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Abstract. The paper discusses the formulation and analysis of methods for solving
the one-dimensional Poisson equation based on finite-difference approximations — an
important and very useful tool for the numerical study of differential equations. In
fact, this is a classical approximation method based on the expansion of the solution
in a Taylor series, based on which the recent progress of theoretical and practical
studies allowed increasing the accuracy, stability, and convergence of methods for
solving differential equations. Some of the features of this analysis include interesting
extensions to classical numerical analysis of initial and boundary value problems. In
the first part, a numerical method for solving the one-dimensional Poisson equation
is presented, which reduces to solving a system of linear algebraic equations (SLAE)
with a banded symmetric positive definite matrix. The well-known tridiagonal matrix
algorithm, also known as the Thomas algorithm, is used to solve the SLAEs. The
second part presents a solution method based on an analytical representation of the
exact inverse matrix of a discretized version of the Poisson equation. Expressions
for inverse matrices essentially depend on the types of boundary conditions in the
original setting. Variants of inverse matrices for the Poisson equation with different
boundary conditions at the ends of the interval under study are presented — the
Dirichlet conditions at both ends of the interval, the Dirichlet conditions at one of
the ends and Neumann conditions at the other. In all three cases, the coefficients of
the inverse matrices are easily found and the algorithm for solving the problem is
practically reduced to multiplying the matrix by the vector of the right-hand side.

Key words and phrases: 1D Poisson equation, finite difference method, tridiagonal
matrix inversion, Thomas algorithm, Gaussian elimination

1. Introduction

Applied mathematical models are mainly based on the use of partial
differential equations [1]. The solution must satisfy a given equation of
mathematical physics and some additional relations, which are, first, boundary
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and initial conditions. The most important for applications [2] are second-
order equations — elliptic, parabolic, and hyperbolic. Currently for equations
of mathematical physics, methods of numerical solution and the appropriate
software [3], [4], as well as computer algebra systems (CASs) such as Sage,
Mathematica, Maxima and Maple are actively developed to implement these
methods. Many features of stationary problems of mathematical physics
described by elliptic equations of the second order can be illustrated by
considering the simplest boundary value problems for an ordinary differential
equation of the second order. Perhaps the simplest second-order elliptic
equation is the Poisson equation.
Let us consider some methods for the numerical solution of this equation

and compare the investigated methods.

The Poisson equation [1] is a special case of the heat conduction equation
describing the dependence of the temperature of a medium on spatial co-
ordinates and time, and the heat capacity and thermal conductivity of the
medium (in the general case, inhomogeneous) are considered to be given.
We will consider the problem of finding the steady-state distribution of den-
sity or temperature (e.g., when the distribution of sources does not depend
on time). In this case, terms with time derivatives are eliminated from the
non-stationary equation and a stationary heat equation is obtained, which
belongs to the class of elliptic equations. A two-point boundary value prob-
lem is the problem of finding a solution to an ordinary differential equation
or second-order systems in the interval 𝑎 ⩽ 𝑥 ⩽ 𝑏. Additional conditions are
imposed on the solution at any two points of the interval, e.g., 𝑎 and 𝑏 — the
‘boundaries’ of the segment (hence the name of the problem).

Consider a second-order differential equation

− 𝑑
𝑑𝑥

(𝑘 (𝑥) 𝑑𝑢
𝑑𝑥

) + 𝑝 (𝑥) 𝑢 (𝑥) = 𝑓 (𝑥) , 𝑎 ⩽ 𝑥 ⩽ 𝑏. (1)

It is called the one-dimensional stationary heat conduction equation and
arises in the mathematical modeling of many important processes. For
example, this equation describes the steady-state temperature distribution
𝑢 (𝑥) in a heat-conducting rod of length 𝑙 = 𝑏 − 𝑎. In this case, 𝑘 (𝑥) is the
thermal conductivity coefficient; 𝑤 (𝑥) = −𝑘 (𝑥) 𝑑𝑢

𝑑𝑥
is the heat flux density,

𝑝 (𝑥) is the heat transfer coefficient (𝑝𝑢 is the heat sink power proportional
to the temperature 𝑢); 𝑓 (𝑥) is the density of heat sources (at 𝑓 ⩽ 0 it is the
density of heat sinks).

The boundary value problem is much harder to solve than the Cauchy
problem, and various approaches are used for this purpose. The most common
are various sampling methods that allow replacing the original problem with
a certain discrete analog. The resulting discrete boundary value problem is
a system of equations (possibly nonlinear) with a finite number of unknowns
and can be numerically solved using special direct or iterative methods. One
of the simplest discretization algorithms often used in applied scientific and
technical calculations is the method of finite differences [5].

The most commonly used method for solving difference equations arising in
the approximation of boundary value problems for equations of mathematical
physics is the sweep method [6], [7], or the Thomas method [8].



64 DCM&ACS. 2022, 30 (1) 62–78

Below we will show how the difference method is applied to solve the
boundary value problem (1), restricting ourselves, for simplicity, to an equation
with a constant coefficient 𝑘 (𝑥) ≡ 1. In this case, the boundary value problem
with Dirichlet boundary conditions takes the form

𝑢″ (𝑥) − 𝑝 (𝑥) 𝑢 (𝑥) = 𝑓 (𝑥) , 𝑎 < 𝑥 < 𝑏, (2)

𝑢 (𝑎) = 𝛼, 𝑢 (𝑏) = 𝛽. (3)

Introduce on [𝑎, 𝑏] a grid 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < … < 𝑥𝑛 = 𝑏, which for
simplicity is assumed uniform. Let us approximately express the second
derivative of the solution in terms of the values of the future solution at
the grid nodes 𝑢𝑛 = 𝑢 (𝑥𝑛). We use the simplest symmetric difference
approximation

𝑢″ (𝑥𝑛) ≈ 1
ℎ2 (𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1) , ℎ = 𝑥𝑛+1 − 𝑥𝑛 = const. (4)

Using such an approximation at each internal grid node 𝑥𝑛, 1 ⩽ 𝑛 ⩽
𝑁 − 1 and substituting it into the differential equation (2), we transform the
differential equation (1) into a system of finite-difference equations, i.e., into
a system of approximate linear algebraic equations, the solution of which will
be an approximate solution 𝑦𝑛 ≈ 𝑢 (𝑥𝑛). Finite-difference equations cannot
be written at the boundary nodes 𝑛 = 0, 𝑛 = 𝑁, otherwise the indices of the
nodes will go beyond the permissible limits [5]. Denoting 𝑝𝑛 = 𝑝 (𝑥𝑛) and
𝑓𝑛 = 𝑓 (𝑥𝑛), we get a system of (𝑁 − 1) linear equations with respect to the
approximate values of the solution at grid nodes

𝑦𝑛−1 − (2 + ℎ2𝑝𝑛) 𝑦𝑛 + 𝑦𝑛+1 = ℎ2𝑓𝑛, 1 ⩽ 𝑛 ⩽ 𝑁 − 1. (5)

The number of unknowns 𝑦𝑛, 0 ⩽ 𝑛 ⩽ 𝑁 equals (𝑁 + 1), i.e., it is greater
than the number of equations (5). The lacking two equations are to be
obtained from the boundary conditions (3)

𝑦0 = 𝛼, 𝑦𝑁 = 𝛽. (6)

Solving the algebraic system (5), (6) we get an approximate solution of the
boundary value problem (2), (3).
Further analysis of the described algorithm of solving the boundary value

problem is to answer three important questions.

— What are the conditions for the existence of a solution to the system of
algebraic equations?

— Does the solution of the system of algebraic equations tend to the exact
solution of the boundary value problem upon reducing the grid step?

— Is it possible to develop an algorithm (procedure) for finding the solution
with given accuracy by reducing the grid step?

It is known [5, P. 66], that for a rather wide class of the boundary value
problem coefficients it is possible to prove the existence of a finite-difference
solution and its convergence to the exact solution. The following theorem
takes place.
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Theorem 1. Let 𝑝 (𝑥), 𝑓 (𝑥) are twice continuously differentiable on [𝑎, 𝑏],
𝑝 (𝑥) ⩾ 𝑚, where the constant 𝑚 ⩾ 0. Also let the step ℎ be small enough, so
that ℎ ⩽ 2. Then the finite-difference solution exists, its difference from the

exact solution by the norm 𝑐 being of the order of 𝑂 (ℎ2) .

Remark 1. The matrix of the system (5), (6) is tridiagonal. It is not
difficult to solve the system by the Gaussian method for a strip matrix or
by sweep method. These are direct methods. They allow finding a solution,
executing about nine arithmetic operations for each node. By virtue of the
conditions of the theorem, the solution of the system of equations by the
sweep method exists, is unique and found without accumulating round-off
errors.

Remark 2. The conditions of the theorem are sufficient, but not necessary.
Even if the conditions are not met, in most cases the finite-difference solution
exists and converges to the exact one. Under additional assumptions, it is
possible to construct an asymptotically accurate estimate of the error. Then
it is possible to apply the grid refinement and Richardson’s method to find the
posterior estimate of the error and calculations with control of the accuracy.

2. Finite-difference scheme

The problem in matrix form can be represented as

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 + 𝑝1 1 0 ⋯ 0
1 −2 + 𝑝2 1 ⋯ 0
0 1 −2 + 𝑝3 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋱ ⋱ 0
0 0 0 ⋱ 1
0 0 0 1 −2 + 𝑝𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢1
𝑢2
𝑢3
𝑢4
⋮
⋮

𝑢𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ2𝑓1 − 𝑢𝑎
ℎ2𝑓2
ℎ2𝑓3
ℎ2𝑓4

⋮
⋮

ℎ2𝑓𝑁 − 𝑢𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (7)

When applying the sweep method to systems of the form (7), during
a forward sweep, both the coefficients of the matrix and the elements of the
vector on the right-hand side are recalculated. The matrix is thus reduced
to two-diagonal form. During the backward sweep, the components of the
solution are calculated at the second stage. Tridiagonal matrices, which are
inverted using the simple sweep method, often arise when solving differential
equations of two independent variables by the finite-difference method, e.g.,
when solving a linear one-dimensional heat equation.
For such systems, the solution can be obtained in operations instead of

required by the Gaussian elimination method. The first sweep of the method
calculates the sweep coefficients, based on which the inverse substitution yields
the solution. Examples of such matrices usually arise from discretization of
the one-dimensional Poisson equation and interpolation by the natural cubic
spline.
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For the simplest one-dimensional Poisson equation in the case when
𝑝 (𝑥) ≡ 0, the authors of Refs. [9], [10] proposed a solution based on the
analytical (exact) representation of the inverse matrix coefficients.

3. The exact formulation of the inverse
of the tridiagonal matrix for solving the 1D Poisson

equation with the finite difference method

Consider a method for solving the one-dimensional Poisson equation using
the finite difference method based on exact formulas for the inverse of the
Laplacian tridiagonal matrix. In the method proposed in Ref. [11], formulas
for the coefficients of the inverse matrix are directly derived. Thus, the
procedure of solving the one-dimensional Poisson equation becomes very
accurate and very fast. This method is a very important tool for solving many
physical and technical problems, where the Poisson equation often appears
when describing (modeling) various physical phenomena.

3.1. The finite difference method for solving the Poisson equation
with Dirichlet–Dirichlet boundary conditions

Consider a function 𝑢 (𝑥), that satisfies the Poisson equation 𝑢″ (𝑥) = 𝑓 (𝑥)
on the interval ]𝑎, 𝑏[, where 𝑓 (𝑥) is a given function. We require that the
function 𝑢 (𝑥) satisfy the Dirichlet–Dirichlet boundary conditions: 𝑢 (𝑎) = 𝛼,
𝑢 (𝑏) = 𝛽. On the considered interval [𝑎, 𝑏] we specify a one-dimensional
grid 𝑥𝑖 = 𝑎 + 𝑖 ⋅ Δ𝑥, 𝑖 = 0, … , 𝑁 + 1, where the uniform step of the grid is

calculated as Δ𝑥 = 𝑏 − 𝑎
𝑁 + 1

= ℎ. We denote by 𝑢𝑖 = 𝑢 (𝑥𝑖) and 𝑓𝑖 = 𝑓 (𝑥𝑖),
𝑖 = 0, … , 𝑁 + 1 the values of the approximate solution and the function in
the right-hand side.
Replacing the second derivative by symmetric difference expressions, we

obtain the following system for internal nodes:

𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1 = ℎ2𝑓𝑖, 𝑖 = 1, … , 𝑁. (8)

In matrix form, the system of linear algebraic equations (8), taking into
account the boundary conditions, can be written in the form 𝐴𝑢 = 𝐹, where
𝐹 = (ℎ2𝑓1 − 𝑢𝑎, ℎ2𝑓2, … , ℎ2𝑓𝑁−1, ℎ2𝑓𝑁 − 𝑢𝑏)𝑇 , or

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 1 0 0 0 ⋯ ⋯ 0
1 −2 1 0 0 ⋯ ⋯ 0
0 1 −2 1 0 ⋯ ⋯ 0
0 0 1 −2 1 ⋱ ⋯ 0
0 0 0 1 −2 ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0
0 0 0 0 ⋱ ⋱ ⋱ 1
0 0 0 0 0 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
⋮

𝑢𝑁−1
𝑢𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ2𝑓1 − 𝑢𝑎
ℎ2𝑓2
ℎ2𝑓3
ℎ2𝑓4
ℎ2𝑓5

⋮
ℎ2𝑓𝑁−1

ℎ2𝑓𝑁 − 𝑢𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (9)
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Thus, the solution of the one-dimensional Poisson equation is reduced to
the inversion of the tridiagonal symmetric negative definite matrix

𝐴 = (𝑎𝑖𝑗) , 𝑖, 𝑗 = 1, … , 𝑁.

The inverse matrix which we denote by

𝐵 = (𝑏𝑖𝑗) , 𝑖, 𝑗 = 1, … , 𝑁,

is also symmetric.
The elements of matrix 𝐴 may be briefly written as

𝑎𝑖𝑗 =
⎧{
⎨{⎩

− 2, 𝑖 = 𝑗,
1, |𝑖 − 𝑗| = 1,
0, |𝑖 − 𝑗| > 1,

𝑖 = 1, … , 𝑁 (10)

and the elements of matrix 𝐵 are related by the following formulas:

⎧{
⎨{⎩

− 2𝑏𝑖1 + 𝑏𝑖2 = 𝛿1
𝑖 ,

𝑏𝑖𝑗−1 − 2𝑏𝑖𝑗 + 𝑏𝑖𝑗+1 = 𝛿𝑗
𝑖 ,

𝑏𝑖𝑁−1 − 2𝑏𝑖𝑁 = 𝛿𝑁
𝑖 ,

1 < 𝑖, 𝑗 < 𝑁, (11)

where 𝛿𝑗
𝑖 is the Kronecker symbol.

3.2. Calculating the inverse matrix

Relations (11) allow deriving the following interesting dependencies

𝑏𝑖𝑗+1 = 𝑏𝑖𝑗 + 𝑏𝑖1, 𝑏𝑖𝑗 = 𝑗𝑏𝑖1 + (𝑗 − 1) . (12)

From relations (12) it follows that the elements of inverse matrix 𝐵 are un-
ambiguously determined by the value of the element 𝑏11. This coefficient can
be determined based on the behavior of matrix 𝐵 at different dimensionali-
ties 𝑁:

𝑏11 = −𝑁/ (𝑁 + 1) . (13)

From relations (12) and (13), it is easy to express the elements of the first
row and the first column of the inverse matrix

{
𝑏1𝑗 = − (𝑁 − (𝑗 − 1)) / (𝑁 + 1) ,
𝑏𝑖1 = − (𝑁 − (𝑖 − 1)) / (𝑁 + 1) .

(14)

These relations allow completing the accurate and full determination of the

coefficients of the inverse matrix 𝐵 = (𝑏𝑖𝑗), 𝑖, 𝑗 = 1, … , 𝑁:

𝑏𝑖𝑗 = {
− 𝑗 (𝑁 − (𝑖 − 1)) / (𝑁 + 1) , 𝑖 ⩾ 𝑗,
− 𝑖 (𝑁 − (𝑗 − 1)) / (𝑁 + 1) , 𝑖 < 𝑗; (15)
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𝐵 = − 1
(𝑁 + 1)

×

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑁 𝑁 − 1 ⋯ 𝑁 − (𝑗 − 1) ⋯ 2 1
𝑁 − 1 2 (𝑁 − 1) ⋯ 2 [𝑁 − (𝑗 − 1)] ⋯ 4 2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
𝑁 − (𝑖 − 1) 2 [𝑁 − (𝑖 − 1)] ⋯ 𝑖 [𝑁 − (𝑗 − 1)] ⋯ 2𝑖 𝑖

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
2 4 ⋯ 2𝑗 ⋯ 2 (𝑁 − 1) 𝑁 − 1
1 2 ⋯ 𝑗 ⋯ 𝑁 − 1 𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

With the inverse matrix elements known, it is easy to get the solution of
the one-dimensional Poisson equation by mere multiplication of the matrix
by the right-hand side vector 𝑢 = 𝐵𝐹.

3.3. Classification of media

Taking into account the specific form of the inverse matrix and its persym-
metry makes it easy to express the solution 𝑢𝑁 at the point 𝑥𝑛

𝑢𝑁 = − (𝑁 + 1)−1
𝑁

∑
𝑖=1

𝑖 ⋅ 𝐹𝑖. (16)

The direct search for the solution 𝑢𝑁−1 at the point 𝑥𝑁−1 leads to the
expression

𝑢𝑁−1 = − (𝑁 + 1)−1 [[
𝑁−1
∑
𝑖=1

2𝑖 ⋅ 𝐹𝑖] + (𝑁 − 1) 𝐹𝑁] . (17)

In a similar way, it is possible to derive the expressions for calculating the
rest components of the solution in the form

𝑢𝑁−𝑘 = − (𝑁 + 1)−1 ×

× [(𝑘 + 1) [
𝑁−𝑘
∑
𝑖=1

𝑖𝐹𝑖] + (𝑁 − 𝑘) [
𝑁

∑
𝑖=𝑁−𝑘+1

(𝑁 − (𝑖 − 1)) 𝐹𝑖]] ,

𝑘 = 0, 1, … , 𝑁 − 1 (18)

or in the form

𝑢𝑘 = − (𝑁 + 1)−1 ×

× [(𝑁 − 𝑘 + 1) [
𝑘

∑
𝑖=1

𝑖𝐹𝑖] + 𝑘 [
𝑁

∑
𝑖=𝑘+1

(𝑁 − (𝑖 − 1)) 𝐹𝑖]] ,

𝑘 = 1, … , 𝑁. (19)
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From the computational point of view, it is preferable to use Eqs. (15),
when programming the procedure of calculating the solution.
Let us consider the numerical solution of the problem of finding a scalar

potential given on the interval [−1, 1] and satisfying the Poisson equation

ΔΦ (𝑥) = 𝜕2Φ (𝑥)
𝜕𝑥2 = 𝑓 (𝑥) = −co𝑠2 (𝜋 (𝑥 − 0.5)) and the Dirichlet–Dirichlet

boundary conditions: Φ (−1) = −0.2, Φ (1) = 0.1.
The exact solution is expressed by the formula

Φexact = −𝑥2

4
+ [cos (𝜋 (𝑥 − 0.5))

2𝜋
]

2

+ 𝑥
4

− 0.1 (𝑥 + 1) + 0.3. (20)

The software implementation of the algorithm consists of several lines,
namely, filling the vector on the right-hand side of Eq. (9) and multiplying
the inverse matrix 𝐵 by this vector using Eqs. (14).
Figure 1 illustrates the results of the numerical experiment.

(a) Exact solution (b) Calculation error

Figure 1. The maximal error at points 𝑥 = ±0.5 is 0.36 at 𝑁 = 30 and decreases to 0.036
at 𝑁 = 300

4. Solving the 1D Poisson equation with
the Neumann–Dirichlet and Dirichlet–Neumann

boundary conditions

The problem is to determine the scalar potential 𝑢 (𝑥) satisfying the one-
dimensional Poisson equation Δ𝑢 (𝑥) = 𝑓 (𝑥) on the interval ]𝑎, 𝑏[, where
𝑓 (𝑥) is a given function. It is necessary to find the solution satisfying the
Neumann–Dirichlet boundary conditions 𝑢′ (𝑎) = 𝑢′

𝑎 and 𝑢 (𝑏) = 𝑢𝑏. Let us
consider a special uniform grid for the finite difference method with the step

Δ𝑥 = 𝑏 − 𝑎
𝑁

= ℎ, consisting of 𝑁 +1 points. The coordinates of the grid nodes
(𝑥𝑖) are determined by the expression 𝑥𝑖 = 𝑎 + (𝑖 − 1) ⋅ ℎ, 𝑖 = 0, 1, … 𝑁 + 1.
We denote by 𝑢𝑖 the approximate values of the desired solution at point
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𝑥𝑖 ∶ 𝑢𝑖 = 𝑢 (𝑥𝑖), and by 𝑓𝑖 the value of the given function in the right-
hand side at the same point. In addition, let us denote by 𝑢′

𝑖 = 𝑢′ (𝑥𝑖) and
𝑢″

𝑖 = 𝑢″ (𝑥𝑖) the values of the first and second derivatives of the sought
solution at the grid node at the same point. Replacing the derivatives with
symmetric finite-difference expressions [12], we arrive at the approximation
formulas of the second order of accuracy for the first derivatives

𝑢′
𝑖 =

𝑢𝑖+1 − 𝑢𝑖−1
2ℎ

+ 𝑂 (ℎ2) , 𝑖 = 1, 2, 3, … , 𝑁 (21)

and for the second derivatives

𝑢″
𝑖 =

𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1
ℎ2 + 𝑂 (ℎ2) , 𝑖 = 1, 2, … , 𝑁. (22)

The system of linear equations for the internal nodes of the interval looks as

𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1 = ℎ2𝑓𝑖, 𝑖 = 1, … , 𝑁. (23)

4.1. The Neumann–Dirichlet boundary conditions

Let us derive equations complementing the system with the boundary
conditions at the left and right ends of the interval taken into account.
Assuming the use of Eqs. (21) and (23) possible and combining them at 𝑖 = 0,
we eliminate 𝑢−1 from the system of equations.

−𝑢1 + 𝑢2 = ℎ2 𝑓𝑖
2

+ ℎ𝑢′
𝑎, 𝑖 = 1, … , 𝑁. (24)

Thus, introducing into consideration an additional virtual point 𝑥0 = 𝑎 − ℎ
allows using the central differences with the order of approximation 𝑂 (ℎ2)
for the sought solution even at the boundary point of the interval.
We introduce the vector 𝐹 with the components expressed as

𝐹1 = ℎ2 𝑓𝑖
2

+ ℎ𝑢′
𝑎, 𝐹𝑁 = ℎ2𝑓𝑁 − 𝑢𝑏, 𝐹𝑖 = ℎ2𝑓𝑖, 𝑖 = 2, 3, … , 𝑁 − 1. (25)

As a result, the system of equations that determines the solution components
reduces to the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 0 0 ⋯ ⋯ 0
1 −2 1 0 0 ⋯ ⋯ 0
0 1 −2 1 0 ⋯ ⋯ 0
0 0 1 −2 1 ⋱ ⋯ 0
0 0 0 1 −2 ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0
0 0 0 0 ⋱ ⋱ ⋱ 1
0 0 0 0 0 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
⋮

𝑢𝑁−1
𝑢𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ2

2 𝑓1 + ℎ𝑢′
𝑎

ℎ2𝑓2
ℎ2𝑓3
ℎ2𝑓4
ℎ2𝑓5

⋮
ℎ2𝑓𝑁−1

ℎ2𝑓𝑁 − 𝑢𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (26)
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where the matrix 𝐴 = {𝑎𝑖𝑗}, 𝑖, 𝑗 = 1, … , 𝑁 of system (8) is symmetric tridiag-

onal negative definite and possesses the property of diagonal transformation.
The presence of diagonal dominance in the coefficient matrix guarantees the
stability of the sweep method; however, in this case, there is a way to calculate
the elements of the inverse matrix.

4.2. Calculation of the inverse matrix elements

Let us write down the properties of the inverse matrix 𝐵 = {𝑏𝑖𝑗},
𝑖, 𝑗 = 1, … , 𝑁, 𝐵 = 𝐴−1, following directly from its definition. It must
be symmetrical and its elements must satisfy the following relations:

⎧{{
⎨{{
⎩

− 𝑏1𝑗 + 𝑏2𝑗 = 𝛿1
𝑗 , 1 < 𝑗 < 𝑁,

𝑏𝑖1 − 2𝑏𝑖2 + 𝑏𝑖3 = 𝛿2
𝑖 , 1 < 𝑖 < 𝑁,

𝑏𝑖−1𝑗 − 2𝑏𝑖𝑗 + 𝑏𝑖+1𝑗 = 𝛿𝑗
𝑖 , 1 < 𝑖, 𝑗 < 𝑁,

𝑏𝑖𝑁−1 − 2𝑏𝑖𝑁 = 𝛿𝑁
𝑖 , 1 < 𝑖 < 𝑁,

(27)

where 𝛿𝑗
𝑖 is the Kronecker symbol.

The elements of the inverse matrix also satisfy the relations

𝑏𝑖𝑗 = {
𝑏11 + (𝑗 − 1) , 𝑖 ⩽ 𝑗,
𝑏11 + (𝑖 − 1) , 𝑖 > 𝑗. (28)

The analysis of behavior of the system determinant allows deriving the
expressions

det (𝐵) = (−1)𝑁 ,

𝑏11 = 𝑁 ⋅ (−1)𝑁−1

(−1)𝑁 = −𝑁, and 𝑏𝑁𝑁 = (−1)𝑁−1

(−1)𝑁 = −1 = 𝑏1𝑁.
(29)

Using Eqs. (27)–(29), we can exactly determine the elements of the inverse
matrix, which is related to the search for the approximate solution in the
case of the Neumann–Dirichlet boundary conditions. Thus, the elements of
matrix 𝐵 are determined by the expressions

𝑏𝑖𝑗 = {
− [𝑁 − (𝑗 − 1)] , 𝑖 ⩽ 𝑗,
− [𝑁 − (𝑖 − 1)] , 𝑖 > 𝑗. (30)

The elements of the inverse matrix can be alternatively expressed as

𝑏𝑖𝑗 = − [𝑁 − [max (𝑖, 𝑗) − 1]] = − [𝑁 − [(𝑖 + 𝑗) + |𝑖 − 𝑗|
2

− 1]] . (31)

The expressions (30) and (31) are equivalent. However, for software imple-
mentation, the first one is preferable.
As a result of the transformations carried out, explicit expressions for the

elements of the inverse matrix are obtained, and the solution of the Poisson
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problem with Neumann–Dirichlet boundary conditions can be obtained using
a simple multiplication of the inverse matrix by the vector of the right-hand
side: 𝑈 = 𝐵𝐹, where

𝐵 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑁 𝑁 − 1 𝑁 − 2 ⋯ ⋯ 2 1
𝑁 − 1 𝑁 − 1 𝑁 − 2 ⋯ ⋯ 2 1
𝑁 − 2 𝑁 − 2 𝑁 − 2 ⋯ ⋯ 2 1

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
2 2 2 ⋯ ⋯ 2 1
1 1 1 ⋯ ⋯ 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Each solution component can be expressed directly using the formula

𝑢𝑘 = − [(𝑁 − 𝑘 + 1) [
𝑘

∑
𝑖=1

𝐹𝑖] + [
𝑁

∑
𝑖=𝑘+1

(𝑁 − (𝑖 − 1)) ⋅ 𝐹𝑖]] ,

𝑘 = 1, 2, … , 𝑁. (32)

Formula (32) gives a simple analytical expression for the solution of the
Poisson equation with Neumann–Dirichlet boundary conditions. It is very
easy to program it either directly or based on Eq. (30). One double loop will
be enough to compute the entire solution.

4.3. Example

Consider a numerical solution of the problem of finding a scalar potential
defined on the interval [−𝑎, 𝑏] and satisfying the Poisson equation

ΔΦ (𝑥) = 𝜕2Φ (𝑥)
𝜕𝑥2 = 𝑓 (𝑥) = 𝑉0 cos (𝑘𝑥 + 𝜑0) ,

where 𝑎, 𝑏, 𝑉0, 𝑘 and 𝜑0 are given constants, and the Neumann–Dirichlet

boundary conditions
𝑑Φ
𝑑𝑥

(𝑎) = Φ′
𝑎 and Φ (𝑏) = Φ𝑏.

The known exact solution is expressed as

Φexact (𝑥) = [Φ′
𝑎 − 𝑉0

𝑘
sin (𝑘𝑎 + 𝜑0)] (𝑥 − 𝑏) −

− 𝑉0
𝑘2 [cos (𝑘𝑥 + 𝜑0) − cos (𝑘𝑏 + 𝜑0)] + Φ𝑏. (33)

Let us consider the finite-difference solution at 𝑎 = −𝜋
2
, 𝑏 = 𝜋

4
, 𝑉0 = 1,

𝑘 = 𝜋
2
and 𝜑0 = 𝜋

4
.
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We define the computational grid with the following parameters:

𝑁 = 100, Δ𝑥 = ℎ = 𝑏 − 𝑎
𝑁

, 𝑥𝑖 = (𝑖 − 1) Δ𝑥, Φ𝑖 = Φ (𝑥𝑖)

and 𝑓𝑖 = 𝑓 (𝑥𝑖) = cos (𝑘𝑥𝑖 + 𝜑0). The solution is assumed to satisfy the
Neumann–Dirichlet conditions specified as: Φ′

𝑎 = 1/4 and Φ𝑏 = −1/2.
We calculate the solution of the Poisson problem multiplying the inverse

matrix with the elements determined by expressions (30) by the right-hand
side vector, corrected using Eqs. (26).

The software implementation of the algorithm consists of a few lines: filling
the right-hand side vector (26) and multiplying the inverse matrix 𝐵 by this
vector using Eqs. (30).

Figure 2 illustrates the results of the numerical experiment.

(a) Exact solution (b) Calculation error

Figure 2. The maximal error at 𝑥 = −1.571 is 1.55𝐸 − 04 for 𝑁 = 100 and decreases to

1.55𝐸 − 06 for 𝑁 = 1000

5. Dirichlet–Neumann boundary conditions

5.1. Discretization and matrix equation

By analogy with the case of the Neumann–Dirichlet boundary conditions, we
consider the symmetric case with the Dirichlet–Neumann boundary conditions.
Let us first define a suitable sampling grid on the interval [𝑎, 𝑏]. Grid points
{𝑥𝑖, 𝑖 = 0, 1, … , 𝑁 + 1} are specified as 𝑥𝑖 = 𝑎+𝑖ℎ. The boundary conditions
𝑢𝑎 and 𝑢′

𝑏, complementing the Poisson equation redefine the system of finite-
difference equations (23). The solution value 𝑢𝑁+1 at the ‘virtual’ point 𝑥𝑁+1
is expressed using the boundary condition for the derivative, approximating
the latter by symmetric central differences. As the last equation of the system,
we get

𝑢𝑁−1 − 𝑢𝑁 = ℎ2 𝑓𝑁
2

− ℎ𝑢′
𝑏. (34)
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The transformed right-hand side vector 𝐹 is presented as

𝐹𝑁 = ℎ2 𝑓𝑁
2

− ℎ𝑢′
𝑏, 𝐹1 = ℎ2𝑓1 − 𝑢𝑎, 𝐹𝑖 = ℎ2𝑓𝑖, 𝑖 = 2, … , 𝑁 − 1. (35)

Like in the previous case of Neumann–Dirichlet boundary conditions, the
resulting matrix of the equation

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 1 0 0 0 ⋯ ⋯ 0
1 −2 1 0 0 ⋯ ⋯ 0
0 1 −2 1 0 ⋯ ⋯ 0
0 0 1 −2 1 ⋱ ⋯ 0
0 0 0 1 −2 ⋱ ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 0
0 0 0 0 ⋱ ⋱ ⋱ 1
0 0 0 0 0 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢1
𝑢2
𝑢3
𝑢4
𝑢5
⋮

𝑢𝑁−1
𝑢𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ℎ2𝑓1 − 𝑢𝑎
ℎ2𝑓2
ℎ2𝑓3
ℎ2𝑓4
ℎ2𝑓5

⋮
ℎ2𝑓𝑁−1

ℎ2 𝑓𝑁
2 − ℎ𝑢′

𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(36)

is symmetric three-diagonal negative definite, with the dominant main diago-
nal.

With respect to the antidiagonal, this matrix is symmetric to the matrix
used in the solution of the Poisson problem with the Neumann–Dirichlet
boundary conditions. The system is definite and has a unique solution for
any right-hand side.

Using the antidiagonal symmetry with respect to the Neumann–Dirichlet
problem, we construct the inverse matrix for the Dirichlet–Neumann case:

𝐵 = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1 ⋯ 1 1
1 2 2 2 ⋯ 2 2
1 2 ⋱ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋱ ⋯ ⋯ ⋯
1 2 ⋯ ⋯ 𝑁 − 2 𝑁 − 2 𝑁 − 2
1 2 ⋯ ⋯ 𝑁 − 2 𝑁 − 1 𝑁 − 1
1 2 ⋯ ⋯ 𝑁 − 2 𝑁 − 1 𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Therefore, the exact solution of the system of equations (36) can be written
very simply (in a single line)

𝑢𝑘 = − [[
𝑘

∑
𝑖=1

𝑖 ⋅ 𝐹𝑖] + 𝑘 ⋅ [
𝑁

∑
𝑖=𝑘+1

𝐹𝑖]] , 𝑘 = 1, 2, … , 𝑁. (37)

The software implementation of the method reduces to simple multiplication
of the inverse matrix by the right-hand side vector.

Figure 3 illustrates the results of the numerical experiment.
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(a) Exact solution (b) Calculation error

Figure 3. The maximal error in this case at point 𝑥 = 0.785 is 1.69𝐸 − 04 for 𝑁 = 100
and reduces to 1.69𝐸 − 6 for 𝑁 = 1000

5.2. Example

An example of the previous section is considered, which differs only in
that the boundary conditions set earlier at the left end of the interval are
transferred to the right and vice versa. The software implementation of the
algorithm consists of several lines: filling in the vector of the right-hand
side (34) and multiplying the inverse matrix 𝐵 by this vector using Eq. (37).

6. Conclusion

The paper gives examples of practical problems, in the simulation of which
it is necessary to solve second-order elliptic equations with different boundary
conditions. The case of the one-dimensional Poisson equation and its finite-
difference solution are described in detail. Estimates of the complexity of
the sweep algorithm in the case of a uniform grid are given. An approach
to solving the one-dimensional Poisson equation using explicitly calculated
coefficients of inverse matrices for various types of boundary conditions is
also described. The Dirichlet and Neumann boundary conditions in various
combinations are considered.
A comparative analysis of the computational complexity of methods for

solving the one-dimensional Poisson equation, based on the use of the sweep
method and methods using an explicit representation of inverse matrices is
presented.
Direct calculation shows that to implement calculations by right-sweep

formulas, approximately 8𝑁 arithmetic operations are required, whereas in the
Gauss method for fully filled matrices this number is approximately (2/3) 𝑁3.
It is also important that the tridiagonal structure of the matrix of the system
makes it possible to use for its storage only an array of real variables of
dimension 3𝑁 − 2.
The assertion of the author of Ref. [4] that the method he proposed using

the explicit form of inverse matrices allows solving the Poisson equations with
different boundary conditions faster and more accurately is, to put it mildly,
incorrect. Provided that the stability conditions of the sweep method are met,
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the speed of solving the problem by the sweep (Thomas) method is an order
of magnitude higher due to a much smaller number of required operations.
However, unlike the sweep method [13], the practical implementation of

the proposed method does not imply the allocation of additional arrays for
software implementation, since the elements of the inverse matrix have a very
simple form and their calculation within the loop determining the components
of the solution is not difficult.
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Конечно-разностные методы решения 1D задачи
Пуассона

С. Ндайисенга1, Л. А. Севастьянов1, 2, К. П. Ловецкий1

1 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

2Лаборатория теоретической физики им. Н.Н. Боголюбова
Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Аннотация. В статье обсуждается постановка и анализ методов решения одно-
мерного уравнения Пуассона на основе конечно-разностных аппроксимаций —
важного и очень полезного инструмента численного исследования дифференци-
альных уравнений. По сути, это классический метод аппроксимации, основанный
на разложении решения в ряд Тейлора. Развитие теоретических и практиче-
ских результатов на базе этого метода в последние годы позволили повысить
точность, стабильность и сходимость методов решения дифференциальных урав-
нений. Некоторые особенности этого анализа включают интересные расширения
классического численного анализа начальных и граничных задач. В первой
части излагается численный метод решения одномерного уравнения Пуассона,
сводящийся к решению системы линейных алгебраических уравнений (СЛАУ)
с ленточной симметричной положительно определённой матрицей. В качестве
метода решения СЛАУ используется широко известный метод прогонки (метод
Томаса). Во второй части представлен метод решения, основанный на аналити-
ческом представлении точной обратной матрицы дискретизированного варианта
уравнения Пуассона. Выражения для обратных матриц существенно зависят от
типов граничных условий в исходной постановке. Представлены варианты об-
ратных матриц для уравнения Пуассона с различными граничными условиями
на концах исследуемого интервала — условиями Дирихле на обоих концах ин-
тервала, условиями Дирихле на одном из концов и Неймана на другом. Во всех
трёх случаях коэффициенты обратных матриц легко вычисляются (выписыва-
ются) и алгоритм решения задачи практически сводится к умножению матрицы
на вектор правой части.

Ключевые слова: 1D уравнение Пуассона, метод конечных разностей, об-
ращение трехдиагональной матрицы, алгоритм Томаса, исключение Гаусса


