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Abstract. Mathematical statement of one-wavelength antireflective coating based
on two-dimensional metamaterial is formulated for the first time. The constraints
on geometric parameters of the structure are found. We propose a penalty function,
which ensures the applicability of physical model and provides the uniqueness of
the desired minimum. As an example, we consider the optimization of metasurface
composed of PbTe spheres located on germanium substrate. It is shown that the
accuracy of the minimization with properly chosen penalty term is the same as for
the objective function without it.
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1. Introduction

Last few years the designs of nanostructured coatings with the reflection
coefficient close to zero attract a great attention. Such coatings are promising
for solar cells and other photovoltaic elements which work both in the visible
and in the infrared ranges. Nowadays, high refractive index all-dielectric
meta-atoms are used [1], [2] instead of plasmonics [3], [4] in order to reduce
Joule losses.

Commonly, the properties of substrated metasurfaces are calculated numeri-
cally. The computations are complicated due to big divergence of characteristic
scales: resonator size can be 3–20 times smaller then the wavelength 𝜆. Con-
sequently, it is necessary to choose nonuniform grids with extra fine steps
to describe all areas accurately. It makes computations ineffective for opti-
mization problems. To increase the productivity, we propose to use analytical
formulas from a combination of physical models [4]–[6]. However, each model
has its applicability limitations. Moreover, there are restrictions on struc-
ture geometric parameters caused by fabrication limitations. They should be
taken into account to obtain reasonable solutions. As a result, optimization
parameters vary only in some ranges. The optimization problem should be
stated as a nonlinear inverse problem of conditional minimization.
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Due to resonant response of the particle array, there are numerous peaks
and dips in the metasurface spectrum. Therefore, the result of objective
function minimization strongly depends on the initial approximation. By
performing calculations with several raffled off initial guesses, it is impossible
to guarantee that the deepest of minima we found is global rather than a local
one [7]. We cannot be sure that another deeper minimum does not exist. In
this paper, basing on the idea of the penalty function method, we propose
a well-posed statement of the inverse problem of one-wavelength antireflective
coating based on isotropic two-dimensional metamaterial. The formulation
allows to find global extremum, the location of which is approximately known
from physical considerations. To solve the problem, we use the interior point
method [8]. Its stability and accuracy are discussed.

2. Problem of one-wavelength antireflective coating

Depending on the specific formulation of the problem, it is required to
minimize or maximize reflectance, transmittance, absorptance or their combi-
nation. Commonly, a list of materials used for fabrication of particles and
a substrate is known in advance. The parameters to be determined are period
𝑝 of the structure and radius 𝑟 of the meta-atoms.

According to the Sveshnikov–Ilinskiy approach [9], the solution of the
optimization problem is reduced to multiple solutions of the direct problem (in
our case, calculations of electrodynamic characteristics of the substrated meta-
surface) with directionally modified optimization parameters. To simplify
calculations, it is preferable to model the structure under study by combining
numerical algorithm (for the objective function minimization) with simple
analytical formulas (to solve the direct problem). Similar joint approach is
often used for designing multilayer coatings with the given properties [10],
[11].

2.1. Physical statement of the problem

To start with, consider square periodic array composed of spherical dielectric
scatterers with refractive index 𝑛 and radius 𝑟. The one-layer structure is
located at “air-dielectric” interface with refractive index 𝑛𝑠 of the dielectric
substrate. Such isotropic metasurface (MS) with periodicity 𝑝 is normally
illuminated by an external plane electromagnetic wave (figure 1).

Figure 1. Schematic representation of a metasurface consisting of spherical particles on

a semi-infinite substrate. The structure is normally irradiated by an electromagnetic wave
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To describe electrodynamic properties of MS in air, A.B. Evlyukhin pro-
posed the model of interacting induced dipoles [6]. According to the model,
each sphere is replaced by a pair of electric and magnetic dipoles. To account
for the interaction with other particles, Green’s tensor of the medium is con-
structed. Such approach seems to be general since there is no homogenization
of the structure [12]. In the case of normal incidence, the reflection 𝑅 and
transmission 𝑇 Fresnel coefficients are

𝑅 = 𝑖𝑘0
2𝑝2 (𝛼eff

e − 𝛼eff
m ) , 𝑇 = 1 + 𝑖𝑘0

2𝑝2 (𝛼eff
e + 𝛼eff

m ) , (1)

where 𝑘0 = 2𝜋/𝜆 is the free-space wave number, 𝛼eff
e and 𝛼eff

m are effective
electric and magnetic polarizabilities that take into account interaction be-
tween the meta-atoms in the lattice. Here and after temporal dependence is
assumed to be 𝑒−𝑖𝜔𝑡.

The presence of dielectric substrate influences on the field amplitude at
electric (EDR) and magnetic (MDR) dipole resonances [13]. It was shown that
for all-dielectric MSs, even if the refractive indexes 𝑛 and 𝑛𝑠 are high, the
interaction between spherical particle and the substrate is weak enough [2].
For this reason, the MS located on the interface is modeled as imaginary sheet
described with surface susceptibility electric 𝜒e and magnetic 𝜒m densities
depending on 𝑅 and 𝑇 from (1). The reflection 𝑅s and transmission 𝑇s

coefficients of substrated MS in the uncoupled-element model [4] are as
follows:

𝑅s = (1 + 𝑒) (1 −
√

𝜀𝑚) − (
√

𝜀 − 𝑒) (1 + 𝑚)
(1 − 𝑒) (1 −

√
𝜀𝑚) + (𝜀 − 𝑒) (1 − 𝑚)

,

𝑇s = (1 + 𝑒) (1 + 𝑚) + (1 − 𝑒) (1 + 𝑚)
(1 − 𝑒) (1 −

√
𝜀𝑚) + (𝜀 − 𝑒) (1 − 𝑚)

,
(2)

where 𝜀 = 𝑛2
s is a relative dielectric constant of the substrate, 𝑒 = 𝑖𝑘0𝜒e/ 2

and 𝑚 = 𝑖𝑘0𝜒m/ 2.
The above described approach gives a good qualitative description of the

properties of isotropic all-dielectric MS on a substrate. Namely, it predicts
the number of maxima and minima in the spectrum and dipole resonances
positions [2]. This is quite enough to use it as a block for a direct problem
solution. However, if more accurate model is proposed, formulas (2) will be
easily replaced by the refined ones.

2.2. Constraints on geometric parameters

Limitations on structure periodicity and meta-atom size can be of several
types. Firstly, there are conditions imposed from physical considerations.
Obviously, the geometric parameters of the MS are positive quantities 𝑝 > 0
and 𝑟 > 0 and the particles do not touch each other 𝑝 > 2𝑟. Secondly,
there are limitations associated with the fabrication process. Thus, radius
of identical spherical particles manufactured by dielectric material is usually
not less than 50 nm. They are not located on the substrate closely, but with
the interval equals to the particle diameter or more, therefore, 𝑝 ⩾ 4𝑟. And,
thirdly, it is necessary to take into account the conditions when the physical
model works.
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In our case, we should keep in mind that the Evlyukhin model gives correct
results only when the dipole approximation is applicable. In [6], the condition
for the minimal period is derived

𝑝min = √𝑘0
2

|𝛼eff
e |2 + |𝛼eff

m |2
Im (𝛼eff

e ) + Im (𝛼eff
m )

. (3)

The maximum radius for lossless materials can be found from the criterion
which requires that the dipole contribution to the scattered radiation is greater
than or equal to 95% [14], [15]:

𝑟max ≈ 𝜆
1.3𝑛 + 1

. (4)

Some conditions listed in this subsection are overlapped. To find physical
solutions, the strongest ones should be used. In addition, as upper limit on 𝑝,
it seems reasonable to choose 𝑝 ⩽ 𝜆 in order to exclude far-located and, thus,
weakly interacting meta-atoms.

2.3. Objective functions and mathematical statement of the problem

Consider the simplest formulation of the problem: the reflectance should
be minimized at some fixed wavelength 𝜆 = 𝜆∗. We introduce the vector
x = {𝑝, 𝑟} describing the optimization parameters. Denote the reflectivity

of the structure |𝑅s(x, 𝜆)|2 as 𝑓(x, 𝜆). Let 𝐸2 be a two-dimensional vector
space, 𝐶2 is the closed convex set

𝐶2 = {x ∈ 𝐸2 ∶ 4𝑟 ⩽ 𝑝 ⩽ 𝜆max, 𝑟fabric ⩽ 𝑟 ⩽ 𝑟max}. (5)

Then our goal is to determine the vector x which minimizes the function

𝑓(x, 𝜆) = min, x ∈ 𝐶2. (6)

A preliminary analysis of the function 𝑓(x, 𝜆) behavior shows that it strongly
depends on the particle radius (figure 2). For small 𝑟, its values practically
do not change. The presence of such a horizontal plateau, which is a local
minimum, leads to computation looping and further breakdown. At resonant
radii, there are deep “ravines”. Imposing restrictions on 𝑟, we exclude needless
ravines: only dipole resonance is located to the left of 𝑟max. However, such
limitation does not eliminate the plateau. Therefore, the problem remains
multi-extremal.

To make the desired minimum unique, we modify 𝑓(x, 𝜆) by adding a term

in the form 𝑦(𝑟) = (𝐴𝑟 + 𝐵)𝛽, where 𝛽 is an even natural number. Simple
estimation for the radius 𝑟0, corresponding to MDR at the wavelength 𝜆∗,
is known [16], [17]. The figure 3 shows a symmetric “gutter” centered at
𝑟0 ≈ 𝜆∗/(2𝑛) with width equal to (𝑟max − 𝑟0). Changing the value of 𝛽, it is
possible to control the slope of walls and the flatness of its bottom.
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Figure 2. Dependence of |𝑅s|2 on period 𝑝 and radius 𝑟 at 𝜆 = 10 𝜇m

Figure 3. Penalty function 𝑦(𝑟) for different values of power 𝛽

Assume that 𝑦(𝑟0) = 0 and 𝑦(𝑟max) = 1 on the wall of the gutter, then the
proposed term is

𝑦(𝑟) = ( 𝑟 − 𝑟0
𝑟max − 𝑟0

)
𝛽

. (7)

Due to 𝑦(𝑟) selection in the form (7), we discard minima at large radii
(for which the dipole approximation does not work) and make the plateau at
small radii non-horizontal, see the figure 4. Thus, 𝑦(𝑟) is a penalty function
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that keeps one of optimization parameters within certain range. Finally,
mathematical statement of the problem is the following

𝐹 𝛽[x] = 𝑓(x, 𝜆) + 𝑦(𝑟), x ∈ 𝐶2. (8)

Figure 4. Dependencies of the objective functions (8) with different values of 𝛽 (colored

curves) and (6) (black curve) on radius 𝑟 for fixed period 𝑝 = 5.4676 𝜇m

3. Optimization of the structure

Calculations were carried out for substrated MS (figure 1) with 𝑛 = 5 (lead
telluride PbTe) and 𝑛𝑠 = 4 (germanium Ge) at the wavelength 𝜆∗ = 10 𝜇m,
which approximately corresponds to the human body temperature. The
direct problem (i.e., one of the optimization algorithm blocks) is solved

using analytical formulas (1)–(2). To find global minimum of |𝑅s|2 for 𝑝 ∈
[4𝑟, 12] 𝜇m and 𝑟 ∈ [0.05, 1.1983] 𝜇m, the standard function fmincon from
MATLAB Optimization Toolbox was used. It solves minimization problem of
a scalar nonlinear function of multiple variables with constraints using the
interior point method.

3.1. Practical recommendations

For a prevailing part of software packages, the number of function evalua-
tions is limited by default (i.e., there is the maximum number of iterations).
For example, fmincon permits only 3000 evaluations. This measure prevents
cycling. However, in the case of low gradient of the objective function, it
stops the calculations before some minimum is found.

In the figure 5, the percentage of the initial approximations, for which
numerical calculations converge to the minimum, is indicated near the points.
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For small values of 𝛽, this value is 100%, and while 𝛽 grows it decreases. The
reason for this is as follows. In the objective function (8) with the penalty
term, between the steep wall for large (𝑟 − 𝑟0) and the minimum there are
quite flat areas (minimum “sides”), which become flatter with increasing of 𝛽
(figure 4). These areas require more steps than available. Computations are
interrupted and fmincon returns an error. In this case, it is recommended
to take the last obtained values of 𝑝 and 𝑟 as new initial approximations
and continue minimization. Since these sides are flat, but not horizontal,
calculations converge to the minimum point.

Figure 5. Minimal values of |𝑅s|2 at logarithmic scale for computations with proposed

penalty function (dotted curve) and without it (straight line). The percents of initial

approximations, for which fmincon function converges to the minimum (see text), are

indicated nearby

3.2. Comparison of the objective functions

To demonstrate the advantages of our approach, we compared the results of
minimization with two objective functions (6) and (8). Initial approximations
were chosen randomly: 10 computations were carried out with 100 points.

Their coordinates had Gaussian distribution, the average and the standard
deviation were 𝑟0 for meta-atom radius and 4𝑟0 for structure periodicity. Each
of these initial approximations was used for both objective functions.

For the minimum of |𝑅s|2, the dependence of the depth on 𝛽 is shown in
the figure 5. For comparison, black line corresponding to the averaged value
of minimum for the objective function (6) is added. It is clear that, using the
penalty function with power 𝛽 ∈ [2, 6], we make the depth smaller because
the center of the gutter 𝑟0 does not exactly coincide with the coordinate
of minimum point (figure 4). With the growth of 𝛽, bottom of the gutter
becomes flatter, and the depth increases. Starting from 𝛽 = 10, the minimum
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depth is almost independent of 𝛽 and does not differ from the value obtained
without the penalty term (7).

3.3. Choice of the penalty function power

To choose the value of 𝛽, we were guided by the following considerations.
The penalty function is introduced in order to eliminate all local minima
that are not located near to MDR (approximately 𝑟0) and EDR (close to
𝑟max) or between them. Therefore, the power 𝛽 should satisfy the following
conditions. On the one hand, the value 𝑦(𝑟) has to be be greater than 1
outside the specified range (all extra minima are automatically excluded from
consideration). On the other hand, the penalty term should not distort the
objective function (8) outside the range. These requirements are satisfied for
𝛽 = 10 best of all.

Note that the usage of the penalty function (7) with power 𝛽 = 10 practically
does not affect the accuracy of obtained geometric parameters 𝑝 and 𝑟, since
it has a very flat bottom and does not distort the objective function (8). The
figure 6 illustrates the accuracy 𝛿 of the obtained solutions using the interior
point method versus the power 𝛽 of the penalty term 𝑦(𝑟). The accuracy is the
distance between the minimum points of the objective functions (6) and (8)

under consideration 𝛿 = √(𝑝 − 𝑝(𝛽))2 + (𝑟 − 𝑟(𝛽))2, where 𝑝 and 𝑟 are the
coordinates of the best result of minimization without the penalty function
(|𝑅s|2 ≈ 8.0579 ⋅ 1015). Here 𝑝(𝛽) and 𝑟(𝛽) denote minimum coordinates
of (8).

Figure 6. Accuracy of the minimization for different values of the penalty function power

Because of the presence of the penalty term 𝑦(𝑟) with insufficiently at
bottom at the vicinity of the desired minimum, for small values of 𝛽 ∈ [2, 6],
the accuracy, with which 𝑝 and 𝑟 are found, is not high enough (figure 6).
Beginning with 𝛽 = 8, the accuracy of the results of minimization 𝛿 coincides
with the tolerance of fmincon function that is 10−6.
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3.4. Results of the minimization

The results of one of the computations with 100 random initial approxi-
mations for 𝛽 = 10 are depicted on the graph of |𝑅s(𝑝, 𝑟)|2| (figure 7). The
domain of the arguments is shown by red lines. The results of minimization
are marked with light dots for the objective function (8) and with dark ones
for (6) without the penalty function. It is clearly seen that in the first case all
100 points converge to the same answer that is the global minimum. However,
in the second case, 43 points “get stuck” on the plateau and 1 point on the
horizontal area near the right boundary of the domain. They do not reach
the desired minimum.

Figure 7. Results of the minimization of substrated metasurface at the wavelength

𝜆 = 10 𝜇m. Found minima of the objective functions (8) and (6) are pointed out on

the graph of the reflectance |𝑅s(𝑝, 𝑟)|2 with white and black markers, respectively.

The number of points is indicated beside them. Red lines are the boundaries of 𝐶2

To sum up, minimization of the first objective function is complicated
and unstable (it depends on the choice of the initial approximation very
strongly). Because of the existence of horizontal areas, in half of the cases the
computations do not provide the correct answer for the position of narrow dip
to be found. On the contrary, the objective function with power-law penalty
term that we have constructed allows to find the desired global minimum
without reference to the position of initial points. For default number of
iterations, not more than 7–10 initial approximations are required.

4. Conclusions

The paper is devoted to the optimization of the geometric parameters of
all-dielectric high refractive index isotropic metasurface placed on a semi-
infinite dielectric substrate. To solve a direct problem, it is suggested to
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use an analytical model combining several approaches of different authors.
Constraints on period of the structure and radius of spherical meta-atoms are
discussed. To construct the domain of geometric parameters, technological
limitations and the conditions for physical model applicability were taken
into account.

For the first time, the formulation of the problem of one-wavelength antire-
flective substrated metasurface is proposed, based on preliminary physical
considerations about the location of narrow global minimum. Using the idea
of the penalty functions, we suggest new objective function, which allows to
cut off all minima except the desired one: a horizontal wide region at small
radii and the local minima for large particles beyond the applicability of the
dipole approximation. The results of minimization with power-law penalty
term and without it are compared. The choice of the power for the penalty
function providing the best result of optimization is described.

The developed technique is illustrated by the example of calculating a an-
tireflective metasurface from PbTe on a Ge substrate for a wavelength of
10 𝜇m when both materials are non-absorbent. The reflection spectrum of
the structure under consideration is constructed in the range relevant for ap-
plications from 8 to 12 𝜇m. It is shown that for non-absorbing materials,
zero reflection occurs between the magnetic dipole resonance and the zero
reflection region of the same metasurface, but located in the air.
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Оптимизация изотропной метаповерхности
на подложке

Ж. О. Домбровская

Московский государственный университет им. М.В. Ломоносова,
Ленинские горы, д. 1, стр. 2, Москва, 119991, Россия

Аннотация. Впервые приведена математическая формулировка одноволнового
безотражательного покрытия на основе двумерного метаматериала. Найдены
ограничения на геометрические параметры конструкции. Предложена штрафная
функция, которая обеспечивает применимость физической модели и обеспечивает
единственность искомого минимума. В качестве примера рассмотрена оптимиза-
ция метаповерхности, состоящей из сфер PbTe, расположенных на германиевой
подложке. Показано, что точность минимизации с правильно выбранным штраф-
ным термином такая же, как и для целевой функции без него.

Ключевые слова: оптимизация безотражательного покрытия, метод штраф-
ной функции, ограничения на геометрические параметры, диэлектрическая
метаплёнка на подложке


