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Abstract. The model of adiabatic waveguide modes (AWMSs) in a smoothly irregular
integrated optical waveguide is studied. The model explicitly takes into account the
dependence on the rapidly varying transverse coordinate and on the slowly varying
horizontal coordinates. Equations are formulated for the strengths of the AWM fields
in the approximations of zero and first order of smallness. The contributions of the
first order of smallness introduce depolarization and complex values characteristic of
leaky modes into the expressions of the AWM electromagnetic fields. A stable method
is proposed for calculating the vertical distribution of the electromagnetic field of
guided modes in regular multilayer waveguides, including those with a variable number
of layers. A stable method for solving a nonlinear equation in partial derivatives of
the first order (dispersion equation) for the thickness profile of a smoothly irregular
integrated optical waveguide in models of adiabatic waveguide modes of zero and
first orders of smallness is described. Stable regularized methods for calculating the
AWM field strengths depending on vertical and horizontal coordinates are described.
Within the framework of the listed matrix models, the same methods and algorithms
for the approximate solution of problems arising in these models are used. Verification
of approximate solutions of models of adiabatic waveguide modes of the first and
zero orders is proposed; we compare them with the results obtained by other authors
in the study of more crude models.

Key words and phrases: smoothly irregular thin—film dielectric waveguides, adia-
batic waveguide modes, regularized methods for calculating field strengths

1. Introduction

The adiabatic waveguide propagation of optical radiation was previously
described in optical fibers using the method of cross sections in the papers
by B.Z. Katsenelenbaum [1], V. V. Shevchenko [2], M. V. Fedoruk [3|, and
in integrated optical waveguides using the method of adiabatic waveguide
modes — in the papers by A.A. Egorov, L. A. Sevastyanov and their co-
authors [4]-[6]. In the papers by A.L. Sevastyanov [7], [8], the model of
adiabatic waveguide modes was substantiated.

It should be noted that in the last decade there has been an interest in the
adiabatic waveguide propagation of electromagnetic radiation for the study
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of coherent quantum effects in atomic, molecular or condensed matter sys-
tems. These effects are difficult to investigate because of dephasing effects or
fast temporal dynamics. Optical Bloch oscillations [9], quantum-mechanical
analogy of dynamic mode stabilization and radiation loss suppression [10],
quantum enhancement and suppression of tunneling in directional optical cou-
plers [11], [12], as well as Landau—Zener tunneling in coupled waveguides [13|
can serve as optical models of coherent quantum effects. An interesting ex-
ample is the three-level system with stimulated Raman adiabatic passage
(STIRAP), which vividly illustrates counterintuitive quantum effects [14]-
[19].

2. Model of adiabatic waveguide modes in a multilayer
waveguide

Let us specify the class of integrated optical waveguides to be considered
and the electromagnetic radiation propagating through them.

1. Electromagnetic radiation is polarized, monochromatic with a given
wavelength \ € [380;780], nm.

2. The thickness of the guiding layer of the base thin-film waveguide is
comparable to the wavelength of the propagating monochromatic elec-
tromagnetic radiation d ~ .

3. The surface of the additional guiding layer (x = h(y, z)) satisfies the

Oh 0Oh hky |Agp kq

Oy’ Oz 2’ |V 27

4. The integrated optical waveguide is a material medium consisting of
dielectric subregions, which together fill the entire three-dimensional
space.

5. The permittivities of the subregions are different and real-valued, and
the permeability is everywhere equal to that of vacuum.

6. There are no external currents and charges. Therefore, in the absence of
foreign currents and charges, the induced currents and charges are zero.

7. The Cartesian coordinate system is introduced as follows: the interfaces
between the dielectric media of the basic three-layer waveguide are parallel
to the yOz plane. The subdomains of the space corresponding to the
cover and substrate layers are infinite; the additional guiding layers are
asymptotically parallel to the yOz plane. Therefore, € = &(x).

following restrictions:

In Cartesian coordinates associated with the geometry of the substrate
(or a three-layer planar dielectric waveguide underlying a smoothly irregular
integrated optical waveguide), with the introduced restrictions taken into
account, the Maxwell equations have the form
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Note that variable x is fast, and variables y, z are slow with respect to the
small dimensioned parameter 1/w. The approximate solutions to the Maxwell
equations (1) within the asymptotic method [20], [21], with the separation of
slow and fast variables taken into account are sought in the form

kS ]_7?

(z,y,2,t) = Z = 7+s exp {iwt — ikyp(y, 2)}, (2)
s=0
> FI (z;y, 2 ) .

H(zx,y,zt) Z i eXp {iwt — ikyp(y,2)} - (3)

= (=i

Keeping in the solution (2), (3) the terms of the zero and first order of
smallness leads to the model of adiabatic waveguide modes (AWMSs) that
describes the guided-wave propagation of a polarized optical radiation through
irregular segments of smoothly irregular (multilayer) optical waveguides.
In regular parts, the adiabatic waveguide modes become normal modes of
a regular planar optical waveguide.

In the notation E’S (z3y,2), FIS(:E; Yy, z), the separation by a semicolon means
the following assumptions:

OF, (;y, 2)|| ||0E (w59, 2)|| 1 ||0E, (x3y,2) (4)
Oy ’ Oz w Ox
and R = =
0, (19, )|| [|9H, (.|| _ 1[0 (x:.2) 5
Oy ’ w Ox

for each s, where || is the Hilbert norm of functions of z, and w is the circular
frequency of the propagating monochromatic electromagnetic radiation.

2.1. AWM model equations in the zero-order approximation

In Ref. [7] it was shown that the zero-order approximation (within the
asymptotic approach) of the waveguide solution to the Maxwell equations is
given by the following relations:

E<x7ya Z,t) EI()(J;;ZJ? Z) ' .
N = H ex 1wt — 1 ) 2 , 6
{H(m,y,z,t)} {Ho(x;y,z)} p {iwt —ip(y,2)} (6)

with
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For a thin-film multilayer waveguide consisting of optically homogeneous
layers, the conditions for matching the electromagnetic field at the interfaces
between the media are valid, namely

nx E-4+nxEt=0, (14)
nx H +7x HY =0. (15)
In addition, the asymptotic conditions
EO EY, HO Ho—i>0 (16)
Tr—+00

are fulfilled.
The system of Egs. (7)—(10), (16) for any fixed (y, z) defines the problem of

o \2 S T
finding eigenvalues (V@) “(y, z) and eigenfunctions (Ei, El H}, Hﬁ) (y, 2),
j

normalized to unity:

[ 1B =1, [ |mifa =1 (17)

2.2. AWM model equations in the first approximation

We continue to apply the approach based on the small parameter expansion
and arrive at the system of equations in the first approximation of the method:
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The system of zero order equations (7)—(12) coincides with the system of
equations (18)—(23), if in the latter we put zero into the right-hand sides (the
contributions with zero-order quantities).

Substituting the solutions of system (7)—(12) into the right-hand sides of
equations (18)—(23) leads to the following form of expressions for electromag-
netic fields in the first (plus zero) approximation

. . i
E(I,y,Z) = Eo(xayv'Z) + ;EH(%%Z%

— — 7: —
H<$,y, Z) = Ho(.’lf;y, Z) + ;H1<xaya Z)'

These fields are necessarily complex-valued. Thus, the contributions of
the first order of smallness introduce into the expressions for the AWM
electromagnetic fields the characteristic features of leaky modes.

3. Implementation of numerical experiment

In Ref. [22], an hierarchy of mathematical models for the adiabatic waveg-
uide propagation of optical radiation in integrated optical waveguides was
proposed. The AWM model consists in representing the electromagnetic field
in the form (6). The dependences of the field strengths on the fast vari-
able have the form (7)—(12) in the zero approximation and (18)—(23) in the



154 DCM&ACS. 2022, 30 (2) 149-159

first approximation. Of course, the rigging conditions (13)—(17) of the AWM
mathematical model are assumed to be fulfilled.

3.1. Algorithm for calculating the AWM electromagnetic field

A. Stage 1: reconstructing the dependence of the AWM electromagnetic

field on the fast variable at fixed values of the slow variables
1. Solve the system (7)-(12) for E°, H° describing the AWM model in
the zero order of smallness in 1/w, rigged with (6), (18)—(23) using the

method, asymptotic with respect to d, to obtain systems for contributions
of different orders of smallness with respect to .

2. Solve the system (13)—(17) for E', H' describing the AWM model in
the first order of smallness in 1/w, rigged with (6), (18)—(23) using the
method, asymptotic with respect to 9, to obtain systems for contributions
of different orders of smallness with respect to 9.

B. Stage 2: reconstructing the dependence of the AWM electromagnetic
field on the slow variables.
In Ref. [7] it is shown how the general solutions of the system of
ODEs (7)—(12) and (13)—(17), represented in the form of expansion in the
= T
fundamental system of solutions with indefinite coefficients (A, B) , can be

reduced to a homogeneous system of linear algebraic equations (SLAE) with
respect to these indefinite coefficients using the conditions (14)-(16).

3. Implement stable methods of approximate solutions of the homogeneous
SLAE

MO [(2,9), h(z9), 0(z.9), Veo(z.9)] (Az9), B(z,9)) = (6,0)",  (4)

satisfying the conditions

det{M°} [(2,), h(2,9), (2, 9), Vep(2,9)] = 0. (25)

4. Implement stable methods of approximate solutions of the homogeneous
SLAE

M [(2,9),hlz,y) (2, 9), V(= )] (A2 ), B (=) = (6,6)"  (26)

satisfying the conditions

det{ M} [(2,9), h(2,9), 9(2,9), Vip(z,y)| = 0. (27)

In both cases, the solution for the field strengths depending on the fast
variable x for a fixed value of the slow variables y, z makes it possible, using
the rigging (6), (18)—(23), to find the dependence of the AWM electromagnetic
field for all values of the slow variables (see, e.g., Ref. [8]).

Homogeneous systems of linear algebraic equations (24) and (26) are
uniquely solvable under conditions (25) and (27). In both cases, these equa-

tions with respect to the derivative @go(z, y) are partial differential equations
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of the form R R
FO (Ve(z,y); h(z,y), Vh(z,y)) =0 (28)

and . -
F' (Ve(zy); h(z,y), Vh(z,y)) = 0. (29)
5. Solve Egs. (28) and (29) numeric-symbolically using the Cauchy method
(see, e.g. [23], [24]).
6. For each @gp(z, y) calculate (fio (z,y,@go(z,y)) . B° <z7y, @gp(z,y)))T

using the Tikhonov regularization method, which consists in minimizing
the Nelder—-Mead functional:

FO(8) = |10 [(2.9). bz, (), Veolz)] (A0(z9). B ) | +
+aH AO (z,y)— A (z— Az, y— Ay)) ,(Bo(z, y)— B, (z—Az,y—Ay)))THz.

C. Stage 3: verifying the obtained numerical results and AWM models of
the first and zero orders of smallness.

The validation of the asymptotic method of constructing AWM models is
carried out by comparing solutions E*, H' and E°, H°.

The formulation of the third condition from the set of conditions 1-7 implic-

itly implies the presence of the second small parameter 6 = max
vk |VS0 ’
(see the beginning of the first section).

To verify the obtained approximate solutions of the zero-order model of
adiabatic modes, we compare them with the results obtained by other authors
using more crude models:

— matrix model of adiabatic modes in the approximation of horizontal
boundary conditions (a stepped set of plates for a Luneburg thin-film
generalized waveguide lens)

Such configurations are impossible in optical fibers and can be imple-
mented in the case of adiabatic waveguide propagation of a nonparallel
(converging or diverging) 2D beam of rays, normal to a nonplanar (2D)
wave front.

— matrix model of comparison waveguides (passing to the horizontal bound-
ary conditions + replacement 8, — 0, 8, — B).

Thus, three levels of making the AWM model cruder were used.

4. Discussion and conclusion

In the paper, we consider three levels of making the AWM model cruder:

— replacing the first-order AWM model with the zero-order one;

— replacing the tangential boundary conditions with the horizontal ones —
the matrix model still having no name;

— replacing the tangential boundary conditions with the horizontal ones
and 8, — 0, 8, — 8 — the matrix model of comparison waveguides.
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Two latter approximations have been used by other authors.

Within the listed matrix models, similar methods and algorithms are used
for the approximate solution of problems, arising in the models. The method
of studying the matrix model of adiabatic waveguide modes in the zero
and first approximation of a smoothly irregular multilayer integrated optical
waveguide is proposed for the first time. It allows to grade the crudeness of
the approximate models used by other authors and approximate solutions in
the adiabatic mode models of different order of smallness.
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WUccnenoBanue moiesu ainabaTndecKnx BOJTHOBOJHBIX
MO/, AJid TLJIaBHO-HEPEeryJasspHbIX
VHTErPAJIbHO-ONITUYECKNX BOJIHOBO/I0B

A. JI. CeBacTbsaHOB

Hayuonaronnidi uccaedosameavekutl yrusepcumem «Bvicwas wrkoia sKOHOMUKUS ,
THoxposckuti byaveap, 0. 11, Mockea, 109028, Poccus

Ansoranus. IIpoBeneHo ucciaemoBanue Mozeu aauabaATHIECKUX BOJIHOBOILHBIX
MO/I, ILJIABHO-HEPEryJISIPHOIO MHTEIPAJIbHO-OIITUYECKOrO BOJHOBOIA. B Momenn sB-
HO yYT€HA 3aBUCUMOCTH OT OBICTPOIEPEMEHHON MOIEPEUIHON KOOPJAWMHATHI U OT
MeIJIEHHO-[IEPEMEHHBIX TOPU30HTAIBHBIX KoopauHaT. ChopMyIupOBaHbl ypaBHEHUS
U1 HanpsizkeHHocrel moeit ABM B mpubiimKeHusIX HyJIeBOrO W IIEPBOro IMOPSIKA
MaJIOCTU. BK.HaILbI IIEPBOr'o IMOpdAKa MaJIOCTH BHOCAT B BbIPpaKCHUA JJIEKTPpOMAar-
HATHBIX Tosieit ABM memosipusaiinio U KOMJIEKCHO3HAYHOCTD, T.€. XapaKTepHbIE
9epThl BBITEKAIONINX MO, IIpeyioyKeH yCTOMYuBbIi MEeTO.I BHIYUCJICHUSI BEPTUKAIb-
HOI'O pacIpeiesieHrus JIEKTPOMATHUTHOIO II0JIA HAIPABJISIEMbIX MOJ, PEry/IApPHbIX
MHOT'OCJIOMTHBIX BOJITHOBOJOB, B TOM 4YHCJI€ C II€pEeMCEHHbIM YHCJIOM CJIOEB. OHI/IC&H
YCTOMYMBBIA METOJI pellleHrs HeJIUHEHHOIO YpPaBHEHUs] B YACTHBIX IIPOU3BOIHBIX
[IepBOrO TMOPsiiKa (JAMCIEPCUOHHOIO ypaBHEHUs) JJIsi TIPOMUIIs TOJIIIMHBL [ITIABHO-
HEPEryJIgPHOTO WHTErPAJIHLHO-ONTUIECKOTO BOJIHOBOMIA B MOJIE/IAX aIMA0ATUIECKUAX
BOJIHOBOJIHBIX MO/I HYJIEBOTO W IIEPBOr0 MOPSAAKOB MayocTh. OQmucaHbl yCTONIUBLIE pe-
IYJISIPU30BAHHBIE METO/BI BLIYUCJIEHUs HalpsizkeHHocreil nojeii ABM B 3aBucuMocTu
OT BEPTUKAJbHBIX U FOPU30HTAJLHBIX KOOPAUHAT. B paMKax IepedYrCIeHHbIX MaT-
PUYIHBIX MO,ZLGJ'IGI';I I/ICHOJIBSyIOTCH OJNHAKOBBIE METOJIbI 1 aJITOPUTMbI HpI/I6J’H/I)KeHHOFO
PelleHns 3a1a4, BOSHUKAIOIINX B 9TUX MOJEIAX. [Ipemiozkena BepuduKanus npudJIm-
JKEHHBIX PeIleHuil Moaesell auabaTidecKuX BOJHOBOIHBIX MO IIEPBOIO U HYJIEBOIO
IOPAIKOB; IIPOBEIEHO CpaBHEHUE UX C peSyﬂbTaTaMI/I ﬂpyFI/IX aBTOPOB, HO.HyLIeHHbIX
[P UCCJIeI0BAHUU OoJtee TPYOBIX MOIesel.

Krouesnie ciioBa: MOJCJIN KBAHTOBBIX I/I3MepeHI/IIt/'I7 BO3MYIIIEHUE TUCKPETHOT'O CIIEK-
Tpa, KOMIIJIECKCHBIE COOCTBEHHBIC SHaYCHUA, IIYIKHU OIIEpaTOPOB



