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Abstract. In this paper, we analyze a multi-server queue with customers’ impatience
and Bernoulli feedback under a variant of multiple vacations. On arrival, a customer
decides whether to join or balk the system, based on the observation of the system size
as well as the status of the servers. It is supposed that customer impatience can arise
both during busy and vacation period because of the long wait already experienced
in the system. The latter can be retained via certain mechanism used by the system.
The feedback occurs as returning a part of serviced customers to get a new service.
The queue under consideration can be used to model the processes of information
transmission in telecommunication networks. We develop the Chapman–Kolmogorov
equations for the steady-state probabilities and solve the differential equations by
using the probability generating function method. In addition, we obtain explicit
expressions of some important system characteristics. Different queueing indices are
derived such as the probabilities when the servers are in different states, the mean
number of customers served per unit of time, and the average rates of balking and
reneging.

Key words and phrases: Markovian multi-server queue, probability generating
function, impatient phenomena, server vacations, Bernoulli feedback

1. Introduction

Queueing models with server vacation have been efficiently studied by many
researchers in the last decades and successfully applied in various practical
problems such as telecommunication system design and control, manufacturing
industries, and other related systems. There are two basic vacation queueing
models namely, multiple vacation, and single vacation. In multiple vacation
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queueing models, the server continues to take successive vacations until it
finds at least one customer waiting in a queue at a vacation completion
epoch [1], [2]. Nevertheless, in single vacation queueing models, the server
precisely takes one vacation between two consecutive busy periods. These
two types of vacation models were first introduced by Levy and Yechiali [3].
Eminent literature on the subject is found in [4]–[8] and others.
Over the past few years, queueing models with Bernoulli feedback have

increasingly attracted the attention of many researchers [9]–[14]. Taking
into account the feedback effect makes it possible to bring the considered
models closer to a real situation, where the claims once serviced may require
repeat service for different reasons. For example, in communication networks
erroneously transmitted, a data is retransmitted.
In recent years, a growing body of literature has emerged on the analysis of

queueing systems with impatient customers [15]. This is due to their potential
applications in many related areas, see for instance [16], [17]. Balking is one
form of impatience, which is the reluctance of a customer to join a queue
upon arrival [18], [19]. The other forms are reneging, the reluctance to
remain in line after joining and waiting, and jockeying between lines when
each of a number of parallel lines has its own queue [20], [21]. When the
impatience becomes sufficiently strong, the manager of the firm concerned
has to take some measures to diminish the congestion to levels that customers
can tolerate.
In most queueing situations, customers seem to get discouraged from

receiving service when the server is absent and tend to leave the system
without receiving service. This phenomenon is very precisely observed when
the server is on vacation. This results in a potential loss of customers and
customer goodwill for a service provider. For a comprehensive overview of
the subject, authors may refer to [22]–[29]. Most of the literature mentioned
here studies reneging during the vacation state of the server. However, in
many real-life situations, the abandonment may occur even when the system
is in the busy state. For instance, incoming customers can not have any
information about the state of the server, or when they are not satisfied with
the service time (in particular, when they find that the server takes too much
time to serve the customers). This paper contributes in this sense. In fact,
only a few research papers have been done treating this case [9]–[12], [30].
In this paper, we provide the analysis of a multi-server feedback queue

with a variant multiple vacation policy, balking and server’s states-dependent
reneging. When all the customers present in the system have been served, the
servers immediately leave for a vacation. If they return from a vacation to
find an empty queue, they leave for another vacation; otherwise, the servers,
synchronously, return to serve the queue. These latter are permitted to
take a finite number, say 𝐾, of sequential vacations. It is assumed that an
arriving customer who finds the system (all the servers) on vacation period
(respectively, on busy period) activates an impatience timer 𝑇Vac (respectively,
𝑇Busy). If the customer’s service has not been completed before the customer’s
impatience timer expires, the customer abandons the queue. The latter can
be convinced to stay in the system (retained) using certain strategy. In
addition, if the customer is unhappy with the service, he can rejoin the
end of the queue for another one with some probability. That’s what we
call a feedback customer. To the best of the researchers’ knowledge, the
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model under consideration has so far not treated in the literature of queues.
Moreover, our model can be considered as a generalized version of existing
queueing model given by Yue et al. [27] and [20] equipped with many features
and associated with many practical situations.

The rest of the paper is arranged as follows. In Section 2, we introduce the
mathematical description of the model and we give a practical application. In
Section 4, we develop the differential equations for the probability generating
functions of the steady-state probabilities. In Section 5, we give the solution
of the differential equations. In Section 6, we give the probabilities when the
servers are in different states. Some essential system performance measures
of this model are obtained in Section 7. Finally, we conclude the paper in
Section 8.

2. The mathematical description of the model

We consider a multi-server feedback queueing system with 𝐾-variant
vacation, balking and server’s states-dependent reneging. The following
assumptions and notations are taken into account to structure the proposed
queueing system:

1. The suggested queueing system consists of 𝑐 servers. Customers arrive
into the system according to a Poisson process with rate 𝜆 > 0, they
are served according to First-Come-First-Served (FCFS) discipline. The
service times are assumed to be exponentially distributed with rate 𝜇.

2. A multiple synchronous vacation policy is considered; once all the cus-
tomers present in the system are served, the servers, all together, leave
for a vacation. At the end of the vacation period, if the queue is still
empty, they immediately leave for another vacation; otherwise, they re-
turn to serve the queue. The servers are allowed to take all together 𝐾
vacations sequentially. When the 𝐾 consecutive vacations are complete,
the servers switch to a busy period and, depending on the arrival of new
customers, they stay idle or busy. The vacation period is assumed to be
exponentially distributed with rate 𝜙.

3. Whenever a customer arrives at the system and finds the servers on
vacation period (resp. busy period), it activates an impatience timer
𝑇Vac (resp. 𝑇Busy), which is exponentially distributed with parameter 𝜉0
(resp. 𝜉1). If the customer’s service has not been completed before the
customer’s timer expires, this later may leave the system. We suppose
that the customers timers are independent and identically distributed
random variables and independent of the number of waiting customers.

4. It is supposed that a system employs a certain mechanism in order to
keep impatient customers in the system, that is, with some probability
𝛼′, a customer may be retained in the system, and with a complementary
probability 𝛼 it may decide to leave to never return.

5. If, after completion of service, a customer is not happy with the quality
of the service, he can return to the system with some probability 𝛽′ for
another service, or decide to leave the system with probability 𝛽 = 1− 𝛽′.

6. A customer who on arrival finds at least one customer (resp. 𝑐 customers)
in the system, when the servers are on vacation period (resp. busy
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period) either decides to enter the queue with probability 𝜃 or balk with

probability 𝜃 = 1 − 𝜃.
All random variables presented above are mutually independent of each

other.

3. Practical application of the model

The operation mode of a call center with vacation and impatience provides
an initial motivation for our study; a central office is used for receiving or
transmitting a large volume of enquiries. A private branch exchange (PBX) is
a private telephone network used within a company or organizations that offers
various features such as transfer calls, voicemail, call recording, interactive
voice menus (IVR), and call queues. It helps in making an organization’s
communication simpler and more robust.
The incoming calls are routed to an available customer support manager

drawn from the group of agents. Assume that the service facility consists in
a group of 𝑐 channels (servers) available to meet the demands of the requests.
If an arriving call finds some servers free it immediately occupies the channel
and leaves the system after service. However, the behavior of a call may
vary depending on the waiting expectations provided by the call center and
the personal preferences of each specific customer. Therefore, each call may
decide either to balk or to wait for a while.
The servers commute between busy and vacation periods in groups. When

there is no demands to be handled, the latter, all together, go synchronously
on vacation and come back as one station to the busy period, once the idle
period ends. If there are some waiting calls at the end of the vacation period,
they will be immediately served. Alternatively, they quit for another vacation
period.
The calls have no information on the queue length nor the state of the

servers, then, an increase in the mean waiting time of a customer in the
system can anticipate an increase in the average rate of reneging. Thus, to
avoid losing potential customers, the system should employ some strategies
by choosing the system parameter to further encourage customers to stay in
the system. In the case that the service is not successful, the customer can
repeat its request again and again until the service succeeds.

4. Governing equations

At an arbitrary time, the system state is defined by a continuous time
Markov chain {(𝐿(𝑡); 𝐽(𝑡)); 𝑡 ⩾ 0} on the state space Ω = {(𝑛; 𝑗) ∶
𝑛 ⩾ 0; 𝑗 = 0, 𝐾}, where 𝐿(𝑡) is the number of customers in the system and
𝐽(𝑡) is the state of the servers, i.e.,

𝐽(𝑡) =
⎧{
⎨{⎩

𝑗, if the servers are taking the (𝑗 + 1)th vacation at time 𝑡,
𝑗 = 0, 𝐾 − 1,

𝐾, if the servers are idle or busy at time 𝑡.
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Let 𝑃𝑛,𝑗 = lim
𝑡→∞

ℙ(𝐿(𝑡) = 𝑛; 𝐽(𝑡) = 𝑗), 𝑛 ⩾ 0; 𝑗 = 0, 𝐾, denote the steady-

state probabilities of the process {(𝐿(𝑡); 𝐽(𝑡)); 𝑡 ⩾ 0}. The state-transition
diagram is illustrated in Figure 1.

Figure 1. Transition plot

Using Chapman–Kolmogorov equations, we can formulate the balance
equations for the suggested queueing model as:

(𝜆 + 𝜙)𝑃0,0 = 𝛼𝜉0𝑃1,0 + (𝛽𝜇 + 𝛼𝜉1)𝑃1,𝐾, 𝑛 = 0, (1)

(𝜃𝜆 + 𝜙 + 𝛼𝜉0)𝑃1,0 = 𝜆𝑃0,0 + 2𝛼𝜉0𝑃2,0, 𝑛 = 1, (2)

(𝜃𝜆 + 𝜙 + 𝑛𝛼𝜉0)𝑃𝑛,0 = 𝜃𝜆𝑃𝑛−1,0 + (𝑛 + 1)𝛼𝜉0𝑃𝑛+1,0, 𝑛 ⩾ 2, (3)

(𝜆 + 𝜙)𝑃0,𝑗 = 𝛼𝜉0𝑃1,𝑗 + 𝜙𝑃0,𝑗−1, 𝑗 = 1, 𝐾 − 1, 𝑛 = 0, (4)

(𝜃𝜆 + 𝜙 + 𝛼𝜉0)𝑃1,𝑗 = 𝜆𝑃0,𝑗 + 2𝛼𝜉0𝑃2,𝑗, 𝑗 = 1, 𝐾 − 1, 𝑛 = 1, (5)

(𝜃𝜆+𝜙+𝑛𝛼𝜉0)𝑃𝑛,𝑗 = 𝜃𝜆𝑃𝑛−1,𝑗 +(𝑛+1)𝛼𝜉0𝑃𝑛+1,𝑗, 𝑗 = 1, 𝐾 − 1, 𝑛 ⩾ 2, (6)
𝜆𝑃0,𝐾 = 𝜙𝑃0,𝐾−1, 𝑛 = 0, (7)

(𝜆 + 𝛽𝜇 + 𝛼𝜉1)𝑃1,𝐾 = 𝜆𝑃0,𝐾 + 2(𝛽𝜇 + 𝛼𝜉1)𝑃2,𝐾 + 𝜙
𝐾−1
∑
𝑗=0

𝑃1,𝑗, 𝑛 = 1, (8)

(𝜆 + 𝑛(𝛽𝜇 + 𝛼𝜉1))𝑃𝑛,𝐾 =

= 𝜆𝑃𝑛−1,𝐾 + (𝑛 + 1)(𝛽𝜇 + 𝛼𝜉1)𝑃𝑛+1,𝐾 + 𝜙
𝐾−1
∑
𝑗=0

𝑃𝑛,𝑗, 2 ⩽ 𝑛 ⩽ 𝑐 − 1, (9)

(𝜃𝜆 + 𝑐𝛽𝜇 + 𝑛𝛼𝜉1)𝑃𝑛,𝐾 =

= 𝜆𝑃𝑛−1,𝐾 + (𝑐𝛽𝜇 + (𝑛 + 1)𝛼𝜉1)𝑃𝑛+1,𝐾 + 𝜙
𝐾−1
∑
𝑗=0

𝑃𝑛,𝑗, 𝑛 = 𝑐, (10)
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(𝜃𝜆 + 𝑐𝛽𝜇 + 𝑛𝛼𝜉1)𝑃𝑛,𝐾 =

= 𝜃𝜆𝑃𝑛−1,𝐾 + (𝑐𝛽𝜇 + (𝑛 + 1)𝛼𝜉1)𝑃𝑛+1,𝐾 + 𝜙
𝐾−1
∑
𝑗=0

𝑃𝑛,𝑗, 𝑛 > 𝑐. (11)

Consider the probability generating functions (PGFs) as:

𝐺𝑗(𝑧) =
∞

∑
𝑛=0

𝑧𝑛𝑃𝑛,𝑗,

and define

𝐺′
𝑗(𝑧) = 𝑑

𝑑𝑧
𝐺𝑗(𝑧), 𝑗 = 0, 𝐾.

The normalizing condition is defined as

∞
∑
𝑛=0

𝐾
∑
𝑗=0

𝑃𝑛,𝑗 = 1.

Multiplying Equation (3) by 𝑧𝑛, summing all possible values of 𝑛, and
using Equations (1) and (2), we get

𝛼𝜉0(1−𝑧)𝐺′

0(𝑧)−(𝜃𝜆(1−𝑧)+𝜙)𝐺0(𝑧) = −(𝛽𝜇+𝛼𝜉1)𝑃1,𝐾+𝜃𝜆(1−𝑧)𝑃0,0. (12)

In the same manner, from Equations (4)–(6) and (7)–(11) respectively, we
obtain

𝛼𝜉0(1 − 𝑧)𝐺′
𝑗(𝑧) − [𝜃𝜆(1 − 𝑧) + 𝜙]𝐺𝑗(𝑧) =

= 𝜃𝜆(1 − 𝑧)𝑃0,𝑗 − 𝜙𝑃0,𝑗−1, 𝑗 = 1, 𝐾 − 1, (13)

and

𝛼𝜉1𝑧(1 − 𝑧)𝐺′

𝐾(𝑧) − (1 − 𝑧)(𝜃𝜆𝑧 − 𝑐𝛽𝜇)𝐺𝐾(𝑧) =

= 𝑐𝛽𝜇(1 − 𝑧)𝑃0,𝐾 + 𝑧(𝛽𝜇 + 𝛼𝜉1)𝑃1,𝐾 − 𝜙𝑧
𝐾−1
∑
𝑗=0

𝐺𝑗(𝑧)+

+ 𝜙𝑧
𝐾−2
∑
𝑗=0

𝑃0,𝑗 + 𝜆𝜃𝑧(1 − 𝑧)Γ1(𝑧) − 𝛽𝜇(1 − 𝑧)Γ2(𝑧), (14)

where

Γ1(𝑧) =
𝑐−1
∑
𝑛=0

𝑧𝑛𝑃𝑛,𝐾 and Γ2(𝑧) =
𝑐−1
∑
𝑛=1

(𝑛 − 𝑐)𝑧𝑛𝑃𝑛,𝐾.
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5. Solution of the differential equations

For 𝑧 ≠ 1, Equation (12) can be written as follows:

𝐺′
0(𝑧) − [ 𝜃𝜆

𝛼𝜉0
+ 𝜙

𝛼𝜉0(1 − 𝑧)
] 𝐺0(𝑧) = − 𝛽𝜇 + 𝛼𝜉1

𝛼𝜉0(1 − 𝑧)
𝑃1,𝐾 + 𝜃𝜆

𝛼𝜉0
𝑃0,0. (15)

Multiply both sides of Equation (15) by 𝑒− 𝜃𝜆
𝛼𝜉0

𝑧(1 − 𝑧)
𝜙

𝛼𝜉0 , we get

𝑑
𝑑𝑧

(𝑒− 𝜃𝜆
𝛼𝜉0

𝑧(1 − 𝑧)
𝜙

𝛼𝜉0 𝐺0(𝑧)) =

= 𝑒− 𝜃𝜆
𝛼𝜉0

𝑧(1 − 𝑧)
𝜙

𝛼𝜉0 ( 𝜃𝜆
𝛼𝜉0

𝑃0,0 − (𝛽𝜇 + 𝛼𝜉1)
𝛼𝜉0(1 − 𝑧)

𝑃1,𝐾) .

Next, integrating the above equation from 0 to 𝑧, we obtain

𝐺0(𝑧) = 𝑒
𝜃𝜆

𝛼𝜉0
𝑧(1 − 𝑧)− 𝜙

𝛼𝜉0 ×

× {𝐺0(0) + 𝜃𝜆
𝛼𝜉0

𝑃0,0𝐶1(𝑧) − 𝛽𝜇 + 𝛼𝜉1
𝛼𝜉0

𝑃1,𝐾𝐶2(𝑧)} , (16)

with

𝐶1(𝑧) =
𝑧

∫
0

𝑒− 𝜃𝜆
𝛼𝜉0

𝑠(1 − 𝑠)
𝜙

𝛼𝜉0 𝑑𝑠 and 𝐶2(𝑧) =
𝑧

∫
0

𝑒− 𝜃𝜆
𝛼𝜉0

𝑠(1 − 𝑠)
𝜙

𝛼𝜉0
−1𝑑𝑠.

Since 𝐺0(1) = ∑∞
𝑛=0 𝑃𝑛,0 > 0 and 𝑧 = 1 is the root of denominator of the

right hand side of Equation (16), we have that 𝑧 = 1 must be the root of the
numerator of the right hand side of Equation (16). So, we obtain

𝐺0(0) =
(𝛽𝜇 + 𝛼𝜉1)𝑃1,𝐾

𝛼𝜉0
𝐶2(1) −

𝜃𝜆𝑃0,0

𝛼𝜉0
𝐶1(1), (17)

where

𝐶1(1) =
1

∫
0

𝑒− 𝜃𝜆
𝛼𝜉0

𝑠(1 − 𝑠)
𝜙

𝛼𝜉0 𝑑𝑠 and 𝐶2(1) =
1

∫
0

𝑒− 𝜃𝜆
𝛼𝜉0

𝑠(1 − 𝑠)
𝜙

𝛼𝜉0
−1𝑑𝑠.

Noting 𝐺0(0) = 𝑃0,0. Then, Equation (17) implies

𝑃1,𝐾 = 𝛼𝜉0
(𝛽𝜇 + 𝛼𝜉1)𝐶2(1)

𝐵𝑃0,0 = 𝜛1𝑃0,0, (18)

with

𝐵 = 1 + 𝜆
𝛼𝜉0

𝜃𝐶1(1) and 𝜛1 = 𝛼𝜉0
(𝛽𝜇 + 𝛼𝜉1)𝐶2(1)

𝐵.
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Substituting Equation (18) into Equation (16), we obtain

𝐺0(𝑧) = 𝑒
𝜃𝜆

𝛼𝜉0
𝑧(1 − 𝑧)− 𝜙

𝛼𝜉0 {1 + 𝜃𝜆
𝛼𝜉0

𝐶1(𝑧) − 𝐵
𝐶2(1)

𝐶2(𝑧)} 𝑃0,0. (19)

Next, Equation (13) can be written as

𝐺′
𝑗(𝑧) − [ 𝜃𝜆

𝛼𝜉0
+ 𝜙

𝛼𝜉0(1 − 𝑧)
] 𝐺𝑗(𝑧) = 𝜃𝜆

𝛼𝜉0
𝑃0,𝑗 − 𝜙

𝛼𝜉0(1 − 𝑧)
𝑃0,𝑗−1. (20)

Similarly, as for Equation (15), we multiply both sides of Equation (20) by

𝑒− 𝜃𝜆
𝛼𝜉0

𝑧(1 − 𝑧)
𝜙

𝛼𝜉0 . Then, we find

𝐺𝑗(𝑧) = 𝑒
𝜃𝜆

𝛼𝜉0
𝑧(1 − 𝑧)− 𝜙

𝛼𝜉0 ×

× {𝐺𝑗(0) + 𝜆𝜃
𝛼𝜉0

𝐶1(𝑧)𝑃0,𝑗 − 𝜙
𝛼𝜉0

𝐶2(𝑧)𝑃0,𝑗−1} , 𝑗 = 1, 𝐾 − 1. (21)

Since 𝐺𝑗(1) =
∞
∑
𝑛=0

𝑃𝑛,𝑗 > 0 (𝐺𝑗(1) = 𝑃•,𝑗 represents the probability that the

servers are taking the (𝑗 + 1)th vacation) and 𝑧 = 1 is the root of denominator
of the right hand side of Equation (21), we have that 𝑧 = 1 must be the root
of the numerator of the right hand side of Equation (21). So, we obtain

𝐺𝑗(0) = 𝑃0,𝑗 = 𝐴𝑃0,𝑗−1, 𝑗 = 1, 𝐾 − 1, (22)

where 𝐴 = 𝜙𝐶2(1)
𝛼𝜉0𝐵

. Using Equation (22) repeatedly, we get

𝑃0,𝑗 = 𝐴𝑗𝑃0,0, 𝑗 = 1, 𝐾 − 1. (23)

Now, by substituting Equation (23) into Equation (21), we find

𝐺𝑗(𝑧) = 𝑒
𝜃𝜆

𝛼𝜉0
𝑧(1 − 𝑧)− 𝜙

𝛼𝜉0 𝐴𝑗×

× {1 + 𝜆𝜃
𝛼𝜉0

𝐶1(𝑧) − 𝐵
𝐶2(1)

𝐶2(𝑧)} 𝑃0,0, 𝑗 = 1, 𝐾 − 1. (24)

To find 𝑃0,𝐾; the probability that the servers are idle during the busy

period, we use Equations (7) and (23). Thus

𝑃0,𝐾 = 𝜛0𝑃0,0, (25)

where 𝜛0 = 𝜙
𝜆

𝐴𝐾−1.

Remark 1. It is easy to see that 0 < 𝜙𝐶2(1) < 𝛼𝜉0, and 𝜃𝜆𝐶1(1) > 0.
Thus, 0 < 𝜙𝐶2(1) < 𝛼𝜉0 + 𝜃𝜆𝐶1(1). Consequently, we have 0 < 𝐴 < 1.
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Next, Equation (14) can be written as:

𝐺′
𝐾(𝑧)−( 𝜃𝜆

𝛼𝜉1
− 𝑐𝛽𝜇

𝛼𝜉1𝑧
) 𝐺𝐾(𝑧) = 𝛽𝜇 + 𝛼𝜉1

𝛼𝜉1(1 − 𝑧)
𝑃1,𝐾 + 𝑐𝛽𝜇

𝛼𝜉1𝑧
𝑃0,𝐾 + 𝜆𝜃

𝛼𝜉1
Γ1(𝑧)−

− 𝛽𝜇
𝛼𝜉1𝑧

Γ2(𝑧) + 𝜙
𝛼𝜉1(1 − 𝑧)

(
𝐾−2
∑
𝑗=0

𝑃0,𝑗 −
𝐾−1
∑
𝑗=0

𝐺𝑗(𝑧)) . (26)

In the same way, by multiplying Equation (13) by Υ(𝑧) = 𝑒− 𝜃𝜆
𝛼𝜉1

𝑧𝑧
𝑐𝛽𝜇
𝛼𝜉1 ,

we get

𝑑
𝑑𝑧

(Υ(𝑧)𝐺𝐾(𝑧)) = Υ(𝑧) { 𝛽𝜇 + 𝛼𝜉1
𝛼𝜉1(1 − 𝑧)

𝑃1,𝐾 + 𝑐𝛽𝜇
𝛼𝜉1𝑧

𝑃0,𝐾 + 𝜆𝜃
𝛼𝜉1

Γ1(𝑧) −

− 𝛽𝜇
𝛼𝜉1𝑧

Γ2(𝑧) + 𝜙
𝛼𝜉1(1 − 𝑧)

(
𝐾−2
∑
𝑗=0

𝑃0,𝑗 −
𝐾−1
∑
𝑗=0

𝐺𝑗(𝑧))} . (27)

Then, integrating from 0 to 𝑧 and using Equations (18) and (23)–(25), we
obtain

𝐺𝐾(𝑧) = 𝑒
𝜃𝜆

𝛼𝜉1
𝑧𝑧− 𝑐𝛽𝜇

𝛼𝜉1 {((𝛽𝜇 + 𝛼𝜉1)𝜛1 + 𝜙 (1 − 𝐴𝐾−1

1 − 𝐴
)) 𝐻1(𝑧)+

+ 𝑐𝛽𝜇𝜙
𝜆

𝐴𝐾−1𝐻2(𝑧) − 𝜙 (1 − 𝐴𝐾

1 − 𝐴
) 𝐻3(𝑧) + 1

𝛼𝜉1
×

× ⎛⎜
⎝

𝜆𝜃
𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠Γ1(𝑠)𝑑𝑠 − 𝛽𝜇

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1

−1𝑒− 𝜃𝜆
𝛼𝜉1

𝑠Γ2(𝑠)𝑑𝑠⎞⎟
⎠

⎫}
⎬}⎭

𝑃0,0, (28)

where

𝐻1(𝑧) = 1
𝛼𝜉1

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠(1 − 𝑠)−1𝑑𝑠,

𝐻2(𝑧) = 1
𝛼𝜉1

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1

−1𝑒− 𝜃𝜆
𝛼𝜉1

𝑠𝑑𝑠,

𝐻3(𝑧) = 1
𝛼𝜉1

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠Ψ(𝑠)(1 − 𝑠)−1𝑑𝑠,

Ψ(𝑠) = 𝑒
𝜃𝜆

𝛼𝜉0
𝑠(1 − 𝑠)− 𝜙

𝛼𝜉0 {1 + 𝜆𝜃
𝛼𝜉0

𝐶1(𝑠) − 𝐵
𝐶2(1)

𝐶2(𝑠)} .
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6. Evaluation of probabilities 𝑃•,𝐾, 𝑃•,𝑗 and 𝑃0,0

From Equations (18) and (25), we have 𝑃1,𝐾 = 𝜛1𝑃0,0 and 𝑃0,𝐾 = 𝜛0𝑃0,0.

Making use of Equations (4)–(6), we recursively get

𝐾−1
∑
𝑗=0

𝑃𝑛,𝑗 = 𝛿𝑛𝑃0,0,

where

𝛿𝑛 = 1
𝑛𝛼𝜉0

{[𝜃𝜆 + 𝜙 + (𝑛 − 1)𝛼𝜉0]𝛿𝑛−1 − 𝜃𝜆𝛿𝑛−2} .

Similarly, from Equations (8), (9), we recursively obtain 𝑃𝑛,𝐾 = 𝜛𝑛𝑃0,0,
where

𝜛𝑛 = 1
𝑛(𝛽𝜇 + 𝛼𝜉1)

{[𝜆 + (𝑛 − 1)(𝛽𝜇 + 𝛼𝜉1)]𝜛𝑛−1 − 𝜆𝜛𝑛−2 − 𝜙𝛿𝑛−1} .

Thus, Equation (28) can be written as

𝐺𝐾(𝑧) =

= 𝑒
𝜃𝜆

𝛼𝜉1
𝑧𝑧− 𝑐𝛽𝜇

𝛼𝜉1 {[ 𝛼𝜉0𝐵
𝐶2(1)

+ 𝜙 (1 − 𝐴𝐾−1

1 − 𝐴
)] 𝐻1(𝑧) + 𝑐𝛽𝜇𝜙

𝜆
𝐴𝐾−1𝐻2(𝑧) −

− 𝜙 (1 − 𝐴𝐾

1 − 𝐴
) 𝐻3(𝑧) + 𝜆𝜃𝐻4(𝑧) − 𝛽𝜇𝐻5(𝑧)} 𝑃0,0, (29)

with

𝐻4(𝑧) = 1
𝛼𝜉1

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠Θ1(𝑠)𝑑𝑠, 𝐻5(𝑧) = 1

𝛼𝜉1

𝑧

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1

−1𝑒− 𝜃𝜆
𝛼𝜉1

𝑠Θ2(𝑠)𝑑𝑠,

Θ1(𝑧) =
𝑐−1
∑
𝑛=0

𝑧𝑛𝜛𝑛, and Θ2(𝑧) =
𝑐−1
∑
𝑛=1

(𝑛 − 𝑐)𝑧𝑛𝜛𝑛.

Thus, for 𝑧 = 1 (noting that 𝐺𝐾(1) = 𝑃•,𝐾 represents the probability that

the servers are busy or idle), we get

𝐺𝐾(1) = 𝑃•,𝐾 = Φ(1)𝑃0,0, (30)

where

Φ(1) = 𝑒
𝜃𝜆

𝛼𝜉1 {((𝛽𝜇 + 𝛼𝜉1)𝜛1 + 𝜙 (1 − 𝐴𝐾−1

1 − 𝐴
)) 𝐻1(1)+ +

+𝑐𝛽𝜇𝜙
𝜆

𝐴𝐾−1𝐻2(1) − 𝜙 (1 − 𝐴𝐾

1 − 𝐴
) 𝐻3(1) + 𝜆𝜃𝐻4(1) − 𝛽𝜇𝐻5(1)} ,
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with

𝐻1(1) = 1
𝛼𝜉1

1

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠(1 − 𝑠)−1𝑑𝑠,

𝐻2(1) = 1
𝛼𝜉1

1

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1

−1𝑒− 𝜃𝜆
𝛼𝜉1

𝑠𝑑𝑠,

𝐻3(1) = 1
𝛼𝜉1

1

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠Ψ(𝑠)(1 − 𝑠)−1𝑑𝑠,

𝐻4(1) = 1
𝛼𝜉1

1

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1 𝑒− 𝜃𝜆

𝛼𝜉1
𝑠Θ1(𝑠)𝑑𝑠,

𝐻5(1) = 1
𝛼𝜉1

1

∫
0

𝑠
𝑐𝛽𝜇
𝛼𝜉1

−1𝑒− 𝜃𝜆
𝛼𝜉1

𝑠Θ2(𝑠)𝑑𝑠.

Now, from Equations (12) and (13), for 𝑧 = 1, we have

𝑃•,𝑗 = 𝐺𝑗(1) = 𝐴𝑗−1𝑃0,0, 𝑗 = 0, 𝐾 − 1. (31)

By the definition of 𝑃•,𝑗, using the normalizing condition, we get

𝐾
∑
𝑗=0

𝑃•,𝑗 = 1.

Finally, from Equations (30) and (31), we get

𝑃0,0 = ( 1 − 𝐴𝐾

𝐴(1 − 𝐴)
+ Φ(1))

−1

. (32)

7. Performance measures

The prime aim of determining probabilities in previous section is to formu-
late different metrics in order to examine the performance of the concerned
system.

7.1. Mean system sizes

Systematic observations of the system state is very important to enhance
the performance and to improve the decision-making.

Let 𝐿𝑗 be the system size when the servers are in the state 𝑗 (𝑗 = 0, 𝐾).

Thus, 𝔼(𝐿𝑗) is the mean system size when the servers are in the state 𝑗,
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defined by

𝔼(𝐿𝑗) = 𝐺′
𝑗(1) =

∞
∑
𝑛=1

𝑛𝑃𝑛,𝑗, 𝑗 = 0, 𝐾,

that is, for 𝑗 = 0, 𝐾 − 1, 𝔼(𝐿𝑗) represents the mean system size when the

servers are taking the (𝑗 + 1)th vacation, and 𝔼(𝐿𝐾) represents the mean
system size when the servers are busy. We first derive 𝔼(𝐿𝑗) for 𝑗 = 0, 𝐾 − 1.
From Equation (15), using the Hospital rule, we get

𝔼(𝐿0) = 𝐺′

0(1) =

= lim
𝑧→1

−𝜃𝜆𝐺0(𝑧) + [𝜃𝜆(1 − 𝑧) + 𝜙]𝐺′

0(𝑧) − 𝜆𝜃𝑃0,0

−𝛼𝜉0
=

=
𝜃𝜆𝐺0(1) − 𝜙𝐺′

0(1) + 𝜃𝜆𝑃0,0

𝛼𝜉0
.

Thus, we get

𝐺′
0(1) =

𝜃𝜆𝐺0(1) + 𝜆𝜃𝑃0,0

𝛼𝜉0 + 𝜙
. (33)

Similarly, from Equation (13), we find

(𝛼𝜉0 + 𝜙)𝐺′
𝑗(1) = 𝜃𝜆𝐺𝑗(1) + 𝜆𝜃𝑃0,𝑗, 𝑗 = 1, 𝐾 − 1. (34)

Then, from Equations (33) and (34), we have

𝔼(𝐿𝑗) = 𝐺′
𝑗(1) =

𝜆[𝜃𝐺𝑗(1) + 𝜃𝑃0,𝑗]
𝛼𝜉0 + 𝜙

, 𝑗 = 0, 𝐾 − 1. (35)

By substituting Equation (31) and (35), we get

𝔼(𝐿𝑗) = 𝜆
𝛼𝜉0 + 𝜙

[𝜃 + 𝜃𝐴
𝐴

] 𝐴𝑗𝑃0,0, 𝑗 = 0, 𝐾 − 1.

Thus, the mean system size when the servers are on vacation is obtained as

𝔼(𝐿𝑉) =
𝐾−1
∑
𝑗=0

𝔼(𝐿𝑗) = 𝔼(𝐿0) +
𝐾−1
∑
𝑗=1

𝔼(𝐿𝑗) =

= 𝜆(𝜃𝐴−1 + 𝜃)
(𝛼𝜉0 + 𝜙)

𝑃0,0 + 𝜆
(𝛼𝜉0 + 𝜙)

[𝜃 + 𝜃𝐴
𝐴

]
𝐾−1
∑
𝑗=1

𝐴𝑗𝑃0,0 =

= (𝜆(𝜃 + 𝜃𝐴)
𝛼𝜉0 + 𝜙

) {2 − (𝐴 + 𝐴𝐾−1)
𝐴(1 − 𝐴)

} 𝑃0,0.
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Next, from Equation (26) and by using the Hospital rule, we get

𝔼(𝐿𝐾) = lim
𝑧→1

𝐺′

𝐾(𝑧) =

= 1
𝛼𝜉1

{(𝜃𝜆 − 𝑐𝛽𝜇)Φ(1) + 𝑐𝛽𝜇𝜙
𝜆

𝐴𝐾−1 + 𝜆𝜙(𝜃 + 𝜃𝐴)
𝛼𝜉0 + 𝜙

( 1 − 𝐴𝐾

𝐴(1 − 𝐴)
)} 𝑃0,0+

+ 1
𝛼𝜉1

{𝜃𝜆Θ1(1) − 𝛽𝜇Θ2(1)} 𝑃0,0,

where Θ1(1) =
𝑐−1
∑
𝑛=0

𝜛𝑛 and Θ2(1) =
𝑐−1
∑
𝑛=1

(𝑛 − 𝑐)𝜛𝑛.

7.2. Queueing model indices

The expressions for the mean queue length, the mean number of customers
served and the average rates of impatient customers are established as follows:

— The mean size of the queue is calculated as

𝔼(𝐿𝑞) =
𝐾−1
∑
𝑗=0

∞
∑
𝑛=1

𝑛𝑃𝑛,𝑗 +
∞

∑
𝑛=𝑐

(𝑛 − 𝑐)𝑃𝑛,𝐾 =

= 𝔼(𝐿) − 𝑐 + {𝑐 [ 1 − 𝐴𝐾

𝐴(1 − 𝐴)
+ 𝜙

𝜆
𝐴𝐾−1] − Θ2(1)} 𝑃0,0.

— The mean number of customers served per unit of time is given as

𝐸cs = 𝛽𝜇
𝑐−1
∑
𝑛=1

𝑛𝑃𝑛,𝐾 + 𝑐𝛽𝜇
∞

∑
𝑛=𝑐

𝑃𝑛,𝐾 =

= 𝛽𝜇 {𝑐 + [Θ2(1) − 𝑐 (𝜙
𝜆

𝐴𝐾−1 + 1 − 𝐴𝐾

𝐴(1 − 𝐴)
)] 𝑃0,0} .

— The average rate of balking when the servers are in the state 𝑗 = 0, 𝐾 is
calculated as

𝐵r = 𝜃𝜆 (
𝐾−1
∑
𝑗=0

∞
∑
𝑛=1

𝑃𝑛,𝑗 +
∞

∑
𝑛=𝑐

𝑃𝑛,𝐾) =

= 𝜃𝜆 {1 − [2 − 𝐴 − 𝐴𝐾−1 + (1 − 𝐴)Θ1(1)
(1 − 𝐴)

] 𝑃0,0} .

— The average rate of abandonment of a customer due to reneging is as
follows

𝑅ren =
𝐾−1
∑
𝑗=0

∞
∑
𝑛=1

𝑛𝛼𝜉0𝑃𝑛,𝑗 +
∞

∑
𝑛=1

𝑛𝛼𝜉1𝑃𝑛,𝐾 = 𝛼𝜉0𝔼(𝐿𝑉) + 𝛼𝜉1𝔼(𝐿𝐾).
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8. Conclusion

In this paper, we studied an 𝑀/𝑀/𝑐 feedback queue under synchronous
𝐾-variant vacations, balking, server’s states-dependent reneging and retention
of reneged customers. We developed the Chapman–Kolmogorov equations
for the steady-state probabilities and solved the differential equations by
using the probability generating function method. Based on these results, we
obtained the probability generating function of the number of customers in
the system when the system is on vacation period (resp. on busy period). In
addition, we derived explicit expressions of some useful performance measures
for the system. Furthermore, we presented closed-form expressions of some
important other queueing indices such as the probabilities when the servers
are in different states, the proportion of customers served per unit of time,
and the average rates of balking and reneging.
It would be interesting to investigate a similar model with two-phase services

and multiple vacation policy, server breakdown and repair, and customers’
impatience. Further, one can evaluate the optimality of service and repair
rates to minimize the waiting time of the customers in the system.
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Математический анализ марковской многолинейной
системы массового обслуживания с обратной связью,
прогулками приборов и нетерпеливыми заявками
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Аннотация. В работе исследуется система массового обслуживания с нетер-
пеливыми заявками, бернуллиевской обратной связью и прогулками приборов.
В момент перед поступлением заявки в систему клиент, анализируя занятость
системы и состояние приборов, принимает решение о принятии заявки или её
уходе из системы. Предполагается, что нетерпение клиента может возникнуть
как в период занятости, так и в период отдыха (прогулки) приборов из-за имев-
шихся ранее случаев длительного ожидания начала обслуживания в системе,
информация о которых предоставляется с помощью определённого механизма.
Обратная связь состоит в том, что часть ранее обслуженных клиентов может
вернуться в систему для повторного обслуживания. Исследуемая система может
применяться для анализа передачи данных в телекоммуникационных системах.
Для стационарного распределения вероятностей записаны и решены с помощью
производящих функций уравнения Колмогорова–Чепмена. Кроме того, полу-
чены аналитические выражения для ряда ключевых характеристик системы,
например таких, как вероятности занятости или прогулки прибора, среднее чис-
ло обслуженных заявок в единицу времени, средние интенсивности отказов от
поступления и отказов от ожидания начала обслуживания.

Ключевые слова: марковская многолинейная система массового обслуживания,
производящая функция, нетерпеливые заявки, прогулка прибора, обратная связь


