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Any Hilbert space with composite dimension can be factored into a tensor product
of smaller Hilbert spaces. This allows us to decompose a quantum system into
subsystems. We propose a model based on finite quantum mechanics for a constructive
study of such decompositions.
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1. Introduction

Mereology is the study of the part-to-whole and part-to-part relations within
a whole. In quantum mereology, the whole is a closed quantum system (“the

Universe”)1 in a given pure state, undergoing a given unitary (Schrödinger)
evolution. Quantum mereology studies the interrelations between singled out
subsystems of the Universe (“observable system”, “observer”, “environment”,
etc.), the emergence of geometry and even time (Page–Wootters mechanism
[1]) from quantum entanglement, and other fundamental issues of quantum
mechanics [2]–[4].
The division of the whole into parts is somewhat arbitrary and depends on

the used separation criteria. There are two different facets of the separability
between quantum systems.

1. Quantum systems are separated if the interaction energy between them is
small. This is a more visible, material criterion that agrees well with the
usual concept of locality. Quantitatively, the interaction energy between
subsystems 𝐴 and 𝐵 can be represented as

Δ𝐸(𝐴, 𝐵) = 𝐸(𝐴∪𝐵) − 𝐸(𝐴) − 𝐸(𝐵) . (1)
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1Obviously, in the exact sense, closed systems do not exist (or they are fundamentally

unobservable), with the possible exception of the Universe as a whole.
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2. Quantum systems are separated if the quantum correlations between them
are small. This criterion is more subtle and has non-local manifestations.
Quantitatively, the entanglement between subsystems can be described,
for example, by mutual information

ℐ(𝐴, 𝐵) = 𝑆(𝐴) + 𝑆(𝐵) − 𝑆(𝐴∪𝐵) , (2)

where 𝑆 denotes entropy.

There is a certain structural similarity between expressions (1) and (2).
However, they describe completely different types of connections between
subsystems.

For example, in the Page–Wootters model of emergent time, it is assumed
that the whole timeless Universe is divided into two subsystems: the “clock”,
𝐶, and the rest of the Universe, 𝑅. It is assumed that the Hamiltonian of
the Universe has the form 𝐻 = 𝐻𝐶 ⊗ 𝟙𝑅 + 𝟙𝐶 ⊗ 𝐻𝑅, which means that the
interaction energy between 𝐶 and 𝑅 is zero. On the other hand, the existence
of nontrivial quantum correlations between 𝐶 and 𝑅 is assumed.

It would be interesting to take a closer look at the interplay between these
two different, energy and information, aspects of quantum separability.

We develop and implement algorithms based on computer algebra techniques
to perform the following. An isolated quantum system, constructed in the
framework of finite quantum mechanics, is decomposed into a tensor product of
subsystems. By reducing the “universe” quantum state, we obtain mixed states
for subsystems. This allows us to study energy interactions and quantum
correlations between subsystems and their time evolution.

2. Decomposition of a quantum system

Tensor product of Hilbert spaces. The (global) Hilbert space ℋ of a 𝐾-
component quantum system is the tensor product of the (local) Hilbert spaces
ℋ𝑘 of the components:

ℋ =
𝐾

⨂
𝑘=1

ℋ𝑘 . (3)

If dimℋ = 𝒩 and dimℋ𝑘 = 𝑑𝑘, then 𝒩 = ∏𝐾
𝑘=1 𝑑𝑘.

For any 𝑑-dimensional Hilbert space, the 𝑖th orthonormal basis element is
denoted by |𝑖⟩, that is,

|0⟩ = (1, 0, …)⊤, |1⟩ = (0, 1, 0, …)⊤, … , |𝑑 − 1⟩ = (0, 0, … , 1)⊤ .

Tensor monomials of local basis elements form an orthonormal basis in the
global Hilbert space:

|𝑖⟩ = |𝑖1⟩ ⊗ ⋯ ⊗ |𝑖𝑘⟩ ⊗ ⋯ ⊗ |𝑖𝐾⟩ , (4)
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where |𝑖⟩ ∈ ℋ, |𝑖𝑘⟩ ∈ ℋ𝑘 and

𝑖 = 𝑖1

𝐾
∏
𝑚=2

𝑑𝑚 + … + 𝑖𝑘

𝐾
∏

𝑚=𝑘+1
𝑑𝑚 + … + 𝑖𝐾. (5)

Tensor factorization of a Hilbert space. We can reverse the procedure,
since (4) is a one-to-one correspondence: the sequence 𝑖1, … , 𝑖𝐾 is uniquely
recovered from 𝑖 by a simple procedure based on formula (5):

𝑘 ← 𝐾, ̃𝚤 ← 𝑖
while 𝑘 ⩾ 1 do

𝑖𝑘 ← ̃𝚤 mod 𝑑𝑘, ̃𝚤 ← ⌊ ̃𝚤/𝑑𝑘⌋ , 𝑘 ← 𝑘−1
end while

(6)

Given an orthonormal basis in an 𝒩-dimensional Hilbert space ℋ and
a decomposition 𝒩 = 𝑑1 ⋯ 𝑑𝐾, we can construct a particular bijection of the
form (3).
When constructing a bijection, we must take into account the freedom in

the choice of bases in Hilbert spaces. Any two orthonormal bases are related
by a unitary transformation.
It is easy to show that general unitary changes of bases in all involved

spaces are equivalent to a single change in the global space.
Namely, any vector of the global space can be represented as a sum of

tensor products of elements of local spaces

|𝜓⟩ = ∑
ℓ

𝐾
⨂
𝑘=1

∣𝜓ℓ
𝑘⟩ , ∣𝜓ℓ

𝑘⟩ ∈ ℋ𝑘, |𝜓⟩ ∈ ℋ. (7)

Applying unitary transformations to all vectors in (7) and using the properties
of the tensor product, we have

𝑈 |𝜓⟩ = ∑
ℓ

𝐾
⨂
𝑘=1

𝑈𝑘 ∣𝜓ℓ
𝑘⟩ =

𝐾
⨂
𝑘=1

𝑈𝑘∑
ℓ

𝐾
⨂
𝑘=1

∣𝜓ℓ
𝑘⟩

⇓

𝑈 ′|𝜓⟩ = ∑
ℓ

𝐾
⨂
𝑘=1

∣𝜓ℓ
𝑘⟩ , where 𝑈 ′ = (

𝐾
⨂
𝑘=1

𝑈𝑘)
−1

𝑈.

Thus, to specify the factorization of the Hilbert space ℋ we need two things2

1. an integer decomposition dimℋ = 𝑑1 ⋯ 𝑑𝐾, and
2. a unitary transformation 𝑈, which fixes a basis in ℋ.

2Another approach, in which the tensor factorization of a Hilbert space is specified by

a set of observables, was proposed in [5], [6].
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Decomposition of a pure quantum state. Any mixed state of a quantum
system can be obtained from a pure state in a larger Hilbert space by
taking a partial trace. It is natural to assume that at the fundamental level
the state of an isolated system must be pure.3 For a given factorization
ℋ = ℋ1 ⊗ ⋯ ⊗ ℋ𝐾, we introduce the set of indices (which can be thought
of as “geometric points”)

𝑋 = {1, … , 𝐾} .
Subsystems are identified with subsets 𝐴 ⊆ 𝑋. The density matrix of the

pure state |𝜓⟩ ∈ ℋ of the entire system is 𝜌𝑋 = |𝜓⟩⟨𝜓|
⟨𝜓 ∣ 𝜓⟩

. According to the

laws of quantum mechanics, the statistical behavior of the subsystem 𝐴 is
correctly described by the reduced density matrix 𝜌𝐴 = tr𝑋\𝐴 𝜌𝑋 calculated

by taking the partial trace over the complement to 𝐴.
In more detail, the calculation of the reduced density matrix is as follows.

According to (4), the basis of the global Hilbert space can be represented as
the Cartesian product of the local bases

𝐵𝑋 = ∏
𝑘∈𝑋

𝐵𝑘 .

In a similar way we introduce the sets

𝐵𝐴 = ∏
𝑘∈𝐴

𝐵𝑘 and 𝐵𝑋\𝐴 = ∏
𝑘∈𝑋\𝐴

𝐵𝑘 .

In components, the global density matrix can be written as

𝜌𝑋 = (𝜌𝑋)
𝑖𝑋𝑗𝑋

|𝑖𝑋⟩⟨𝑗𝑋| ,

where 𝑖𝑋 ≃ {𝑖1, … , 𝑖𝐾} ∈ 𝐵𝑋 and 𝑗𝑋 ≃ {𝑗1, … , 𝑗𝐾} ∈ 𝐵𝑋, and the equiva-
lence ≃ is provided by formula (5) and procedure (6). The procedure for
calculating the reduced density matrix is obvious from the formula

(𝜌𝐴)
𝑖𝐴𝑗𝐴

= ∑
𝑚𝑋\𝐴∈𝐵𝑋\𝐴
𝑖𝑋=𝑖𝐴⊔𝑚𝑋\𝐴
𝑗𝑋=𝑗𝐴⊔𝑚𝑋\𝐴

(𝜌𝑋)
𝑖𝑋𝑗𝑋

, where 𝑖𝐴, 𝑗𝐴 ∈ 𝐵𝐴 .

3. Finite quantum mechanics

We use a version of quantum theory [8]–[10] in which the groups of unitary
evolutions are replaced by linear representations of finite groups, and the field

3This belief (an instance of Occam’s razor), expressed by the metaphor “Church of the

Larger Hilbert Space” (J.A. Smolin), allows one to obtain all probabilities in quantum theory

from the only fundamental probability that is described by Gleason’s theorem [7] (Born’s

rule).
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of complex numbers is replaced by its dense constructive subfields, which
naturally arise from the non-negative integers and roots of unity.

Permutation Hilbert space. Any linear (hence unitary) representation
of a finite group is a subrepresentation of some permutation representation.

This implies that the formalism of quantum mechanics can be completely4

reproduced based on permutations of some set

Ω = {𝑒1, … , 𝑒𝒩} ≅ {1, … , 𝒩} (8)

of primary (“ontic”) objects on which a permutation group 𝐺 ⩽ S𝒩 acts.
The Hilbert space on Ω, needed for calculations in quantum theory, can be

most economically constructed on the basis of two primitive concepts:

1. natural numbers ℕ = {0, 1, …}, abstraction of counting, and
2. roots of unity, abstraction of periodicity.

To construct a field ℱ sufficient for all the needs of the quantum formalism,
in particular, for splitting any representation of any subgroup of 𝐺 into
irreducible components, we can proceed as follows. We extend the semiring ℕ
to the ring ℕ [𝜁ℓ], where 𝜁ℓ is the ℓth primitive root of unity, and ℓ is the LCM
of the periods of the elements of 𝐺. The algebraic integer 𝜁ℓ can be written in

complex form as 𝜁ℓ = e2𝜋i/ℓ. Finally, constructing the quotient field of the ring

ℕ [𝜁ℓ], we arrive at the cyclotomic extension of the rationals ℱ = ℚ(e2𝜋i/ℓ) . For
ℓ > 2, the field ℱ, being a dense subfield of ℂ, is empirically indistinguishable
from ℂ.
Treating the set Ω as a basis, we obtain an 𝒩-dimensional Hilbert space

ℋ𝒩 over ℱ. The action of 𝐺 on Ω determines the permutation representation
𝒫 in ℋ𝒩 by the matrices 𝒫(𝑔)𝑖,𝑗 = 𝛿𝑖𝑔,𝑗, where 𝑖𝑔 denotes the (right) action

of 𝑔 ∈ 𝐺 on 𝑖 ∈ Ω.

Decomposition of permutation representation. The permutation repre-
sentation of any group 𝐺 has the trivial one-dimensional subrepresentation in
the space spanned by the all-ones vector

|𝜔⟩ = (1, 1, … , 1⏟
𝒩

)⊤.

The complement to the trivial subrepresentation is called the standard repre-
sentation. The operator of projection onto the (𝒩 − 1)-dimensional standard
space ℋ⋆ has the form

P⋆ = 𝟙𝒩 − |𝜔⟩⟨𝜔|
𝒩

.

Quantum mechanical behavior (interference, etc.) manifests itself precisely
in ℋ⋆. Tom Banks made a profound observation [11] that the projection of
classical permutation evolutions in the whole ℋ𝒩 leads to truly quantum
evolutions in the subspace ℋ⋆ . Banks also showed that the choice 𝐺 = S𝒩,

4Modulo empirically insignificant elements of traditional formalism such as infinities of

various kinds.
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where 𝒩 is the number of fundamental (Planck) elements,5 “can accurately
reproduce all of the results of conventional quantum mechanics”. In order to
clarify a correspondence between finite quantum mechanics and traditional
theory based on continuous unitary groups, Banks pointed out the connection
between the symmetric group on 𝒩 elements and the unitary group in 𝒩 − 1
dimensions. Namely, for sufficiently large 𝒩 (according to [12] 𝒩 ⩾ 72), the
most general finite subgroup, 𝐺, of SU(𝒩−1) has the structure of a semidirect
product of a finite Abelian group, 𝐴, and the group S𝒩

𝐺 = 𝐴 ⋊ S𝒩 < SU(𝒩−1) .

Ontic vectors. S𝒩 is a rational-representation group, i.e., its every irre-
ducible representation (the standard representation is one of them) is realizable
over ℚ. This means that to describe evolutions in ℋ⋆, it is sufficient to con-
sider only vectors with rational components.6

It is easy to show that any quantum state in ℋ⋆ can be obtained as the

projection of an integer vector from the non-negative orthant ℋ+
𝒩 ⊂ ℋ𝒩. Let

|𝑥⟩ = (𝑥1, … , 𝑥
𝒩

)
⊤

∈ ℋ+
𝒩 be a vector with non-negative rational components.

Then its projection to ℋ⋆ is an (𝒩 − 1)-dimensional vector of the form

|𝑦⟩ = (𝑦1, … , 𝑦
𝒩−1

)
⊤

= P⋆ |𝑥⟩ . (9)

The set {|0⟩ − |𝒩−1⟩ , … , |𝒩−2⟩ − |𝒩−1⟩} is one of the bases in ℋ⋆, where
{|0⟩ , … , |𝒩−1⟩} is a basis in ℋ𝒩. In this basis, equation (9) is equivalent
to the set of relations

𝑦1 = 𝑥1 − 𝑥
𝒩

, … , 𝑦𝑖 = 𝑥𝑖 − 𝑥
𝒩

, … , 𝑦
𝒩−1

= 𝑥
𝒩−1

− 𝑥
𝒩

.

Obviously, any set of values 𝑦1, … , 𝑦
𝒩−1

can be obtained using only non-

negative values 𝑥1, … , 𝑥
𝒩
.

Since quantum states are rays in Hilbert space, we can replace non-negative

rational vectors |𝑥⟩ with natural vectors |𝑛⟩ = (𝑛1, … , 𝑛𝒩)⊤ ∈ ℕ𝒩 ⊂ ℋ+
𝒩. To

build constructive models (to remain in the finite realm), one needs to select

a finite subset in ℕ𝒩. The simplest choice is vectors with coordinates from
the set {0, 1}, i.e., bit strings of length 𝒩. We call them ontic vectors or ontic
states. These states are attractive for both ontological and computational
reasons.
Interpreting ontic state |𝑞⟩ as a characteristic function, we can identify it

with the subset 𝑞 ⊂ Ω or, equivalently, with the partition of the ontic set
(8) into two nontrivial subsets Ω = 𝑞 ⊔ ∼𝑞, ∼𝑞 = Ω\𝑞, where ∼ denotes

5By the current cosmological data, the number 𝒩 is estimated as ∼ Exp(Exp(20)) and
∼ Exp(Exp(123)) for 1 cm3 of matter and for the entire Universe, respectively.

6Complex numbers — i.e., nontrivial elements of cyclotomic extensions — may be needed

only in problems that require splitting representations of some proper subgroups of S𝒩 into

irreducible components.
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set complement operation (or bitwise inversion). The complete set of ontic

states is 𝑄 = 2Ω\ {∅, Ω} . The number of ontic states, |𝑄| = 2𝒩 − 2, depends
exponentially on 𝒩, so they present a fairly large set of quantum states in
the standard space for large 𝒩.
The complement operation applied to an ontic state induces a change in

the sign of the corresponding quantum state in the standard space:

|𝜓⟩ = P⋆ |𝑞⟩ ⟹ − |𝜓⟩ = P⋆ |∼𝑞⟩ .

The inner product of normalized projections of the ontic vectors |𝑞⟩ and
|𝑟⟩ onto ℋ⋆ is

𝑆(𝑞, 𝑟) ≡ ⟨𝑞 |P⋆| 𝑟|𝑞 |P⋆| 𝑟⟩
√⟨𝑞 |P⋆| 𝑞|𝑞 |P⋆| 𝑞⟩ ⟨𝑟 |P⋆| 𝑟|𝑟 |P⋆| 𝑟⟩

= 𝒩⟨𝑞 & 𝑟⟩ −⟨𝑞⟩ ⟨𝑟⟩
√⟨𝑞⟩ ⟨∼𝑞⟩ ⟨𝑟⟩ ⟨∼𝑟⟩

,

where & is the bitwise AND for bit strings, and ⟨ ⋅ ⟩ denotes population
number (or Hamming weight). The obvious identities ⟨∼𝑎⟩ = 𝒩 − ⟨𝑎⟩ and
⟨𝑎 & 𝑏⟩ + ⟨𝑎 & ∼𝑏⟩ = ⟨𝑎⟩ imply the folowing symmetries with respect to the
complement operations on the ontic states

𝑆(𝑞, 𝑟) = −𝑆(∼𝑞, 𝑟) = −𝑆(𝑞, ∼𝑟) = 𝑆(∼𝑞, ∼𝑟) .

4. Ontic and energy bases

Ontic basis. The original permutation basis in the space ℋ𝒩, i.e., the
set Ω, will be called the ontic basis. In this basis, the density matrix in ℋ⋆
associated with the ontic state |𝑞⟩ ∈ ℋ𝒩 has the form

𝜌𝑜
𝑞 = P⋆ |𝑞⟩⟨𝑞|P⋆

⟨𝑞 |P⋆| 𝑞|𝑞 |P⋆| 𝑞⟩
= 1

𝒩
(|𝑞⟩ − 𝛼 |𝜔⟩) (⟨𝑞| − 𝛼 ⟨𝜔|)

𝛼 (1 − 𝛼)
, (10)

where 𝛼 = ⟨𝑞⟩ /𝒩 is the population density. There is an obvious duality: the
expression for the density matrix 𝜌𝑜

∼𝑞 is obtained from (10) by replacements

𝑞 → ∼𝑞 and 𝛼 → 1 − 𝛼

𝜌𝑜
𝑞

𝑞 → ∼𝑞
𝛼 → 1−𝛼

−−−−−−→ 𝜌𝑜
∼𝑞 .

Energy basis. In continuous quantum mechanics, the evolution of an iso-
lated system is described by the one-parameter unitary group 𝑈𝑡 = e−i𝐻𝑡

generated by the Hamiltonian 𝐻 whose eigenvalues are called energy eigenval-
ues.
In finite quantum mechanics, the evolution is described by a cyclic group

𝑈(𝑔)𝑡
generated by an element 𝑈(𝑔) ∈ 𝒫(𝐺), where 𝑡 is an integer parameter.

We call the energy basis an orthonormal basis in which the matrix 𝑈(𝑔) is
diagonal.
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Planck’s formula 𝐸 = ℎ𝜈 relates the energy 𝐸 to the frequency 𝜈, which is
defined as the inverse of the period of the corresponding cyclic process.
Any permutation can be represented as a product of disjoint cycles. It

is instructive to see how often cycles of different lengths occur in the group
of all permutations S𝒩. A simple combinatorial calculation shows that the
total number of cycles of length ℓ in the whole group S𝒩 is 𝒩!/ℓ, and,
therefore, the expected number of ℓ-cycles in a single permutation is 1/ℓ.
That is, high-energy evolutions prevail in our permutation-based model of

the Universe.7

The ℓ-cycle matrix has the form

𝐶ℓ =
⎛⎜⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟
⎠

,

i.e., (𝐶ℓ)𝑖𝑗 = 𝛿𝑖−𝑗+1 (mod ℓ). The diagonal form of this matrix is

𝐹ℓ𝐶ℓ𝐹 −1
ℓ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 ⋯ 0
0 𝜁ℓ 0 ⋯ 0
0 0 𝜁2

ℓ ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 𝜁ℓ−1

ℓ

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where 𝜁ℓ = e2𝜋i/ℓ is the ℓth (“ground”) primitive root of unity, and

𝐹ℓ = 1√
ℓ

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 ⋯ 1
1 𝜁−1

ℓ 𝜁−2
ℓ ⋯ 𝜁−(ℓ−1)

ℓ
1 𝜁−2

ℓ 𝜁−4
ℓ ⋯ 𝜁−2(ℓ−1)

ℓ
⋮ ⋮ ⋮ ⋯ ⋮
1 𝜁−(ℓ−1)

ℓ 𝜁−2(ℓ−1)
ℓ ⋯ 𝜁−(ℓ−1)(ℓ−1)

ℓ

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is the Fourier transform matrix. 𝐹ℓ is both unitary and symmetric, therefore

𝐹 −1
ℓ = 𝐹 †

ℓ = 𝐹 ∗
ℓ ⟹ (𝐹 −1

ℓ )
𝑖𝑗

= 1√
ℓ
𝜁(𝑖−1)(𝑗−1)

ℓ .

In general, the matrix of the permutation representation of an element 𝑔 ∈ S𝒩

is the direct sum of cyclic matrices 𝑈(𝑔) =
𝑀

⨁
𝑚=1

𝐶ℓ𝑚
, and the corresponding

7Of course, it would be more adequate to calculate the energy distribution for a given

individual permutation evolution, but this is a more difficult combinatorial problem.
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diagonalizing matrix is 𝐹 =
𝑀

⨁
𝑚=1

𝐹ℓ𝑚
, which is the transition matrix from

the ontic basis to the energy basis.

The density matrix of the whole system in the energy basis can be calculated
from (10) by the formula 𝜌𝜀

𝑞 = 𝐹𝜌𝑜
𝑞𝐹 ∗.

5. Entanglement measures

Quantitatively, quantum correlations are described by measures of entangle-
ment, which are based on the concept of entropy. The most commonly used
in physics is the von Neumann entropy

𝑆1(𝜌) = − tr(𝜌 log𝜌) . (11)

Also often used are entropies from the Rényi family [13]

𝑆𝛼(𝜌) = 1
1 − 𝛼

log tr(𝜌𝛼) , 𝛼 ⩾ 0, 𝛼 ≠ 1. (12)

The common feature of the von Neumann and Rényi entropies is their addi-
tivity on combinations of independent probability distributions determined
by the eigenvalues of the density matrices. The von Neumann entropy is pre-
ferred because it additionally satisfies a stronger requirement, the chain rule
for conditional entropies. In fact, the von Neumann entropy (11) can also be
included in family (12) by going to the limit 𝛼 → 1.
In our calculations, we use the 2nd Rényi entropy (also called the collision

entropy) 𝑆2(𝜌) = − log tr(𝜌2) for the following reasons:

— It is easy to calculate. For 𝑛 × 𝑛 density matrix 𝜌 we have

𝑆2(𝜌) = − log(
𝑛

∑
𝑖=1

𝜌2
𝑖𝑖 + 2

𝑛−1
∑
𝑖=1

𝑛
∑

𝑗=𝑖+1
∣𝜌𝑖𝑗∣

2
) .

— tr(𝜌2) is the so-called purity of the state 𝜌.
— tr(𝜌2) coincides with the Born probability: “the system observes itself.”

— tr(𝜌2) ≡ ⟨𝜌⟩𝜌 is the expectation value of the observable 𝜌 in the state 𝜌.

— tr(𝜌2) ≡ ‖𝜌‖2
F
is the square of the Frobenius (Hilbert-Schmidt) norm of

the density matrix.
The Frobenius inner product for two matrices (or Hilbert-Schmidt in-

ner product for two operators) 𝑎 and 𝑏 is defined as ⟨𝑎 ∣ 𝑏⟩
F

= tr(𝑎†𝑏).
The corresponding Frobenius norm is ‖𝑎‖

F
= √⟨𝑎 ∣ 𝑎⟩

F
. It can be shown

that any constructions used in the study of quantum correlations and
based on the von Neumann entropy can be reformulated in terms of
matrix metrics.



356 DCM&ACS. 2021, 29 (4) 347–360

For example, in emergent geometry models [3], [14], [15], the distances
between subsystems 𝐴 and 𝐵 are described by functions of mutual infor-
mation

ℐ(𝐴, 𝐵) = 𝑆1(𝜌𝐴) + 𝑆1(𝜌𝐵) − 𝑆1(𝜌𝐴∪𝐵) . (13)

Replacing in (13) the von Neumann entropy with the 2nd Rényi entropy,
we obtain the expression

ℐ2(𝐴, 𝐵) = 𝑆2(𝜌𝐴) + 𝑆2(𝜌𝐵) − 𝑆2(𝜌𝐴∪𝐵) (14)

whose exponential has the form

tr(𝜌2
𝐴∪𝐵)

tr(𝜌2
𝐴) tr(𝜌2

𝐵)
≡

‖𝜌𝐴∪𝐵‖2
F

‖𝜌𝐴 ⊗ 𝜌𝐵‖2
F

. (15)

Obviously, both (14) and (15), although (14) does not have a probabilis-
tic interpretation of (13), also describe quite well the deviation from
separability caused by entanglement.

6. Some computational observations

We are developing a C program for constructing tensor decompositions and
calculating quantum correlations in the ontic and energy bases.
To illustrate the calculations, consider a homogeneous quantum system, i.e.,

a system whose Hilbert space is decomposed into a product of local spaces of
the same dimension

ℋ = ⨂
𝑥∈𝑋

ℋ𝑥 ,

where 𝑋 = {1, … , |𝑋|} (a set of “geometric points”), dimℋ𝑥 = 𝑑 for all
𝑥 ∈ 𝑋.
Preliminary calculations indicate that decompositions with smaller local

dimension 𝑑 exhibit more interesting behavior. Consider, e.g., the case 𝑑 = 2
and |𝑋| = 23, in which dimℋ = 8 388 608. We will treat here the analogue
of mutual information (14) as a measure of the distance between points.
Calculations of (14) on all edges (𝑥, 𝑦) ∈ 𝑋 × 𝑋 of the complete graph on 𝑋
show a spread of values by two orders of magnitude: a typical example is

ℐ2(𝑥, 𝑦) ∈ [5.3 × 10−8, 7 × 10−6] .

A large scatter in the distances between points can be considered a sign of
the non-triviality of the geometry.
For the case with a slightly larger local dimension, 𝑑 = 7 and |𝑋| = 7 (hence

dimℋ = 823 543), similar calculations give ℐ2(𝑥, 𝑦) ∈ [0.0037, 0.0041] . That
is, the geometry is close to trivial — all points are almost equidistant. More
detailed calculations show that the main contribution to the non-triviality of
geometry is made by the local dimension 𝑑, and not by the number of points
|𝑋|.
Figure 1 shows examples of calculating the entropies of subsystems of all

possible sizes for quantum systems with 𝑑 = 2, and |𝑋| = 6 (“small” case) and
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|𝑋| = 12 (“large” case). In both cases, 10 randomly generated ontic states
were used — the legends show their Hamming weights. The data presented
in the figure demonstrates the following features:

— The trend towards universality (weak dependence on the quantum state)
with the growth of |𝑋|: visually, all graphs are almost identical in the
“large” case.

— Symmetry 𝑆2(𝜌𝐴) = 𝑆2(𝜌𝑋\𝐴) is a manifestation of the Schmidt decom-

position [16] of a pure state: both matrices 𝜌𝐴 and 𝜌𝑋\𝐴 have identical

sets of nonzero eigenvalues.
— For the subsystem size |𝐴| noticeably smaller than |𝑋| /2, the reduced

state is close to the maximally mixed state: 𝑆2(𝜌
𝐴

) ≈ |𝐴| log 𝑑. Recall
that a maximally mixed state is a state whose density matrix describes
a uniform probability distribution, i.e., all its eigenvalues are equal.
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Figure 1. Entropies of subsystems
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Квантовая мереология в конечной квантовой механике

В. В. Корняк

Лаборатория информационных технологий
Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, Дубна, Московская область, 141980, Россия

Любое гильбертово пространство составной размерности можно разложить
в тензорное произведение меньших гильбертовых пространств. Такая факто-
ризация дает возможность разложить квантовую систему на подсистемы. Мы
предлагаем модель, основанную на конечной квантовой механике, для конструк-
тивного изучения таких разложений.

Ключевые слова: квантовая мереология, замкнутая квантовая система, кванто-
вые подсистемы, конечная квантовая механика, квантовая запутанность, энергия


