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To apply the incomplete Galerkin method to the problem of the scattering of
electromagnetic waves by lenses, it is necessary to study the differential equations for
the field amplitudes. These equations belong to the class of linear ordinary differential
equations with Fuchsian singularities and, in the case of the Lüneburg lens, are
integrated in special functions of mathematical physics, namely, the Whittaker and
Heun functions.

The Maple computer algebra system has tools for working with Whittaker and Heun
functions, but in some cases this system gives very large values   for these functions,
and their plots contain various kinds of artifacts. Therefore, the results of calculations
in the Maple’11 and Maple’2019 systems of special functions related to the problem
of scattering by a Lüneburg lens need additional verification. For this purpose, an
algorithm for finding solutions to linear ordinary differential equations with Fuchsian
singular points by the method of Frobenius series was implemented, designed as
a software package Fucsh for Sage. The problem of scattering by a Lüneburg lens
is used as a test case. The calculation results are compared with similar results
obtained in different versions of CAS Maple.

Fuchs for Sage allows computing solutions to other linear differential equations
that cannot be expressed in terms of known special functions.

Key words and phrases: linear differential equations, Whittaker functions, Heun
functions

1. Introduction

The problem of diffraction of a plane electromagnetic wave by a ball with
an arbitrary radially symmetric filling allows the construction of an analytical
solution by the incomplete Galerkin method [1]. Let us make use of a spherical
coordinate system and assume that the dielectric constant of the ball 𝜖 depends
only on 𝑟, and the permeability 𝜇 is constant. Let us expand the Borgnis
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potentials 𝑢, 𝑣 for electric- and magnetic-type fields in terms of the system of
spherical functions:

𝑢 =
∞

∑
𝑛=1

𝑢𝑛(𝑟)𝑃 (1)
𝑛 (𝜃) sin 𝜙, 𝑣 =

∞
∑
𝑛=1

𝑣𝑛(𝑟)𝑃 (1)
𝑛 (𝜃) sin 𝜙.

Functions 𝑢𝑛(𝑟), 𝑣𝑛(𝑟) satisfy linear differential equations of the second
order: for TE-polarized wave

𝑑
𝑑𝑟

1
𝜇

𝑑𝑢𝑛
𝑑𝑟

+ [𝑘2𝜖 − 𝑛(𝑛 + 1)
𝜇𝑟2 ] 𝑢𝑛 = 0, (1)

and for TM-polarized wave

𝑑
𝑑𝑟

1
𝜖

𝑑𝑣𝑛
𝑑𝑟

+ [𝑘2𝜇 − 𝑛(𝑛 + 1)
𝜖𝑟2 ] 𝑣𝑛 = 0. (2)

Not only in the classical case of a ball with constant filling, but also in the
case of a Lüneburg lens, when

𝜖 =
⎧{
⎨{⎩

2 − 𝑟2, 𝑟 < 1,
1, 𝑟 > 1,

these equations are integrated in special functions of mathematical physics.
In the classical case, the cylindrical functions are obtained [2]–[4]. For
a Lüneburg lens, (1) was integrated in the paper by Lock [5] in terms of
Whittaker functions. In the Maple system [6] both equations (1) and (2) for
a Lüneburg lens are integrable: the solution to Eq. (1) is expressed in terms
of Whittaker functions and the solution to Eq. (2) in terms of Heun functions.

When working with these functions in the Maple system, we faced the fact
that they take on huge values that grow indefinitely with an increase in 𝑛, and
all sorts of artifacts (gaps and ripples) appear in the plots. This observation
raised doubts about the adequacy of the algorithms used in Maple.

However, it is easy to see that both equations (1) and (2) are linear
differential equations of the 2nd order that have a Fuchsian singular point [7]
at 𝑟 = 0. Therefore, their solutions upon the analytic dependence of 𝜖 on 𝑟 can
be expanded in the Frobenius series [7]. The coefficients of the equations (1)
and (2) have finite nonzero singular points only where the functions 𝜖 and 1/𝜖
have them, respectively. In particular, if 𝜖 is a polynomial, then the Frobenius
series for the solution to Eq. (1) converges for all 𝑟, and the Frobenius series
for the solution of Eq. (2) converges in a circle, on the boundary of which
the complex zero with the least modulus lies [7]. For example, in the case of
the Lüneburg lens, the Frobenius series for the solution to Eq. (1) converges

for all 𝑟, and for the solution of Eq. (2), the radius of convergence is
√

2.
Therefore, to find the field in the lens, it is quite sufficient to calculate the
coefficients of the Frobenius series for the solutions of Eqs. (1) and (2).
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2. Fuchs for Sage package

In general, the problem of finding Frobenius series can be formulated as
follows: for a linear differential equation

𝑥2𝑦″ + 𝑥𝑝𝑦′ + 𝑞𝑦 = 0, (3)

with meromorphic functions 𝑝, 𝑞, construct a solution in the form of a series

𝑦 = 𝑥𝑟(1 + 𝑢1𝑥 + 𝑢2𝑥2 + … ),

where 𝑟 is a root of characteristic equation

𝑟(𝑟 − 1) + 𝑝(0)𝑟 + 𝑞(0) = 0. (4)

Usually, both roots of this equation correspond to solutions, but in some
cases, when choosing a root with a smaller real part, a solution in the
form of a series does not exist. In this case, there is one solution in the
form of a Frobenius series, and the second solution is obtained from the
Liouville formulas connecting two solutions of a second-order linear differential
equation [7]. The solution to this problem was implemented in CAS Sage [8],
as the Fuchs for Sage software package.

Given symbolic expressions 𝑝 and 𝑞, the function fuchs_order(p,q) returns
the roots of Eq. (4) as elements of the algebraic number field.

sage: load('fuchs.sage')
None
sage: fuchs_order(1,x^2-3^2)
[-3, 3]
sage: fuchs_order(1,x^2-8)
[-2.828427124746190?, 2.828427124746190?]

Function fuchs_order(p,q,r,N) returns symbolic expression

𝑦 = 𝑥𝑟(1 + 𝑢1𝑥 + 𝑢2𝑥2 + ⋯ + 𝑢𝑁𝑥𝑁),

given symbolic expressions 𝑝 and 𝑞, order 𝑟, and number 𝑁 of the sought
series terms.

This function supports operation with non-rational roots:

sage: R=fuchs_order(1,x^2-8)
sage: fuchs_series(1,x^2-8,R[1],10)
(-(1.41301303805500?e-9)*x^10 + (2.212333918945947?e-7)*x^8
- 0.00002417081750580247?*x^6 + 0.001690534180537310?*x^4
- 0.06530096874093536?*x^2 + 1)*x^2.828427124746190?

Let us give an example of calculating the solution of Eq. (1) for the case of
a Lüneburg lens with numerical values of the parameters 𝑘, 𝑛:

sage: k=4
sage: n=3
sage: p=0
sage: q=k^2*x^2*(2-x^2) -n*(n+1)
sage: fuchs_order(p,q)
[-3, 4]
sage: expand(fuchs_series(p,q,4,10))
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-3712/19305*x^14 + 1928/3861*x^12 - 448/429*x^10
+ 164/99*x^8 - 16/9*x^6 + x^4

The terms of this series do not form a monotonic sequence (see figure 1),
therefore, when summing the series, it is important to take a sufficient number
of terms.
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Figure 1. Solution for the Lüneburg lens: distribution of the values of the terms of the series

over 𝑛 — the summand number of the Frobenius series. Calculations are performed

for the point 𝑥 = 4

3. Calculation of special functions in the Lüneburg case

Fuchs for Sage allows describing the partial solutions of Eqs. (1) and (2),
bounded at zero, in the form of the first 𝑁 terms of the Frobenius series. In
our experiments, a moment was revealed after which a further increase in
the number of terms did not lead to a noticeable change in the sum at the
reference points. Of course, it would be very convenient to get not greatly
overstated theoretical estimates for the number of terms that must be kept in
the series in order to preserve the chosen accuracy.

In order to exclude the influence of round-off errors, calculations are carried
out in the field of rational numbers, the summation of the series was carried out
at rational points of the real axis. For visibility, the rational values obtained
without round-off errors are presented in the plots below in logarithmic scale.

Let us compare the results of computer experiments in Sage and Maple
for the case of a Lüneburg lens. As noted above, in this case, solutions in
the form of a series can be compared with solutions in special functions of
mathematical physics that are used in the Maple system.
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3.1. ТЕ field

In the case of the Lüneburg lens, the coefficients of Eq. (1) have only two
singular points (𝑟 = 0 and 𝑟 = ∞) and therefore this series can be expressed
in terms of the degenerate hypergeometric function or the Whittaker function
[9, §13.14] [10]. The Maple system uses the expression

𝑢𝑛 = 1√
𝑟
WhittakerM (𝑘

2
, 2𝑛 + 1

4
, 𝑘𝑟2) .

This solution to Eq. (1) differs from those obtained using the Frobenius
method by the multiplicative constant, which can be found in symbolic form
using the Taylor series expansion.

Figure 2. Function ln |𝑢𝑛(𝑥)| in case 3, 𝑘 = 40, 𝑛 = 25, plotted in Sage (left)

and Maple’2019 (right). In Fuchs for Sage we took 400 terms and the calculations were

performed at 221 points

We compared the results of calculating the solution by the Frobenius method
and by means of Maple’2019 for 3 representative cases: 1) 𝑘 = 4, 𝑛 = 3, 2)
𝑘 = 10, 𝑛 = 3, 3) 𝑘 = 40, 𝑛 = 25. Despite some difficulties associated with
the difference in the automatic selection of proportions of the plots, in all
cases the calculation using our package leads to the same results as using
Maple, at least with graphic accuracy, see, e.g., figure 2. For a more accurate
analysis, we calculated the values at the reference points, see Table 1. It is
clearly seen that the values found in Sage and Maple match up to a round-off
error. Thus, the numbers to which the Frobenius series converge coincide
with the results of the built-in Maple algorithms with high accuracy. Thus,
both the algorithm for calculating the Frobenius series and the high orders
of magnitude of the sought functions observed in numerical experiments are
verified.
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3.2. ТМ field

Equation (2) has 4 singular points in the complex plane: 𝑟 = 0, 𝑟 = ±
√

2,
and 𝑟 = ∞. Therefore, its solutions are expressed in terms of the Heun
confluent function [9, §31.12] [11]. In Maple the expression

𝑣𝑛 = 𝑒𝑘𝑟2/2HeunC(2𝑘, 𝑛 + 1/2, −2, 𝑘2, −𝑘2 + 3/4, 𝑟2/2)𝑟𝑛+1 (5)

is used. To find the multiplicative constant, by analogy with above, we tried
to find the first non-vanishing term of the Taylor series of this function in
the vicinity of the point 𝑟 = 0. Unfortunately, the standard function taylor
cannot be applied to the 𝑣𝑛 function for expansion in Taylor series.
Remark. An attempt of using taylor to find the first three partial

sums of the Taylor series at the point 𝑟 = 0 leads to the result 𝑂(𝑟4). An
attempt to find the fourth partial sum at the point 𝑟 = 0 leads to an
error Error, (in series/function) unable to compute series. We
observed this kind of failure in all test examples without exception. When
choosing a point other than zero as the center of the expansion, the function
taylor works without errors.

Nevertheless, computer experiments show that the function (5), calculated
in Maple, coincides with a high accuracy with the sum of the Frobenius series,
see Table 2. This makes us to assume that the desired constant is 1.

Figure 3. Plot of function ln |𝑣𝑛(𝑥)| at 𝑘 = 18, 𝑛 = 1; on the right – Frobenius series with

𝑁 = 200 terms, calculated at 41 points, on the left – plot from Maple’2019

Unlike Eq. (1), Eq. (2) has a finite singular point, namely 𝑥 =
√

2. We will

now show that for 𝑥 ⩾
√

2 the Maple system produces incorrect results for
representing the function 𝑣𝑛(𝑥).

The Frobenius exponents in the vicinity of the Fuchsian singular point

𝑥 =
√

2 of Eq. (2) are equal to 0 and 2, and do not depend on the parameters
𝑛 and 𝑘. In the first case, the application of our function leads to division by
zero, which indicates the presence of a logarithmic singularity in the expression
of the desired function [7], [11]. In this case, the solution corresponding to the

Frobenius exponent equal to 0 is bounded at the singular point 𝑥 =
√

2. In
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the second case, according to Fuchs theorem [7] we obtain a Frobenius series
with a nonzero radius of convergence. Therefore, the function 𝑣𝑛(𝑥) continues

analytically beyond the point 𝑥 =
√

2, having a removable singularity at this
point for real values of 𝑥. The plot of the Frobenius series sum (figure 3) fully

confirms that 𝑣𝑛 has a finite limit at the point 𝑥 =
√

2; it cannot give more,

since it diverges at 𝑥 >
√

2.

A numerical experiment in Fuchs for Sage indicates the convergence of the

Frobenius series for the function 𝑣𝑛(𝑥) at the point 𝑥 =
√

2 in the field of real
numbers, see Table 3. However, this convergence is noticeably slower than at

rational points 𝑥 <
√

2.

The situation in Maple looks much less clear. Substitution

of the value 𝑥 =
√

2 in the Maple system yields the result
Float(infinity)+Float(infinity)*I for all the values of 𝑘, 𝑛 we checked.
In this case, the plot of 𝑣𝑛(𝑥), obtained by means of Maple’2019, is cut off at

this point. Substitution of values 𝑥 >
√

2 results in complex numbers of astro-
nomical orders of magnitude, for example evalf(eval(V, r = 3/2)) yields
-5.630587096*10^12 + (1.389900117*10^15)*I, for the parameter values
𝑘 = 10, 𝑛 = 3.

Moreover, when calculating the Heun function in Maple, problems appear
that are characteristic of the accumulation of round-off errors when summing
a power series. In older versions of Maple, these problems were encountered
for all considered parameters, and their first appearance took place already at
𝑘 = 10, see figure 4. In new versions, the same shortcomings in the display of
plots appear in a different range of parameters: the highest harmonic 𝑛 = 1
is displayed incorrectly at 𝑘 ⩾ 18 (see figure 3, left, and 5). At the same
time, even a relatively small number of terms of the Frobenius series makes it
possible to obtain a smooth curve without artifacts, see figure 3, right.

r
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K0,01
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Figure 4. Heun functions 𝑣𝑛 for values

𝑘 = 10, 𝑛 = 1, 2, 3 in Maple’11

Figure 5. Calculation of functions

ln |𝑣𝑛(𝑥)|. Case 3, 𝑘 = 40, 𝑛 = 25
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Figure 6. Plot of function ln |𝑣𝑛(𝑥)| at 𝑘 = 40, 𝑛 = 25, left — plot from Maple’2019,

right — Frobenius series with 250 terms and 82 values of 𝑥 used

4. Conclusion

In this paper, we present the Fuchs for Sage package , which allows calcu-
lating the solutions of second-order equations having the Fuchsian singularity
with high accuracy and, in particular, looking for the potentials of the fields
scattered by a ball with a wide class of dielectric constant radial dependences.
This is confirmed by a comparison with the case of a Lüneburg lens, when
the solution is expressed in terms of the known functions of mathematical
physics.

At the same time, we made sure in an independent way that the solutions
of the equations (1) and (2) in the case of a Lüneburg lens can change by
many orders, as it happened in Maple.

The results of our research can be useful for analyzing the electromagnetic
field in the vicinity of the focus of the Lüneburg lens [5].

It should be especially noted that the symbolic expression for TM fields in
terms of Heun confluent functions found in Maple is dangerous for use, since
it gives results that are not completely correct from a theoretical point of
view. At the same time, even a small number of terms of the Frobenius series
allows good approximations to the values of the sought functions, see figure 6.
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О вычислении специальных функций, возникающих
при исследовании задачи дифракции

на диэлектрическом шаре

К. Ю. Малышев

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына
Московский государственный университет имени М.В. Ломоносова

Ленинские горы, д. 1, стр. 2, Москва, ГСП-1, 119991, Россия

Для применения неполного метода Галёркина к задаче о рассеянии электромаг-
нитных волн на линзах необходимо исследовать дифференциальные уравнения
для амплитуд полей. Эти уравнения принадлежат к классу линейных обыкно-
венных дифференциальных уравнений с фуксовыми особенностями и, в случае
линзы Люнеберга, интегрируются в специальных функциях математической
физики — функциях Уиттекера и Гойна.

В системе компьютерной алгебры Maple имеются инструменты для работы
с функциями Уиттекера и Гойна, однако в ряде случаев эта система выдаёт
очень большие значения для этих функций, а их графики содержат разного рода
артефакты. Поэтому результаты вычислений в системах Maple’11 и Maple’2019
специальных функций, связанных с задачей рассеяния на линзе Люнеберга, нуж-
даются в дополнительной проверке. С этой целью был реализован алгоритм
нахождения решений линейных обыкновенных дифференциальных уравнений
с фуксовыми особыми точками методом рядов Фробениуса, оформленный в виде
пакета программ Fuchs for Sage. Задача рассеяния на линзе Люнеберга ис-
пользуется в качестве тестового примера. Результаты расчётов сопоставляются
с аналогичными результатами работы в CAS Maple разных версий.

Пакет Fucsh for Sage позволяет вычислять решения и других линейных диф-
ференциальных уравнений, решения которых не выражаются через известные
специальные функции.

Ключевые слова: линейные дифференциальные уравнения, функции Уиттеке-
ра, функции Гойна


