packet to
be served if there were other 𝑖 (𝑖 ⩾ 0) packets in the system, and auxiliary

probabilities 𝑝(serv)

𝑖,𝑗 (𝑥) that during the time 𝑥 the packet, which found exactly

𝑖 other packets in the system at the moment of arrival and behind which
there are 𝑗 more packets, will be served

𝑝(serv) =
∞

∑
𝑖=0

𝑝(serv)

𝑖 𝜋𝑖,

where 𝜋𝑖 — the stationary probabilities [37], [38].

Let’s consider several cases

a) The first one, when the system is empty: 𝑝(serv)

0 = 1.

b) The second case is when 1 ⩽ 𝑖 ⩽ 𝑄2, so 𝑝(serv)

𝑖 = 1.

c) The third case 𝑄2 < 𝑖 ⩽ 𝑄1 includes two subcases:

c.1) the first subcase, 𝑄2 + 1 ⩽ 𝑖 + 1 + 𝑗 ⩽ 𝑄1 + 1 — the 𝑄1 threshold in
the queue has not been overcome (taking into account the packets after the
considered one), that is, the renovation mechanism has not turned on

𝑝(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥) ⋅ (𝜇𝑥)𝑗+1

(𝑗 + 1)!
𝑒−𝜇𝑥 +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ 𝑝(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

c.2) the second subcase, 𝑖 + 1 + 𝑗 > 𝑄1 + 1 — the 𝑄1 threshold in the
queue has been overcome, so the renovation mechanism has been activated

𝑝(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥) ⋅ (𝜇𝑥)𝑗+1

(𝑗 + 1)!
𝑒−𝜇𝑥 ⋅ 𝑝𝑖+𝑗+1−(𝑄1+1)+

+
𝑥

∫
0

𝑖+𝑗−𝑄1

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦) ⋅ 𝑝(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=𝑖+𝑗−𝑄1+1

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑖+𝑗−𝑄1𝑑𝐴(𝑦) ⋅ 𝑝(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).
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d) the fourth case is when the 𝑄1 threshold in the queue has been overcome
at the moment of the arrival of the considered packet, (𝑖 > 𝑄1) so the
renovation mechanism has been already activated

𝑝(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥) ⋅ (𝜇𝑥)𝑗+1

(𝑗 + 1)!
𝑒−𝜇𝑥𝑝𝑗+1 +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦) ⋅ 𝑝(serv)

𝑖,𝑗−𝑘(𝑥 − 𝑦),

𝑝(serv)

𝑖 =
∞

∫
0

𝑝(serv)

𝑖,0 (𝑥)𝑑𝑥.

Loss probability of the received packet

𝑝(loss) =
∞

∑
𝑖=0

𝑝(loss)

𝑖 𝜋𝑖,

where 𝑝(loss)

𝑖 — the probability that the incoming packet will be dropped if
at the moment of its arrival there were 𝑖, 𝑖 ⩾ 0 other packets in the system,

and 𝑝(loss)

𝑖,𝑗 (𝑥) is the probability that in time less than 𝑥 the packet, before

which there are 𝑖 other packets in the queue and after which there are other 𝑗
packets, will be dropped, 𝑖, 𝑗 ⩾ 0.

a) 𝑝(loss)

1 = 0, 𝑖 = 0, 𝑄2;
b) 𝑄2 < 𝑖 ⩽ 𝑄1 the threshold value of 𝑄1 has not been reached at the time

of receipt;
b.1) 𝑖 + 1 + 𝑗 ⩽ 𝑄1 + 1 — (the threshold has not been crossed even taking

into account the application that came later)

𝑝(loss)

𝑖,𝑗 (𝑥) =
𝑦

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ 𝑝(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

b.2) 𝑖+1+𝑗 > 𝑄1+1 — (the 𝑄1 threshold was overcome due to applications
after the incoming one)

𝑝(loss)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)
𝑖+𝑗+1−(𝑄1+1)

∑
𝑘=1

(𝜇𝑥)𝑘

𝑘!
𝑒−𝜇𝑥𝑝𝑘−1𝑞+

+
𝑥

∫
0

𝑖+𝑗−𝑄1

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦)𝑝(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=𝑖+𝑗−𝑄1+1

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑖+𝑗−𝑄1𝑑𝐴(𝑦)𝑝(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).
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c) 𝑖 > 𝑄1

𝑝(loss)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)
𝑗+1

∑
𝑘=1

(𝜇𝑥)𝑘

𝑘!
𝑒−𝜇𝑥𝑝𝑘−1𝑞+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
⋅ 𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦)𝑝(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦);

𝑝(loss)

𝑖 =
∞

∫
0

𝑝(loss)

𝑖,0 (𝑥)𝑑𝑥.

4.2. Time characteristics of the system

Let 𝑊 (loss)(𝑥) and 𝑊 (serv)(𝑥) be the cumulative distribution functions of
the time spent in the system by the packet before being dropped or served.

The auxiliary functions 𝑊 (serv)

𝑖,𝑗 (𝑥) and w
(serv)

𝑖,𝑗 (𝑥) = (𝑊 (serv)

𝑖,𝑗 (𝑥))
′
, 𝑊 (loss)

𝑖,𝑗 (𝑥)

and w
(loss)

𝑖,𝑗 (𝑥) = (𝑊 (serv)

𝑖,𝑗 (𝑥))
′

(𝑖, 𝑗 ⩾ 0) are the distribution functions and the

densities of distribution functions of the time spent by the served (lossed)
packet in the queue, if there were 𝑖 other packets in the queue before the
considered one and 𝑗 others after it. Then

𝑊 (serv)(𝑥) = 1
𝑝(serv)

∞
∑
𝑖=0

𝑊 (serv)

𝑖,𝑗 (𝑥) ⋅ 𝜋𝑖,

𝑊 (loss)(𝑥) = 1
𝑝(loss)

∞
∑
𝑖=0

𝑊 (loss)

𝑖,𝑗 (𝑥) ⋅ 𝜋𝑖.

a) If a packet enters the empty system (𝑖 = 0), it immediately starts to be
served.

w
(serv)

0,0 (𝑥) =
⎧{
⎨{⎩

0, 𝑥 < 0,
1, 𝑥 ⩾ 0,

𝜔(serv)

0,0 (𝑠) =
∞

∫
0

𝑒−𝑠𝑥w
(serv)

0,0 (𝑥)𝑑(𝑥) = 1,

w
(loss)

0,0 (𝑥) = 0.

b) If the total number of packets in the system has not overcome the
threshold 𝑄2 (0 < 𝑖 ⩽ 𝑄1, 𝑖 + 𝑗 + 1 ⩽ 𝑄1), then the considered packet will
be in the safe area and the renovation mechanism is not enabled.

w
(serv)

𝑖,0 (𝑥) = 𝐴(𝑥) ⋅ 𝜇𝑒−𝜇𝑥 +
𝑥

∫
0

𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w
(serv)

𝑖,1 (𝑥 − 𝑦).



I. S. Zaryadov et al., Analysis of queuing systems with threshold … 173

w
(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥 +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦),

𝜔(serv)

𝑖,𝑗 (𝑠) = (−1)𝑗𝜇𝑗+1

𝑗!
𝛼(𝑗)(𝑠 + 𝜇) +

𝑗

∑
𝑘=0

(−𝜇)𝑘

𝑘!
× 𝛼(𝑘)(𝑠 + 𝜇) ⋅ 𝜔(serv)

𝑖,𝑗−𝑘+1(𝑠),

w
(loss)

𝑖,𝑗 (𝑥) = 0.

c) The case, when at the moment of arrival of the considered packet there
were 0 < 𝑖 < 𝑄2 other packets in the system (our packet was in the safe
area), but currently the total number of packets in the system is equal to
𝑖 + 𝑗 + 1 > 𝑄1 (so the renovation mechanism is enabled)

w
(serv)

𝑖,𝑗 (𝑥) = 𝜇𝑖+𝑗𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝑝𝑖+𝑗+1−𝑄1𝐴(𝑥)+

+ 𝐴(𝑥)
𝑥

∫
0

𝑖+𝑗+1−𝑄1

∑
𝑘=1

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘−1𝑞𝜇𝑑𝑦(𝜇(𝑥 − 𝑦))𝑄2−𝑖−1

(𝑄2 − 𝑖 − 1)
𝑒−𝜇(𝑥−𝑦)+

+
𝑥

∫
0

𝑖+𝑗+1−𝑄1

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑥𝑝𝑘−1𝑞𝑑𝐴(𝑦)w(serv)

𝑖,𝑄2−𝑖−1+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=𝑖+𝑗+1−𝑄1−1

(𝜇𝑦)𝑘

𝑘!
𝑒𝜇𝑦𝑝𝑖+𝑗+1−𝑄1𝑑𝐴(𝑦)w(serv)

𝑖,𝑗−𝑘(𝑥),

w
(loss)

𝑖,𝑗 (𝑥) = 0.

d) The case, when at the moment of arrival of the considered packet there
were 𝑄2 < 𝑖 < 𝑄1 other packets in the system (our packet was out of the safe
area), includes several subcases.

d.1) The first subcase — currently the total number of packets in the system
is 𝑄2 < 𝑖 + 𝑗 + 1 ⩽ 𝑄1 (the renovation mechanism is not enabled)

w
(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥 +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
× 𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦),

w
(loss)

𝑖,𝑗 (𝑥) =
𝑥

∫
0

𝑖+𝑗+1−𝑄2

∑
𝑘=0

𝜇𝑦
𝑘!

𝑒−𝜇𝑦𝑑𝐴𝑦 ⋅ w
(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

d.2) The second subcase, when currently the total number of packets in
the system has overcome the threshold 𝑄1 (𝑖 + 𝑗 + 1 > 𝑄1), so the renovation
mechanism is activated
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w
(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)𝜇𝑗+𝑖𝑥𝑗

𝑗!
𝑒−𝜇𝑦 ⋅ 𝑝𝑖+𝑗+1−𝑄1+

+
𝑥

∫
0

𝑖+𝑗+1−𝑄1

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=𝑖+𝑗+1−𝑄1+1

(𝜇𝑦)𝑘

𝑘!
⋅ 𝑝𝑖+𝑗+1−𝑄1𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(serv)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦),

w
(loss)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)
𝑖+𝑗+1−𝑄1

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑝𝑘−1𝑞𝑒−𝜇𝑥+

+
𝑥

∫
0

𝑖+𝑗+1−𝑄1

∑
𝑘=0

(𝜇𝑢)𝑘

𝑘!
𝑝𝑘𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦)+

+
𝑥

∫
0

𝑗

∑
𝑘=𝑖+𝑗+1−𝑄1+1

(𝜇𝑦)𝑘

𝑘!
⋅ 𝑝𝑖+𝑗+1−𝑄1𝑒−𝜇𝑦𝑑𝐴(𝑦) ⋅ w

(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

e) The last case, when the threshold 𝑄1 was overcome (𝑖 > 𝑄1) at the
moment of our packet arrival

w
(serv)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)𝜇𝑗+1𝑥𝑗

𝑗!
𝑒−𝜇𝑥𝑝𝑗+1 +

𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦)⋅w(serv)

𝑖,𝑗−𝑘+1(𝑥−𝑦),

w
(loss)

𝑖,𝑗 (𝑥) = 𝐴(𝑥)
𝑗+1

∑
𝑘=1

𝜇𝑘𝑥𝑘−1

(𝑘 − 1)!
𝑒−𝜇𝑥𝑝𝑘−1𝑞+

+
𝑥

∫
0

𝑗

∑
𝑘=0

(𝜇𝑦)𝑘

𝑘!
𝑒−𝜇𝑦𝑝𝑘𝑑𝐴(𝑦) ⋅ w

(loss)

𝑖,𝑗−𝑘+1(𝑥 − 𝑦).

5. GPSS simulation results

Below (see table 1) is presented a table with GPSS simulation results that
was performed with the following initial parameters: threshold value 𝑄1 = 30,
arrival rate — 14 task per 1 unit of time, service rate — 16 task per 1 unit
of time, and the simulation time is 100000 units of time) for different drop
probabilities.

The table 2 shows the results of GPSS simulation that was performed with
the following initial parameters: arrival rate — 14 task per 1 unit of time,
service rate — 16 task per 1 unit of time, 𝑞 = 0.01, and the simulation time
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is 100000 units of time) for different threshold values. For the third model
the threshold value 𝑄2 = 10.

Table 1

Simulation results for different drop probabilities

𝑞 propability 0.0025 0.005 0.01 0.025 0.05 0.1 0.15

Generated

tasks

sys.1 1401525 1401566 1401134 1400127 1400915 1399127 1398795

sys.2 1400992 1401374 1401547 1400816 1401421 1400971 1401135

sys.3 1401647 1401379 1400564 1400333 1400889 1400251 1399581

Serviced

tasks

sys.1 1400084 1398863 1396791 1394210 1393457 1389597 1389540

sys.2 1400752 1400843 1400879 1399692 1399428 1399166 1399030

sys.3 1400537 1399411 1397201 1395975 1395643 1393555 1393104

Serviced tasks

without calling

the renv. mech.

sys.1 1379233 1381969 1385859 1388162 1388647 1386899 1387651

sys.2 1378347 1381669 1385318 1388493 1387780 1391338 1391897

sys.3 1379887 1382616 1385828 1389605 1390628 1390814 1391166

Dropped

tasks

sys.1 1436 2698 4332 5917 7456 9530 9249

sys.2 240 527 663 1117 1984 1803 2104

sys.3 1091 1967 3357 4357 5240 6696 6472

Service

Probability

sys.1 0.9990 0.9981 0.9969 0.9958 0.9947 0.9932 0.9934

sys.2 0.9998 0.9996 0.9995 0.9992 0.9986 0.9987 0.9985

sys.3 0.9992 0.9986 0.9976 0.9969 0.9963 0.9952 0.9954

Drop

Probability

sys.1 0.0010 0.0019 0.0031 0.0042 0.0053 0.0068 0.0066

sys.2 0.0002 0.0004 0.0005 0.0008 0.0014 0.0013 0.0015

sys.3 0.0008 0.0014 0.0024 0.0031 0.0037 0.0048 0.0046

Average

queue length

sys.1 6.0930 5.9230 5.7090 5.5240 5.4820 5.3080 5.2360

sys.2 6.1800 6.0780 6.0220 5.8580 5.9530 5.7980 5.8550

sys.3 6.1230 5.9360 5.7330 5.5720 5.5560 5.4120 5.3290

Maximum

queue length

sys.1 92 71 63 67 54 46 43

sys.2 92 64 61 65 60 51 49

sys.3 92 71 71 67 54 46 43

Average

waiting time

sys.1 0.497 0.483 0.467 0.453 0.449 0.437 0.431

sys.2 0.503 0.495 0.491 0.478 0.485 0.473 0.478

sys.3 0.499 0.484 0.469 0.456 0.454 0.444 0.438
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Table 2

Simulation results for different threshold values

Threshold

value 𝑄1

10 20 25 30 40 50 75

Generated

tasks

sys.1 1399202 1401573 1401188 1401134 1399645 1400335 1400451

sys.2 1399603 1400523 1399393 1401547 1402003 1400032 1399596

sys.3 1399603 1400753 1400647 1400564 1399680 1400321 1400448

Serviced

tasks

sys.1 1368353 1389618 1393927 1396791 1398462 1399917 1400367

sys.2 1387180 1397457 1397721 1400879 1401813 1399986 1399562

sys.3 1387180 1393344 1395743 1397201 1398764 1399969 1400374

Serviced tasks

without calling

the renv. mech.

sys.1 1166280 1343186 1370099 1385859 1394747 1398969 1400319

sys.2 1145456 1336931 1365038 1385318 1396545 1398819 1399341

sys.3 1145456 1346681 1372422 1385828 1395050 1399021 1400326

Dropped

tasks

sys.1 30833 11955 7261 4332 1176 407 83

sys.2 12423 3065 1672 663 190 42 33

sys.3 12423 7409 4902 3357 916 337 73

Service

Probability

sys.1 0.9780 0.9915 0.9948 0.9969 0.9992 0.9997 0.9999

sys.2 0.9911 0.9978 0.9988 0.9995 0.9999 1.0000 1.0000

sys.3 0.9911 0.9947 0.9965 0.9976 0.9993 0.9997 0.9999

Drop

Probability

sys.1 0.0220 0.0085 0.0052 0.0031 0.0008 0.0003 0.0001

sys.2 0.0089 0.0022 0.0012 0.0005 0.0001 0.0000 0.0000

sys.3 0.0089 0.0053 0.0035 0.0024 0.0007 0.0002 0.0001

Average

queue length

sys.1 4.564 5.273 5.5330 5.7090 5.9110 5.934 6.158

sys.2 5.069 5.7 5.8540 6.0220 6.0780 6.014 6.089

sys.3 5.069 5.37 5.5630 5.7330 5.9210 5.933 6.158

Maximum

queue length

sys.1 67 64 71 63 80 76 89

sys.2 67 75 62 61 64 76 102

sys.3 67 75 59 71 80 76 89

Average

waiting time

sys.1 0.381 0.433 0.454 0.467 0.484 0.485 0.502

sys.2 0.418 0.466 0.479 0.491 0.496 0.491 0.497

sys.3 0.418 0.441 0.456 0.469 0.485 0.485 0.502



I. S. Zaryadov et al., Analysis of queuing systems with threshold … 177

6. Conclusion

Based on the simulation results 1, the following conclusions can be drawn.
The largest number of dropped packets, as expected, is observed in the first
model, the smallest — in the second model (due to the safe zone). The third
model shows an average result compared to the first and the second models.
The largest number of serviced packets is in the second model, then — in the
third model. The smallest number of serviced packets is in the first model.

The probability of a packet to be dropped is about five times greater for
the first model than for the second model, and 20–30 percent more than for
the third model.

The average waiting time for the second model is about 5–10 percent greater
than the same characteristic for the first and third models.

As the value of the renovation probability 𝑞 increases, the drop probability
increases for all three models, and the service probability decreases accordingly.
Also, with an increase of the renovation probability 𝑞, both the average and
maximum queue lengths decrease, and the average waiting time also decreases.

Based on the simulation results 2, the following conclusions can be drawn.
With an increase of the threshold value 𝑄1 responsible for switching on the
renovation mechanism, the number of dropped packets decreases for all three
models (the second model is characterized by the smallest number of dropped
packets), the service probability increases to unity (the second model), and
the drop probability decreases almost to zero. The average and maximum
queue lengths increase, and the values   for the first and third models become
approximately the same. The average waiting time also increases, and again
for the first and third models, the values   become approximately the same.

The third model, which generalizes the first and the second models, shows
average results compared to the above models, and is more preferable for use
as a queue length management model.
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Анализ систем массового обслуживания с пороговым
механизмом обновления и инверсионной дисциплиной

обслуживания

И. С. Зарядов1, 2, Илкиаш К. К. Виана1, Т. А. Милованова1

1 Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

2 Институт проблем информатики,
Федеральный исследовательский центр «Информатика и управление» РАН,

ул. Вавилова, д. 44, кор. 2, Москва, 119333, Россия

Аннотация. В работе представлено исследование трёх систем массового обслу-
живания с пороговым механизмом обновления и инверсионной дисциплиной
обслуживания. В модели первого типа пороговое значение отвечает только за ак-
тивацию механизма обновления — механизма вероятностного сброса заявок. Во
второй модели пороговое значение не только включает механизм обновления, но
и определяет в накопителе границы области, из которой поступившие в систему
заявки не могут быть сброшены. В модели третьего типа, обобщающей преды-
дущие две модели, используются два пороговых значения: одно для активации
механизма сброса заявок, второе — для задания безопасной зоны в накопителе.
На основе полученных ранее результатов представлены основные вероятностно-
временные характеристики рассмотренных моделей. С помощью имитационного
моделирования проведён анализ и сравнение поведения изученных моделей.

Ключевые слова: система массового обслуживания, активное управление оче-
редью, механизм обновления, пороговое значение, временные характеристики,
GPSS


