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The preservation of quadratic integrals on approximate solutions of autonomous
systems of ordinary differential equations & = f(x), found by the trapezoidal scheme,
is investigated. For this purpose, a relation has been established between the
trapezoidal scheme and the midpoint scheme, which preserves all quadratic integrals
of motion by virtue of Cooper’s theorem. This relation allows considering the
trapezoidal scheme as dual to the midpoint scheme and to find a dual analogue
for Cooper’s theorem by analogy with the duality principle in projective geometry.
It is proved that on the approximate solution found by the trapezoidal scheme,
not the quadratic integral itself is preserved, but a more complicated expression,
which turns into an integral in the limit as At — 0. Thus the concept of conjugate
difference schemes is investigated in pure algebraic way. The results are illustrated
by examples of linear and elliptic oscillators. In both cases, expressions preserved by
the trapezoidal scheme are presented explicitly.
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1. Introduction

Dynamical systems are the most important mathematical models in me-
chanics and physics. Only a few of these models are integrated in a closed
form [1], therefore, they have to be investigated using numerical methods, of
which the most important is the finite difference method.

Let = be a point in an m-dimensional affine space. Any difference scheme
that approximates differential equation

dx
N = f(z) (1)
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describes a transition from the value x at some initial moment of time to the
value of Z at the moment of time shifted from the initial value by the quantity
At, called the step. We will consider algebraic schemes, i.e., those in which
the above correspondence is specified using a system of algebraic equations

F(z,%,At) = 0. (2)

If the original equation has an algebraic integral g(x) = C, and it follows
from the equations (2) that

9(%) = g(z),

then this difference scheme is said to preserve this integral.

If we use explicit difference schemes for integrating dynamical systems,
then the values of the integrals of motion will change monotonically step by
step. At the turn of the 1980s and 1990s, the first difference schemes were
constructed that preserve exactly the algebraic integrals of dynamical systems.
For example, the scheme constructed by D. Greenspan preserves all classical
integrals of N-body problems [2]-[5], the symplectic Runge-Kutta schemes,
including the simplest of them, the midpoint scheme

f—xzf(£;x>Au (3)

preserve linear and quadratic integrals in virtue Cooper’s theorem [6]—[9].
This circuit has a whole bunch of wonderful properties inherited from the
original differential equation [10].

This seems to be a simple consequence of the t-symmetry of the midpoint
circuit: the equation (3) is invariant under the transformation

At — —At, T —x, x—1T.

The trapezoidal scheme has the same property

A ~ At
Foo = (f@)+ f@) 5 (@
however, in experiments with an elliptic oscillator performed by Yu. A. Blinkov
for PCA’2019 [11], the quadratic integrals oscillated, although they did not
increase monotonically. The absence of monotonicity in the variation of
the values of the integrals of motion on approximate solutions is extremely
important from the physical point of view, since, on average, all fundamental
conservation laws are satisfied on solutions of this type.

The noted behavior of the approximate solutions found by the trapezoidal
scheme can be explained by the fact that it is conjugated to the midpoint
scheme and therefore some more complex expression is retained on it [9,
§VI.8.1-2]|.

The very concept of conjugate difference schemes [9, def 8.1| is formulated
locally in terms of power series. The implicit function theorem can be applied
to the system of algebraic equations (2) and, under certain conditions, we
can assert that



Y.Ying, M. D. Malykh, On conjugate difference schemes: the midpoint ... 65

T=a+ f(x)At+ ... = Py (2),
where @ is a series in powers of At, the coefficients of which are rational
functions of z. Difference schemes
T=®p(z) and T = U, ()

are referred to as mutually conjugate, if there exists a change of coordinates

T=xXaiY) =Y+,

such that .
Par = Xat o ¥ar o Xar
It is clear from this definition that the exact preservation of the expression
of one of these schemes entails the preservation of some expression by the

other scheme. Say, if the scheme W 5, preserves the integral g(x) exactly, then
the scheme ® ,, preserves the expression

9(Xar(®)) = g(z) + g (2) At + ...,

depending on At [9, §VI.8.2].

In this article, we will clarify the geometric meaning of the conjugacy of the
two above schemes and write down explicitly the expression that preserves
the trapezoidal scheme.

2. Relationship between trapezoidal and midpoint
schemes

The approximate solution of the system (1), found by the scheme (2) with
constant step At, is a finite or infinite sequence of points

Ty Ty Loy - (5)

the first element of which is chosen in an arbitrary way, and all the others
are defined recursively: x,_; is the root Z of the equation

F(z,,z,At) =0,
tending to z,, at At — 0.

Theorem 1. Let xy, 2z, o, ... be an approzimate solutions of equation (1),
calculated using the midpoint scheme (3). Then coordinates x|, x], x5, ... of
middles of links of broken line xqx 2, ... (figure 1) yield another approximate
solution of the same equation, calculated by the trapezoidal scheme (4).

Proof. The middle of link x,,x, ., of the solution found by the midpoint
scheme is given by the formula

.'17/ _ :Un+1 +xn.

" 2
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Tn+1

Lp—1

Figure 1. The solutions x, 1, Ts, ... and z{, 7, T4, ... found by the midpoint schemes
and by the trapezoidal scheme

In this case, the ends of the link are unambiguously reconstructed from its
given midpoint:

G o Tpi1 — At
R N A (CA
and N A
Lp+1 Ly Lpt1 — Ty
2, = DT e T (el S
Since z,,,, belongs to two links z,,z, ; and =, 7, 5, we have
At At
Tyiq =T + f(xm? =Ty g — f(w;wrl)?
from where it immediately follows that
, At
Ty — Ty = (f(2),q) + flz,)) o

Thus, the midpoints can be calculated using the trapezoidal difference
scheme (4). 0

By virtue of the theorem 1, the solutions xyz,x, ... and x{z] 25 ..., found
by the midpoint schemes (3) and by the trapezoidal scheme (4) turn out to be
coupled with each other. By analogy with the duality principle in projective
geometry [12] it is hoped that any statement about the midpoint scheme
should have a 'twin’ in the trapezoidal scheme.

One of the most interesting properties of the midpoint scheme is Cooper’s
theorem [9, th. 2.2|, according to which this scheme preserves any quadratic
integral of motion.
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Equality
g('rn) = g(xn—&-l)
is easily rewritten by expressing x, though z;,, and z, ., though x; _ ;:
, , At , . At
g (xn - f('rn)7> =g <$n+1 - f<$n+1>7> :
Therefore, for dual scheme (4) the conservation law takes the form
- At At
g3 1@5) =g (o 1@)5). ()

Thus, a quadratic integral is also inherited by the trapezoidal scheme (4),
but the expression for the conserved quantity coincides with g only in the
limit At — 0. This circumstance made complicated finding it.

Definition 1. Let us say that a difference scheme inherits the integral
g(x) = Cif there exists a rational function G(x, At) such that

1) from the equations that specify the scheme it follows that
G(z,At) = G(z, At),

2) in the limit At — 0 expression G(x, At) turns into g(x)
Function G itself will be referred to as the difference analog of the integral g.

Theorem 2 (Cooper’s dual theorem). The trapezoidal scheme inherits
all linear and quadratic integrals of motion, and the difference analogue of the

integral g will be
At
g (2 1@)5).

3. Examples

Consider several examples.

3.1. Linear oscillator

In the case of a linear dynamical system, the midpoint scheme and the
trapezoidal scheme are the same, so the midpoint scheme becomes self-
conjugate. This circumstance greatly simplifies the study of the midpoint
scheme for a linear oscillator.

Consider a dynamic system

which has a quadratic integral

?+y*=C.
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The midpoint scheme will give points (zy, y,), (1, %1), ... lying on the circle
22 442 = R,

the radius of which is determined by the initial point

R=\/x%+12.

The midpoints of the links lying on the circle

22 4y =12,

the radius of which can be determined by the first link

T:\/(x1+900>2+<y1+yo>2: R
2 2 J1+ A /4

Thus, the trajectory on the phase plane turns out to be a broken line, the
vertices of which lie on a circle of radius R, and the links touch a concentric

circle, the radius of which is 1/1 + At? /4 times less than R. In particular,

the trajectory will be closed, and the solution will be periodic if R and r are

the radii of the circumscribed and inscribed circle in the N-gon, that is, if
T

R = cos —.

r/ N

This immediately gives the formula for choosing a step

V14 A#?/4 = cos —.
+ / co8

This formula was previously obtained by us analytically [10].

3.2. Elliptic oscillator
By the definition of Jacobi functions [13],
p=snt, q=cnt, r=dnt

is a particular solution of the autonomous system of differential equations

p=qr, ¢=-—pr, ©=—k’pq (8)
with the initial conditions
p=0, g=r=1 att=0.
The midpoint scheme preserves both intergals

p? +q¢%> =const and Kk%p? + r? = const (9)
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of this system. Now the trapezoidal scheme

At

pp= (@ +ar) e

does not coincide with the midpoint scheme and, therefore, its invariants are
more complicated.

Nevertheless, the integral
p2 + q2 = const
corresponds to the integral

At\? At\? At AP
(p — qr—) + (q —}—pr—) =p*+ @+ FPrP—+pPrP—

2 2 4 4
2A¢2
(p? + ¢?) <1+r4 )

or

The integral
k?p? + r? = const
correspods to
2

At At ? At At?

A 2

or

4

Thus, in the space pgr the vertices of the trajectory lie on the elliptic curve
(9), and the midpoints of the links of the broken line lie on a more complex
curve

r2 At? At?
(p* +q°) <1+ ) ) =Cy,  (Kp*+17) <1+k2q27 =Cy. (10)

This means that the trapezoidal scheme for an elliptic oscillator inherits both
quadratic integrals, and their difference counterparts are the expressions (10).

If we follow the change in p? + ¢? on the approximate solution found by
the trapezoidal scheme, then we will see a deviation from a constant value
equal to

r2At?
T

(p? + ¢%)

The exact solution is periodic, so in the plots these deviations appear as
periodic fluctuations.
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4. Conclusion

If you do not use specially developed difference schemes, discretization of
continuous models by the method of finite differences introduces completely
new properties into these models: calculations lead to a monotonic change in
quantities, which, from physical considerations, must remain constant. For
example, in computer experiments, dissipation appears even in those cases
when energy was conserved in the original continuous model. In calculations
for sufficiently long time intervals, this dissipation becomes very noticeable,
and the parameters of the dynamical system are significantly distorted.

The number of schemes that preserve algebraic integrals of motion exactly
is small and their drawbacks are well known. Difference schemes, in which
the integrals of motion fluctuate around their initial values, significantly
expand this set. However, the noted property is usually accepted without
explanation and even more rigorous proof. Theorem 2, which is dual to
Cooper’s theorem, allows us to fill in this gap for the trapezoidal scheme (4)
by explicitly specifying expressions that coincide in the limit At — 0 with
exact integrals and at the same time are preserved on approximate solutions
exactly.

It would be very interesting to generalize this result to other schemes, the
use of which does not lead to a monotonic increment of the integrals of motion.
For such a generalization, in our opinion, it is necessary to investigate in more
detail the question of schemes that are, in a sense, dual to the symplectic
Runge-Kutta schemes.
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O conpsa>XEHHBIX PA3HOCTHBIX CXeMaX: cXeMa cpeaHen
TOYKM M CXeMa Tpaleruia

FOit u!, M. 1. Manbrx>

U Vinusepcumem Katiau
Kaiyuan Road 3, Katiau, 556011, Kumari
2 Poccudickuti yrueepcumem 0pyscove napodos
ya. Muxayzo-Maxasan, 0. 6, Mockea, 117198, Poccus

B craTpe uccienoBan BOIPOC O COXpPAHEHUN KBAIPATHYHBIX WHTEIDAJIOB HA MPU-
OJTMKEHHBIX PEIIEHUAX aBTOHOMHBIX CUCTEM OOBIKHOBEHHBIX Mud@EpPeHITnaAIbHBIX
ypaBHeHuit & = f(z), HaliJIeHHBIX 110 cXeMe Tpanenuii. YCTaHOBJIEHA CBSA3b MEXK/Ly
CXEMOH Tpallelluy U CXEMOM CpeliHell TOUKU, KOTOPasd COXPaHdAeT BCe KBaJApaTUYHbIe
WHTErpaJjbl JIBUXKEHUS B CUJIy TeopeMbl Kymepa. DTa CBA3b HO3BOJISET PACCMAT-
pUBaTL CXeMy Tpamenuii KaKk JIBOMCTBEHHYIO K CXeMe CPeJIHefl TOYKU U OTBICKATH
JBOMCTBEHHBIH aHaJjor st Teopembl Kymepa. Jlokazano, 94To Ha IpUOIUKEHHOM Pe-
[IeHNY, HafiIeHHOM IO CHMMETPHUIECKOI CXeMe, COXPAHdAeTCs He caM KBaIPATHIHBIN
UHTErpaJi, a 0oJiee CJIOKHOE BhIPayKeHMe, KOTOPOE TIEPEXOJUT B UHTErPAJ B IIPEJIETIe
npu At — 0. Pe3ynbraTsl TpOULTIOCTPUPOBAHBI IPUMEPAMU — JIMHEHHBIM W DJIIATI-
THYECKUM OcClmLIsiTopamMu. B 0b6oux ciaydasax B sIBHOM BUJIE BBIITHUCAHBI BbIPAKEHUS,
KOTODPBIE COXPAHSIET CXeMa TPAaIlelwii.

KiroueBble cJjioBa: JIUHAMUYECKHE CHUCTEMbI, KBaJIPaTUYHbIE WHTErPaJibl, Pa3-
HOCTHBIE CXE€MBbI, 3aKOHBbl COXPAaHEHUdA, CXeMa CpeJHell TOYKH, cxeMa Tpalernuit



