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Abstract. One of the possible versions of quantum mechanics, known as Kuryshkin–
Wodkiewicz quantum mechanics, is considered. In this version, the quantum
distribution function is positive, but, as a retribution for this, the von Neumann
quantization rule is replaced by a more complicated rule, in which an observed value

𝐴 is associated with a pseudodifferential operator �̂�(𝐴). This version is an example
of a dissipative quantum system and, therefore, it was expected that the eigenvalues
of the Hamiltonian should have imaginary parts. However, the discrete spectrum of
the Hamiltonian of a hydrogen-like atom in this theory turned out to be real-valued.
In this paper, we propose the following explanation for this paradox. It is tradition-
ally assumed that in some state 𝜓 the quantity 𝐴 is equal to 𝜆 if 𝜓 is an eigenfunction

of the operator �̂�(𝐴). In this case, the variance �̂�((𝐴 − 𝜆)2)𝜓 is zero in the standard
version of quantum mechanics, but nonzero in Kuryshkin’s mechanics. Therefore,
it is possible to consider such a range of values and states corresponding to them

for which the variance �̂�((𝐴 − 𝜆)2) is zero. The spectrum of the quadratic pen-

cil �̂�(𝐴2) − 2�̂�(𝐴)𝜆 + 𝜆2 ̂𝐸 is studied by the methods of perturbation theory under

the assumption of small variance �̂�(𝐴) = �̂�(𝐴2) − �̂�(𝐴)2 of the observable 𝐴. It

is shown that in the neighborhood of the real eigenvalue 𝜆 of the operator �̂�(𝐴),
there are two eigenvalues of the operator pencil, which differ in the first order of

perturbation theory by ±𝑖√⟨�̂�⟩.

Key words and phrases: models of quantum measurements, perturbation of discrete
spectrum, complex eigenvalues, operator pencils

1. Introduction

The Kuryshkin–Wodkiewicz quantum mechanics [1] is an example of a dis-
sipative quantum system. The quantum part of the measuring device is the
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‘environment of an open quantum system’. In the process of quantum mea-
surement, an open quantum system interacts with its ‘environment’. We
study the result of this interaction [2]–[12]. Therefore, wave vectors must have
a finite lifetime, inversely proportional to the imaginary part of eigenvalues.

In this version of quantum mechanics, the von Neumann quantization rule
was abandoned and observable quantities are assigned to pseudo-differential
operators, not necessarily self-adjoint. Therefore, the appearance of the
imaginary part of the eigenvalues is not surprising. However, our studies
of hydrogen-like atoms have shown that the operator corresponding to the
Hamiltonian is essentially self-adjoint, so its discrete spectrum turned out to
be real [13], [14].

This is quite surprising, since the von Neumann rule can be derived from
general considerations, if we assume that the relation between the quantities

𝐴 = 𝑔(𝐵) is inherited by their operators ̂𝐴 = 𝑔(�̂�) [15, P. 36]. Violation
of this property inevitably means that the Kuryshkin–Wodkiewicz theory
must be interpreted within the framework of the measurement theory and
imaginary eigenvalues must appear. In this paper, we point out a spectral
problem that has properties that are correct from this point of view.

2. Quantization in Kuryshkin–Wodkiewicz mechanics

Consider a Hamiltonian system with coordinates 𝑞 ∈ ℝ𝑛, momenta 𝑞 ∈ ℝ𝑛,
and Hamiltonian 𝐻. We will assume that the Hamiltonian and all observables
considered below belong to a commutative ring ℳ, for example, to the
polynomial ring ℝ[𝑝, 𝑞] or the ring 𝐶∞(ℝ𝑛)[𝑝].

In classical statistical mechanics, the state of the system is described by
the distribution function 𝑓, in quantum mechanics by the wave function
𝜓 ∈ 𝐿2(ℝ𝑛). In statistical mechanics, the mean value of the observable
quantity 𝐴 ∈ ℳ is given by

⟨𝐴⟩ = ∬
ℝ2𝑛

𝐴(𝑝, 𝑞)𝑓𝑑𝑝𝑑𝑞,

and in quantum mechanics by the expression

⟨𝐴⟩ = ∫
ℝ𝑛

𝜓∗(𝑞) ̂𝐴𝜓(𝑞)𝑑𝑞,

where ̂𝐴 is the operator corresponding to the observable 𝐴. In 1966, Cohen
[16] proved that these two equalities for the mean cannot be combined in one
theory, if it is assumed that the density takes strictly positive values, and the
transition from mechanical quantities to operators is carried out according to
the von Neumann rule.

However, if this rule of ‘quantization’ of mechanical quantities is abandoned,
then it is possible to construct a version of quantum mechanics in which the
average can be calculated by both formulas and the density takes positive
values. Instead of the von Neumann rule, this theory uses a more complicated
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mapping of the commutative ring ℳ into the ring of linear operators on the

space 𝐿2(ℝ𝑛): �̂� ∶ ℳ → 𝐿(𝐿2(ℝ𝑛) → 𝐿2(ℝ𝑛)).
This correspondence does not satisfy the Neumann rule, i.e., generally

speaking, �̂�(𝐴) ≠ 𝐴( ̂𝑝, ̂𝑞), but it is linear, namely: for any 𝐴, 𝐵 ∈ ℳ and
any 𝑘 ∈ ℂ

1. �̂�(𝐴 + 𝐵) = �̂�(𝐴) + �̂�(𝐵),
2. �̂�(𝑘𝐴) = 𝑘�̂�(𝐴),
3. �̂�(0) = 0,

4. �̂�(1) = ̂𝐸.

In the early 1970s, V.V. Kuryshkin [1] not only proved the existence of
such mappings, but also proposed an explicit construction for them. In
doing so, it was necessary to extend the class of operators, in which the

mapping �̂� takes value, from the class of self-adjoint differential operators to
a non-commutative ring of non-self-adjoint pseudo-differential operators. The
resulting new version of quantum mechanics was called Kuryshkin–Wodkiewicz
mechanics.

It turned out that ‘perturbed operators’ satisfy a certain condition for the
proximity of the new quantization rule to the von Neumann rule:

�̂�(𝐴) = 𝐴( ̂𝑝, ̂𝑞) + ̂𝑉 ,

where the addition of ̂𝑉 to the standard quantization rule is an operator
compact in the sense of Jorgens [17]. Therefore, the lower bounds of the

essential spectra of the operators �̂�(𝐴) and 𝐴( ̂𝑝, ̂𝑞), as well as the points of
the discrete spectra of these operators, may not coincide, but the structure of
the spectrum is preserved: the points of the discrete spectrum lie below the
continuous spectrum [18].

For what follows, the explicit form of the mapping �̂� is not important.

For hydrogen-like atoms, we explicitly computed �̂�(𝑝𝑖) and �̂�(𝑔) for any
function 𝑔 of coordinates 𝑞 [14]. It turned out that in all these cases self-
adjoint operators are obtained. This implies, in particular, that the spectrum

of the operator �̂�(𝐻) consists of a continuous part, which coincides with the
spectrum 𝐻( ̂𝑝, ̂𝑞), found in standard quantum mechanics, below the lower
boundary of which lie the discrete spectrum points, which are slightly different
from the points of the discrete spectrum of the operator 𝐻( ̂𝑝, ̂𝑞). However,

all these points are real due to the self-adjointness of the operator �̂�(𝐻).

3. Spectral problem for a quadratic pencil

Let 𝐴 ∈ ℳ be an arbitrary observable. For brevity, we take

�̂�(𝐴) = ̂𝐴, �̂�(𝐴2) = ̂𝐴2 + �̂�.

If the von Neumann rule is not satisfied, then two eigenvalue problems arise
here:
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1) classic problem

�̂�(𝐴 − 𝜆)𝜓 = 0
or

̂𝐴𝜓 = 𝜆𝜓;
2) eigenvalue problem for a quadratic operator pencil

�̂�((𝐴 − 𝜆)2)𝜓 = 0

or
( ̂𝐴 − 𝜆 ̂𝐸)2𝜓 + �̂�𝜓 = 0.

In standard quantum mechanics, �̂� = 0 and these problems are indistin-
guishable. The meaning of the first one has been discussed many times, but
the second problem has a clear meaning. Expression

(𝜓, 𝑂((𝐴 − 𝜆)2)𝜓) = ⟨(𝐴 − 𝜆)2⟩

is the mean square deviation of the observable value 𝐴 from the value 𝜆 for
the system in the 𝜓 state. In mechanics with a positive distribution function,
which is the Kuryshkin–Wodkiewicz mechanics, this value coincides with

⟨(𝐴 − 𝜆)2⟩ = ∬
ℝ2𝑛

(𝐴(𝑝, 𝑞) − 𝜆)2𝑓𝑑𝑝𝑑𝑞

and therefore is non-negative. The same is true in standard quantum mechan-
ics, but for a different reason:

⟨(𝐴 − 𝜆)2⟩ = ∫
ℝ

(𝜇 − 𝜆)2𝑑(𝜓, �̂�𝜇𝜓) ⩾ 0.

If we assume that �̂� is small, then the eigenvalues of these spectral problems
are close to each other. Let us study this circumstance in more detail.

But first, we note that in [19] we were looking for the 𝜓 states that provide
a minimum to this expression for fixed values of the parameter 𝜆, for which

we took the eigenvalues of the operator ̂𝐴. It turned out that the minimum
values are nonzero, that is, there is some nonzero variance. However, the
problem can be formulated differently: to find the values of 𝜆 and the states
𝜓, at which the mean square deviation of the observed value 𝐴 from 𝜆 is

minimal. On the eigenfunctions of the pencil �̂�((𝐴 − 𝜆)2), this standard
deviation is zero, therefore, on the pencil eigenfunctions, the mean square
deviation of the observable 𝐴 from the eigenvalue 𝜆 has a minimum, i.e., zero
value. Thus, we can observe the value 𝐴 in ‘pure’ states corresponding to

the eigenfunctions of the operator ̂𝐴, or in ‘pure’ states that provide zero
root-mean-square deviation 𝐴 from some value other than ⟨𝐴⟩.

We have already used perturbation theory [19] to find states with minimal
variance, but now we will apply it to finding eigenfunctions of a quadratic
pencil.
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4. Spectrum of a quadratic pencil

Let us introduce a small parameter 𝜀 and consider the problem

( ̂𝐴 − 𝜆 ̂𝐸)2𝜓 + 𝜀�̂�𝜓 = 0. (1)

Let 𝜆0 be a single eigenvalue of the operator ̂𝐴, and 𝜓0 be the normalized
eigenfunction corresponding to it. Let us study the eigenvalues of a quadratic
pencil lying in a small neighborhood of this eigenvalue.

If the space under consideration is finite-dimensional, then all eigenvalues
are roots of the determinant

det(( ̂𝐴 − 𝜆 ̂𝐸)2 + 𝜀�̂�) = 0.

In a neighborhood of the point (𝜆, 𝜀) = (𝜆0, 0) the determinant

det( ̂𝐴 − 𝜆 ̂𝐸)
2

= det( ̂𝐴 − 𝜆 ̂𝐸)
2

has a zero of multiplicity 2, so

det(( ̂𝐴 − 𝜆 ̂𝐸)2 + 𝜀�̂�) = 𝑎(𝜆0 − 𝜆)2 + 𝜀𝑏 + … .

As is known from the theory of uniformization of curves [20], the curve

𝑎(𝜆0 − 𝜆)2 + 𝜀𝑏 + ⋯ = 0

in the plane 𝜆𝜀 has a node at the point (𝜆0, 0) through which two arcs of this
curve pass, which can be represented as two Puiseux series:

𝜆 − 𝜆0 = ±𝑐
√

𝜀 + … .

Thus, in the vicinity of a single eigenvalue of the operator ̂𝐴 there are two
eigenvalues of the quadratic pencil:

𝜆 = 𝜆0 ± 𝜆1
√

𝜀 + … . (2)

This can be justified in the case of infinite-dimensional spaces, for completely

continuous operators ̂𝐴, �̂� this can be done using the well-known results of the
perturbation theory of multiple eigenvalues [21]. Of course, in quantum theory,

the operator ̂𝐴 is pseudo-differential, and the question requires additional
study. For the time being, we assume without further justification that
the formally developed perturbation theory can be justified for this class of
operators as well.

To find the first coefficient in the expansion, as in regular perturbation
theory, we multiply (1) by 𝜓0:

(𝜓0, ( ̂𝐴 − 𝜆 ̂𝐸)2𝜓) = −𝜀(𝜓0, �̂�𝜓). (3)
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Since the operator 𝐴 is self-adjoint, we have

(𝜓0, ( ̂𝐴 − 𝜆 ̂𝐸)2𝜓) = (( ̂𝐴 − 𝜆∗ ̂𝐸)2𝜓0, 𝜓) = (𝜆0 − 𝜆)2(𝜓0, 𝜓) = 𝜀𝜆2
1(𝜓0, 𝜓).

Substituting this expression into (3) and reducing by 𝜀, we get

𝜆2
1(𝜓0, 𝜓) = −(𝜓0, �̂�𝜓).

Hence, in the limit 𝜀 → 0, we have 𝜆2
1 = −(𝜓0, �̂�𝜓0).

Substituting this expression into (2) and setting 𝜀 = 1, we have: in the

neighborhood of eigenvalue 𝜆0 of the operator ̂𝐴 there are two eigenvalues of

the quadratic pencil �̂�((𝐴 − 𝜆)2), namely 𝜆 = 𝜆0 ± 𝑖√(𝜓0, �̂�𝜓0) + … where

�̂� = �̂�(𝐴2) − ̂𝐴2.

5. Conclusion and discussion

Let us now discuss the physical meaning of the resulting splitting of the

eigenvalue of the operator �̂�(𝐴). The standard deviation of the observed
value 𝐴 from the value 𝜆 for a system in the 𝜓 state is given by

(𝜓, �̂�((𝐴 − 𝜆)2)𝜓) = ⟨(𝐴 − 𝜆)2⟩.

This expression is non-negative both in standard quantum mechanics and
in Kuryshkin–Wodkiewicz mechanics. It reaches zero on the eigenvectors of

the quadratic pencil �̂�((𝐴 − 𝜆)2).
In standard quantum mechanics

�̂�((𝐴 − 𝜆)2) = ( ̂𝐴 − 𝜆)2

and therefore the eigenvectors of the pencil coincide with the eigenvectors of

the operator ̂𝐴. Therefore, the minimum standard deviation will be on those

values of 𝜆 that are eigenvalues of the operator ̂𝐴. They are traditionally
considered as observed values of 𝐴.

In the mechanics of Kuryshkin–Wodkiewicz

�̂�((𝐴 − 𝜆)2) = ( ̂𝐴 − 𝜆)2 + �̂�

and, as we just found out, the minimum standard deviation will be at

those values of 𝜆 that differ from the eigenvalues 𝜆𝑛 of the operator ̂𝐴
by ±𝑖√(𝜓𝑛, �̂�𝜓𝑛).

Thus, the observed values of 𝐴 will slightly differ from the eigenvalues of

the operator ̂𝐴. If ⟨�̂�⟩ > 0, then this difference will manifest itself in the
appearance of an imaginary additive, as one would expect in a dissipative
quantum system. From this, two conclusions can be drawn.
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Firstly, the transition to the root-mean-square deviation makes it possible to
remove the difficulty with the reality of the spectrum of self-adjoint operators
and obtain the expected dissipation in the Kuryshkin–Wodkiewicz mechanics.

Secondly, one of the two eigenvalues into which the eigenvalue ̂𝐴 splits has
the sign of the imaginary part corresponding to dissipation, and the second
inevitably has a sign indicating antidissipation. We have already encountered
a similar circumstance in the development of perturbation theory in the
mathematical theory of waveguides [22], [23]: the spectral parameter 𝜆 should
be considered as a point on the Riemann surface, only one sheet of which is
physical, to which attention has been first drawn by V.P. Shestopalov [24]. In
the case of Kuryshkin–Wodkiewicz mechanics, the eigenvalues of the operator

�̂�(𝐴) are branch points on the Riemann surface, one of whose sheets describes
a dissipative quantum system.
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Комплексные собственные значения в квантовой
механике Курышкина–Вудкевича

А. В. Зорин 1, М. Д. Малых1, 2, Л. А. Севастьянов1, 2

1 Кафедра прикладной информатики и теории вероятностей
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия
2 Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская обл., Россия, 141980

Аннотация. Рассматривается одна из возможных версий квантовой механики,
известная как квантовая механика Курышкина–Вудкевича. В этой версии су-
ществует положительная квантовая функция распределения, но, в расплату за
это, правило квантования фон Неймана заменено более сложным правилом, при
котором наблюдаемой величине 𝐴 ставится в соответствие псевдодифференци-

альный оператор �̂�(𝐴). Эта версия представляет собой пример диссипативной
квантовой системы и поэтому ожидалось, что собственные значения гамильто-
ниана должны иметь мнимые части. Однако точечный спектр гамильтониана
водородоподобного атома в этой теории оказался вещественным. В настоящей
статье мы предлагаем следующее объяснение этого парадокса. Традиционно при-
нимают, что в некотором состоянии 𝜓 величина 𝐴 равна 𝜆, если 𝜓 — собственная

функция оператора �̂�(𝐴). При этом дисперсия �̂�((𝐴 − 𝜆)2)𝜓 равна нулю в стан-
дартной версии квантовой механике, но не равна нулю в механике Курышкина.
Поэтому можно рассмотреть такой спектр значений и соответствующих им со-

стояний, при которых дисперсия �̂�((𝐴 − 𝜆)2) равна нулю. В статье исследован

спектр квадратичного пучка �̂�(𝐴2) − 2�̂�(𝐴)𝜆 + 𝜆2 ̂𝐸 методами теории возмуще-

ний в предположении малости дисперсии �̂�(𝐴) = �̂�(𝐴2)−�̂�(𝐴)2 наблюдаемой 𝐴.
Показано, что в окрестности вещественного собственного значения 𝜆 оператора

�̂�(𝐴), имеется два собственных значения операторного пучка, которые в первом

порядке теории возмущений различаются на величину ±𝑖√⟨�̂�⟩.
Ключевые слова: модели квантовых измерений, возмущение дискретного спек-
тра, комплексные собственные значения, пучки операторов


