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Efficient allocation of radio access network (RAN) resources remains an important
challenge with the introduction of 5G networks. RAN virtualization and division
into logical subnetworks – slices – puts this task into a new perspective. In the paper
we present a software tool based on the OMNeT++ platform and developed for
performance analysis of a network slicing policy with SLA-based slice performance
isolation. The tool is designed using the object-oriented approach, which provides
flexibility and extensibility of the simulation model. The paper briefly presents the
slicing policy under study and focuses on the simulator’s architecture and design.
Numerical results are provided for illustration.
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1. Introduction

Network slicing is a key next-generation networking technology that allows
multiple virtual subnetworks to be built over a shared physical infrastructure.
The virtual subnetworks are then configured to meet the specific needs of
applications, services, devices, customers, or virtual network operators. This
approach makes it possible to implement in practice flexible configuration
and infrastructure management, which make part of the requirements for
new generation networks [1]. This concept allows the infrastructure provider
to lease network slices to tenants. These relationships are governed by the
Service Level Agreements (SLA). Efficient use of network bandwidth and
adherence to the terms of these agreements provides economic benefits to all
parties. Guaranteeing slice isolation when allocating RAN radio resources
makes the problem of efficient resource allocation even more challenging.
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The emerging fifth generation (5G) telecommunication networks are en-
visioned to offer a large number of end-to-end network services for various
applications. These stem not only from traditional mobile services, but also
from vertical market segments such as automatic driving, unmanned aerial
vehicles, telemedicine, massive Internet of Things (mIoT), etc. To provide
services with so different requirements for the quality of service (QoS), it is
crucial to be able to implement specific virtual subnetworks by using network
slicing, since fourth generation (4G) networks with their one-fits-all paradigm
are no longer fitted for the task [2], [3].

In this paper, we propose a simulation model as a reusable, versatile tool
for evaluating slicing policies for next-generation network resource sharing.
The rest of the article is structured as follows. Section 2 presents the system
model. In Section 3 we briefly present the slicing policy under study, which
was initially proposed by the authors in [4]. Further, it is considered in terms
of queuing theory in Section 4. Section 5 explains the architecture of the
simulator. The experimental results are discussed in Section 6. Finally, in
Section 7, conclusions are drawn and future work is outlined.

2. System model and notation

Following [4], [5], we consider the downlink transmission of a 5G base
station (BS) with a virtualized RAN and network slicing. We assume that
there are 𝑆 instantiated slices at the BS and denote their set by S , |S | = 𝑆.
Let 𝐶𝑠[𝐺𝑏𝑝𝑠] ⩾ 0 denote the capacity of slice 𝑠 ∈ S , so that

∑
𝑠∈S

𝐶𝑠 ⩽ 𝐶, (1)

where 𝐶[𝐺𝑏𝑝𝑠] is the total BS capacity. Let 𝑁𝑠 denote the number of users in

slice 𝑠 ∈ S , and let N = (𝑁𝑠)𝑠∈S . We assume that each slice is intended for
one type of services (e.g., for video streaming, video conferencing, gaming, file
transfer, web browsing), and hence the traffic in each slice is homogeneous
in terms of characteristics and QoS requirements. Let 𝑅𝑠[𝐺𝑏𝑝𝑠] denote the

average user data rate in slice 𝑠, i.e.,

𝑅𝑠 = 𝐶𝑠
𝑁𝑠

, 𝑠 ∈ S . (2)

The column vector of data rates is denoted by R[𝑆×1] = (𝑅𝑠)𝑠∈S .

It is assumed that the infrastructure provider (InP) leases parts of its in-
frastructure in the form of slices to tenants. A Service Level Agreement (SLA)
between the InP and the tenant includes the following slice characteristics:

— a minimum average user data rate 0 < 𝑅min
𝑠 ⩽ 𝑅𝑠,

— a maximum average user data rate 𝑅𝑠 ⩽ 𝑅max
𝑠 ⩽ 𝐶,

— a guaranteed capacity share 𝛾𝑠 or contracted number of users 𝑁 cont
𝑠 .
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We assume that performance isolation of slice 𝑠 is provided as long as

𝑁𝑠 ⩽ 𝑁 cont
𝑠 , or equivalently,

𝑁𝑠𝑅min
𝑠

𝐶
⩽ 𝛾𝑠, 0 ⩽ 𝛾𝑠 ⩽ 1. (3)

By performance isolation we understand that traffic fluctuation in one slice
does not negatively affect performance in other slices.

3. Slicing scheme

The calculation of slice capacities is performed according to the slicing
scheme with SLA-based isolation [4].

Let us partition Ω = ℕ𝑆 as

Ω = Ωmax ∪ Ωopt ∪ Ωcong. (4)

Now, for N ∈ Ωmax def= {N ∈ Ω ∶ NRmax ⩽ 𝐶} we set

𝑅𝑠(N) = 𝑅max
𝑠 , 𝑠 ∈ S ⟹ 𝐶𝑠(N) = 𝑁𝑠𝑅max

𝑠 , 𝑠 ∈ S ,N ∈ Ωmax. (5)

For N ∈ Ωopt def= {N ∈ Ω ∶ NRmin ⩽ 𝐶 < NRmax} we determine the data
rates as the solution to the convex programming problem

maximize 𝑈(R) = ∑
𝑠∈S

𝑊𝑠(𝑁𝑠)𝑁𝑠 ln(𝑅𝑠), (6)

subject to NR = 𝐶, (7)

over R ∈ ℝ𝑆
+ ∶ 𝑅min

𝑠 ⩽ 𝑅𝑠 ⩽ 𝑅max
𝑠 , (8)

where 𝑊𝑠(𝑁𝑠) is given by

𝑊𝑠(𝑁𝑠) = {
1, 𝑁𝑠 ⩽ 𝑁 cont

𝑠

𝑁 cont
𝑠 /𝑁𝑠, 𝑁𝑠 > 𝑁 cont

𝑠
(9)

The objective function (6) is differentiable and strictly concave by assump-
tion and the feasible region (7), (8) is compact and convex, there exists
hence a unique maximum for the data rate vector 𝑅𝑠, which can be found by
Lagrangian methods.

Now consider N ∈ Ωcong def= {N ∈ Ω ∶ NRmin > 𝐶}. Denote 𝑁min
𝑠 (N) def=

min{𝑁𝑠, 𝑁 cont
𝑠 }𝑠∈S . Thus NminRmin is a due capacity. If NminRmin ⩾ 𝐶,

we set

𝐶𝑠(N) = 𝑁min
𝑠 𝑅min

𝑠
NminRmin

𝐶. (10)

If, conversely, NminRmin < 𝐶, then

𝐶𝑠(N) = 𝑁min
𝑠 𝑅min

𝑠 + (𝑁𝑠 − 𝑁min
𝑠 )𝑅min

𝑠
(N−Nmin)Rmin

(𝐶 −NminRmin). (11)
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To solve the problem (6)–(8) numerically, we use the gradient projection
method (Algorithm 1).

Algorithm 1: Numerical solution of (6)–(8) using the Gradient Pro-
jection Method

input :𝐶, 𝑆,N,Rmin,Rmax,N𝑐𝑜𝑛𝑡

output :R
1 initialization

2 W ∶= [𝑊1(𝑁1), ..., 𝑊𝑆(𝑁𝑆)]
3 Xstat ∶= W𝐶(WN)−1

// stationary point

4 if 𝑅min
𝑖 ⩽ 𝑋𝑠𝑡𝑎𝑡

𝑖 ⩽ 𝑅max
𝑖 , 𝑖 = 1, 𝑆 then

5 return Xstat

6 M[1×𝑆] ∶= N

7 P[𝑆×𝑆] ∶= I−N𝑇(NN𝑇)−1
N

8 X0 ∶= Rmin + (𝐶 −NRmin)(N(Rmax −Rmin))−1(Rmax −Rmin)
9 𝜏 ∶= ||X0 −Xstat||; 𝛿 ∶= 1
10 while 𝛿 > 0.0001 do
11 X1 ∶= X0 + 𝜏P div(N𝑇W,X0) // div(A, B) is

element-wise division of vector 𝐴 by 𝐵
12 𝑡bound ∶= 2; 𝑡coord ∶= −1; 𝛿+ = 0
13 for 𝑖 = 1, 𝑆 do
14 if 𝑁𝑖 > 0 then
15 if 𝑋1

𝑖 < 𝑅min
𝑖 then

16 if 𝑡bound > (𝑅min
𝑖 − 𝑋0

𝑖 )(𝑋1
𝑖 − 𝑋0

𝑖 )−1
then

17 𝑡bound ∶= (𝑅min
𝑖 − 𝑋0

𝑖 )(𝑋1
𝑖 − 𝑋0

𝑖 )−1; 𝑡coord ∶= 𝑖

18 if 𝑋1
𝑖 > 𝑅max

𝑖 then

19 if 𝑡bound > (𝑅max
𝑖 − 𝑋0

𝑖 )(𝑋1
𝑖 − 𝑋0

𝑖 )−1
then

20 𝑡bound ∶= (𝑅max
𝑖 − 𝑋0

𝑖 )(𝑋1
𝑖 − 𝑋0

𝑖 )−1; 𝑡coord ∶= 𝑖

21 if 𝑡bound < 2 then
22 X1 ∶= X0 + 𝑡bound(X1 −X0)
23 if Row number of M < 𝑆 − 1 then
24 Add empty row to M
25 𝛿+ ∶= 1
26 Last row of M ∶= I[𝑡coord]
27 if ||MM𝑇|| > 0.0000001 then
28 P ∶= I−M𝑇(MM𝑇)−1M

29 𝛿 ∶= 𝛿+ + ||X0 −X1||;X0 ∶= X1

30 return X0

The gradient projection method is a well-known algorithm for solving op-
timization problems with linear constraints. It is specified by a standard
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iterative procedure [6]: Xk+1 = Xk + 𝜏dk, where Xk is the point at which

the algorithm arrived at the 𝑘-th iteration, 𝜏 — the stepsize, dk — the incre-
ment vector, which is found as the projection of the target function gradient

on the constraints: dk = 𝑃∇𝑈(Xk), where the projection matrix is initially

given by 𝑃 = I−N𝑇(NN𝑇)−1
N.

4. Queuing system model

We use queuing theory to model the system described in the Section 2.
Each slice is modeled as a separate queuing systems (QS). The types of QS
must be selected in such a way as to adequately reflect the nature of the
service provided. Jobs in QSs correspond to user sessions in slices. Since in
the system model the slices are part of a single network of a total capacity 𝐶,
the 𝑆 queuing systems share a total resource (capacity) 𝐶, which is partitioned
so that the resource share available to QS 𝑠 equals 𝐶𝑠.

At the moment, we have implemented a slice of a Best Effort (BE) type
without admission control and with maximum user data rate, which we denote
by 𝐵𝐸max. It is represented by a QS with the EPS (egalitarian processor
sharing) service discipline. The job service rate 𝑅𝑠 of all jobs is equal and
inversely proportional to their number 𝑁𝑠, but cannot exceed 𝑅max

𝑠 . Serving
jobs in such a QS can be interpreted as downloading files.

Network slicing from this perspective corresponds to a repeated redistribu-
tion (re-slicing) of the capacity 𝐶 among otherwise independent QSs. The
considered model is shown in figure 1, where 𝐴𝑠(𝑥) is the distribution law of
the interarrival times, 𝐵𝑠(𝑥) is the distribution law of the job lengths (service
time on one resource unit) for 𝑠 ∈ S .

...
...

...

C1

A1(x), B1(x)

CS

...

C

BE slice #1

BE slice #S

Resource allocation
by event or timer

As(x), Bs(x)

Figure 1. A system with S slices of type 𝐵𝐸max



N. A. Polyakov et al., A simulator for analyzing a network slicing policy … 41

It should be noted that in our model admission control and resource
allocation within a slice are individual characteristics for each type of slice.
For the 𝐵𝐸max considered in this work, we assume the same service rate
for all users (jobs) and unlimited admission (any number of jobs in service).
Since this type of slice lacks admission control and queue, it makes sense to

introduce a service level degradation threshold (0 ⩽ 𝑅𝑑
𝑠 ⩽ 𝐶) to assess the

efficiency of the slicing scheme. This parameter sets the threshold for job
service rate in the slice, below which degradation of service occurs, the service
is provided poorly. Slice degradation can occur as a result of user arrival
and/or redistribution of capacity.

For simplicity, in what follows, the terms slice and queuing system will be
used interchangeably.

5. Simulator architecture

5.1. Modules

The discrete event simulator is written on the OMNeT++ platform using
the queuinglib standard library. The implementation of the algorithm for
solving the optimization problem for the slicing scheme required the inclusion
of Boost library for operations with matrices. The construction of a simulation
model in OMNeT++ assumes a modular structure, and also allows the use of
both standard and modified modules (figure 2).

BestEffortSliceBestEffortSlice

SlicerSlicer

-slices: Slice[S]

+reslice()

-sink: Sink

SliceSlice

+n: int // number of requests
+capacity: float
+d: float // degradation threshold
#lambda: float // average time 
between arrival of requests
#mu: float // average service time 
of a request per resource unit

+C: float // total BS capacity
-S: int // number of slices

-reslicingTrigger: int

-gamma: float[S] // guaranted 
capacity share

-b: float[S] // min bitrate
-a: float[S] // max bitrate

-resliceInitial()
+emitUTIL()

-source: Source

-delay: ElasticTrafficDelay

ElasticTrafficDelayElasticTrafficDelay

// our modification to handle 
elastic traffic

DelayDelay

// standard class implementation 
in queuinglib +serviceRate: float
-currentlyStored: int // number of 
requests served

+adjustRate()

-getNewServiceRate()

Figure 2. UML diagram of classes developed for the simulator based on the queuinglib

standard library
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To achieve the required level of abstraction, we have developed two modules:

— is a container consisting of simple modules inside that form a QS. For
different types of slices, the way of servicing jobs (users), and as a con-
sequence, the internal structure is not strictly defined and can vary
greatly. However, all types of slices are inherited from a common an-
cestor, which defines the required external parameters that are used to
receive the initial data of the model (table 1), and the characteristics
that are passed to the slicer as re-slicing parameters, which collected to
vectors: N,Rmin,Rmax.

— is a simple module that handles requests for capacity re-slicing from
slices. The slicer also performs initial re-slicing of the capacity by formula
(12). Slices and slicers communicate via channels — standard OMNeT++
technology.

Let us take a closer look at the table 1. First, the structural characteristics
of the model are determined, such as the number of slices and the type of
each one. Further, the distribution laws for the arrival of requests and their
service time are established, the parameters of the slices are selected, etc.

Table 1

Input data structure

Slicer

Total capacity 𝐶 float > 0

𝑆 int > 0

Re-slicing trigger { All events, Arrivals, Degradation, Timer, Static}

Timer interval 𝑡𝑡𝑖𝑚𝑒𝑟 float > 0

Slice 𝑖, 𝑖 = 1, 𝑆

𝑅min
𝑖 0 ⩽ float ⩽ 𝑅max

𝑖

𝑅max
𝑖 𝑅min

𝑖 ⩽ float ⩽ 𝐶

𝑅𝑑
𝑖 0 ⩽ float ⩽ 𝐶

𝛾𝑖 0 ⩽ float ⩽ 1

Distribution 𝐴𝑖(𝑥) {𝑈(𝑎, 𝑏), 𝐸𝑥𝑝(𝜆), 𝑁(𝑎, 𝜎2), Γ(𝛼, 𝛽),

Distribution 𝐵𝑖(𝑥) 𝑊(𝑘, 𝜆), 𝐵𝑒𝑡𝑎(𝛼, 𝛽), 𝐶𝑎𝑢𝑐ℎ𝑦(𝜃), 𝑃𝑎𝑟𝑒𝑡𝑜(𝛼), ...}

One of the parameters of the initial data is the way of invoking the re-
slicing — this is an event or message that occurs periodically during the
simulation, which is a condition for invoking the capacity re-allocation algo-
rithm. We consider re-slicing triggered by

— events:
– all events, i.e., job arrivals and departures (in our case this corre-

sponds to optimal real-time slicing),
– arrivals only,
– degradation in any slice;
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— timer (every 𝑡𝑡𝑖𝑚𝑒𝑟 s);
— static slicing (no re-slicing, corresponds to complete partitioning), where

the capacity of slice 𝑖 equals

𝐶𝑖 = 𝛾𝑖

∑𝑆
𝑗=1 𝛾𝑗

𝐶, 𝑖 ∈ S . (12)

Consider the implementation of 𝐵𝐸max slice type. Figure 3 shows a dia-
gram of the correspondence of the QS elements with software modules in
a slice, which include the Delay modification — ElasticTrafficDelay, and the
Source and Sink modules from the standard set provided by the OMNeT++
and queuinglib bundle.
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Figure 3. Scheme of logical correspondence of program classes with elements

of the 𝐵𝐸max QS

Consider them:

— Source is a basic generator of requests that correspond to users’ requests
for the provision of a service, according to specified distributions.

— Sink is a module that receives serviced jobs and destroys them. The Sink
collects all the primitive statistics on jobs, such as average, maximum,
minimum time spent in the system, average time in queue, etc.

— ElasticTrafficDelay extension was written for the standard Delay mod-
ule. This modification is intended to simulate the service of “elastic”
traffic, as the name of the module implies. With the help of standard
Delay, you can simulate the service of traffic on discrete devices: after
the arrival, the job is in the system for a certain time, and then goes
to the drain. ElasticTrafficDelay takes into account the presence of all
jobs on the device and equally distributes the available resource between
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them. Therefore, the standard module was extended with mechanisms
for recalculating the service rate (13) and departure time (Algorithm 2):

𝑅𝑖 =
⎧{
⎨{⎩

min( 𝐶𝑖
𝑁𝑖

, 𝑅max
𝑖 ), 𝑁𝑖 > 0,

0, 𝑁𝑖 = 0,
𝑖 ∈ S . (13)

Algorithm 2: Service rate recalculation into 𝐵𝐸max slice 𝑖.
class Job {

float 𝑡arr // is arrival time

float 𝑡dep // is departure time

...

}
input :𝑅𝑖, Job[𝑁𝑖] 𝑗𝑜𝑏𝑠 // set of jobs in slice 𝑖

1 𝑅prev ∶= 𝑅𝑖
2 𝑅𝑖 ∶= getNewServiceRate() // formula (13)

3 foreach job in jobs do
4 Delete 𝑗𝑜𝑏 from event queue
5 // 𝑡cur is model current time

6 𝑡serv ∶= |𝑗𝑜𝑏.𝑡arr − 𝑡cur| // how much is already served

7 𝑡𝑛𝑒𝑤
serv ∶= 𝑡serv

𝑅𝑝𝑟𝑒𝑣
𝑅𝑖

8 𝑗𝑜𝑏.𝑡dep ∶= 𝑡cur + 𝑡new
serv // set to job new service end time

9 Add 𝑗𝑜𝑏 in event queue

5.2. Simulation algorithm

Slices, in their essence, function independently of each other, however, as
mentioned earlier, the simulator is built on a discrete-event basis, so there is
a common queue of events. It contains all the events generated by the model
and is executed in the occurrence.

Depending on their type, slices, can generate many different events, but all
will be characterized by the following:

— arrival of a job in a slice;
— departure of a job from a slice;
— slice degradation;
— arrival of a job in a slice 𝑠 with zero resource 𝐶𝑠, 𝑠 ∈ S .

Only the events of the model cause a change in the state of the system,
which we designated as N. Therefore, re-slicing for all events is reduced
to tracking the events of arrival and departure of jobs. In our system, the
slices themselves notify the slicer of these events (figure 4). After capacity 𝐶
allocation, the slicer notifies the slices that their available resource 𝐶𝑠, 𝑠 ∈ S
has changed. On these notifications, the slices adjust the end time of servicing
their jobs in the event queue (Algorithm 2). If there are no jobs 𝑁𝑠 = 0
in the slice 𝑠, then after re-slicing it can be assigned a zero resource value
𝐶𝑠 = 0, which means that when the first request arrives, it will be necessary
to activate the slice, in other words, call re-slicing again.
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In the case when re-slicing is triggered by timer (figure 5), the slicer sends
messages to itself with the required delay 𝑡timer s. Since there is a chance that
the slice can receive zero resource, it became necessary to enter the activation
of the slice upon the arrival of the request in this case.
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Figure 4. Interaction of slicer and slices when re-slicing triggered by all events (red)

or degradation (blue). Re-slicing is called only by a group of events of the same color

With static slicing, the slices receive resource proportionally, in accordance
with the values of 𝛾 by equation (12).

5.3. Metrics

The built simulator allows you to take indicators in various forms using the
built-in OMNeT++ tools, and more specifically using signals and statistics.
The signal (@signal) transmits information at the right moments in the form
of values  of primitive types: bool, int, float, etc., or more complex data objects
[7]. Statistics (@statistic) is a signal processing mechanism that allows you
to accumulate vectors of original data transmitted by signals and scalars
calculated by these vectors: sum, quantity, average, time average, maximum,
minimum, etc. Preset simulator settings allow you to take such indicators
like:

— average time spent in each module of the constructed QS inside slices
and in the network as a whole;

— average number of jobs in each module of the constructed QS within
slices and in the network as a whole;

— average service rate in slice;
— average number of jobs in slice, etc.
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Figure 5. Interaction of slicer and slices when re-slicing triggered by timer

As part of assessing the effectiveness of slicing, the following additional
indicators were taken:

— Slice degradation probability,

𝑃 deg
𝑠 = 𝑃{𝑅𝑠 < 𝑅𝑑

𝑠 } = lim
𝑇 →∞

1
𝑇

𝐷𝑠(𝑇 )

∑
𝑖=1

(𝑑𝑠,𝑖 − 𝑑𝑠,𝑖−1)ℋ{𝑅𝑠,𝑖 < 𝑅𝑑
𝑠 }, (14)

where 𝑠 ∈ S , 𝑇 is model time, 𝐷𝑠(𝑇 ) — counter of slice 𝑠 degradation

threshold 𝑅𝑑
𝑠 crossing (in any direction), 𝑅𝑠,𝑖 — time of the 𝑖-th rate

change, 𝑑𝑠,𝑖 — time of the 𝑖-th degradation threshold 𝑅𝑑
𝑠 crossing, and

ℋ is Heaviside step function.
— Average slice resource,

𝐶𝑠 = lim
𝑇 →∞

1
𝑇

𝐿𝑠(𝑇 )

∑
𝑖=1

(𝑐𝑠,𝑖 − 𝑐𝑠,𝑖−1)𝐶𝑠,𝑖, 𝑠 ∈ S , (15)

where 𝐿𝑠(𝑇 ) — counter of slice 𝑠 resource changes, 𝑐𝑠,𝑖 — moment 𝑖 of

changing resource 𝐶𝑠.
— Average duration of slice degradation period,

𝑡deg
𝑠 = lim

𝑇 →∞

1
𝐷𝑠(𝑇 ) + 1

𝐷𝑠(𝑇 )

∑
𝑖=1

(𝑑𝑠,𝑖 − 𝑑𝑠,𝑖−1)ℋ{𝑅𝑠,𝑖 < 𝑅𝑑
𝑠 }, 𝑠 ∈ S . (16)
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— Capacity utilization,

UTIL = 1
𝐶

∑
𝑠∈S

lim
𝑇 →∞

1
𝑇

𝑌𝑠(𝑇 )

∑
𝑖=1

(𝑦𝑠,𝑖 − 𝑦𝑠,𝑖−1)𝑁𝑠,𝑖𝑅𝑠,𝑖, 𝑠 ∈ S , (17)

where 𝑌𝑠(𝑇 ) — counter of slice 𝑠 service rate 𝑅𝑠 and number of jobs 𝑁𝑠
changes, 𝑦𝑠,𝑖 — moment 𝑖 of changing 𝑅𝑠 or 𝑁𝑠.

— Re-slicing frequency.
— Average duration of the re-slicing operation.

6. Numerical results

To illustrate the performance of the simulator, we consider five slices with
the parameters given in the table 2.

Table 2

Parameters’ values for the numerical example

Slicer

Total capacity 𝐶 8000

𝑆 5

Timer interval 𝑡𝑡𝑖𝑚𝑒𝑟 100s

Slice 𝑖 1 2 3 4 5

𝑅min
𝑠 = 𝑅𝑑

𝑖 , Mbps 2 5 25 50 30

𝑅max
𝑠 , Mbps 2.2 8 30 75 8000

𝛾𝑖 0.075 0.075 0.35 0.25 0.25

𝐴𝑖(𝑥) exp(𝜆)

Request interarrival time 𝜆−1, s 1.65 7.25 16 19 5

𝐵𝑖(𝑥) exp(𝜃)

Mean file size 𝜃−1, GB 0.3 1.2 2.5 5 1

Scenario is intended to demonstrate a system with an increased workload
in slices 1 and 2. The guarantees are selected in such a way, that slices 3 and
4 are the main donors of capacity.

Figure 6 illustrates how the degradation probability 𝑃 deg
𝑠 varies depending

on the re-slicing triggers for the cases under study. Static re-slicing gives
a high degradation probability in slice 1. For event triggers, we observe low
degradation probability (∼ 1%) for slices 1, 2, 4 and insignificant degradation
probability in 5. When re-slicing is triggered by timer, the slicer reacts to
the state of the system with a long delay, so there is an unacceptably high
probability of degradation in donor slices 3 and 4.
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The capacity utilization metric in figure 7 indicates that re-slicing upon
all events and arrivals provide the highest resource utilization and the lowest
waste of resources. This would be good if it were not for the fact that at
a much lower system utilization, re-slicing upon degradation yields the same
efficiency in terms of degradation probability.

Let us take a look at such an important indicator as the frequency of
re-slicing calls. Figure 8 additionally confirms the efficiency of re-slicing upon
degradation compared to re-slicing upon all events and arrivals, and even by
timer. For all triggers, as expected, slicing takes roughly the same amount of
time, averaging 0.04 ms.
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Figure 6. Slice degradation probability for different re-slicing triggers
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Figure 7. System utilization for different re-slicing triggers
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Figure 8. Re-slicing frequency for different re-slicing triggers

Let us consider the average share of capacity 𝐶𝑠 allocated to each slice
depending on the re-slicing trigger (figure 9). As we see, slices 1 and 2
receive significantly more capacity with frequent re-slicing than indicated in
the SLA — the scheme allows this.

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5  
0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 c
ap

ac
ity

 sh
ar

e

Guarantees 
All events
Arrivals

Degradation
Timer (100s)
Static

Figure 9. Average slice capacity share for different re-slicing triggers compared with the
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7. Conclusion

A simulation model of network slicing with SLA-based isolation has been
developed. By using the Object-Oriented Programming paradigm [8], as
well as the built-in functionality of OMNeT++ and queuinglib, the following
principles have been achieved:

— Modularity of the system: model elements (slicer, slice, queue, source
of requests, delay, etc.) implemented as objects are logically separated,
and the interaction among them occurs by transmitting global signals or
messages through special channels.

— Polymorphism, inheritance and encapsulation of slices: all types
of slices have a common ancestor which specifies all the mechanisms
necessary for communicating with the slicer, so each descendant class
describing a new slice type can replace their implementation with their
own without breaking the interaction structure. In connection with the
same principle, the QS describing the way of processing users (jobs)
within a slice can take any form and be designed at the discretion of the
developer. Thus, any slice is characterized only by its type and unified
set of parameters.

— Homogeneity of the structure of the input data: an important
characteristic for any simulator is the ease of use, in particular, the
way of specifying the input data. In our implementation, based on the
previous principle, the initial conditions for any slice are set in the same
way using a configuration file.

Compliance with the indicated principles leads to scalability and extensibil-
ity of the simulation model.

Further research objectives:

— taking into account the state of the radio channel;
— adding and analyzing other re-slicing triggers;
— adding other types of slices;
— extensive numerical analysis.
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Имитационное моделирование разделения ресурсов
с изоляцией слайсов на базе SLA

Н. А. Поляков1, Н. В. Яркина1, К. Е. Самуйлов1, 2

1 Российский университет дружбы народов
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

2 Федеральный исследовательский центр «Информатика и управление» РАН
ул. Вавилова, д. 44, кор. 2, Москва, 119333, Россия

В настоящее время, несмотря на ввод в эксплуатацию сетей мобильной связи 5-
го поколения, эффективное разделение ресурсов сети радиодоступа по-прежнему
остаётся актуальной задачей. Свои коррективы в её постановку вносят техноло-
гии виртуализации и нарезки сети (network slicing), позволяющие разделять сеть
доступа на логические подсети. В статье предложен инструмент имитационного
моделирования, разработанный на платформе OMNeT++ для анализа эффек-
тивности схемы разделения ресурсов с изоляцией слайсов на базе соглашений об
уровне обслуживания. Объектно-ориентированный подход к построению симуля-
тора обеспечивает гибкость и расширяемость модели. В статье кратко изложена
исследуемая схема слайсинга, подробно описана архитектура программного сред-
ства и особенности построения имитационой модели, приведены результаты
численного анализа.

Ключевые слова: система массового обслуживания, разделение ресурсов, на-
резка сети, имитационное моделирование, оптимизация


