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Time Series Forecasting has always been a very important area of research in many
domains because many different types of data are stored as time series. Given the
growing availability of data and computing power in the recent years, Deep Learning
has become a fundamental part of the new generation of Time Series Forecasting
models, obtaining excellent results.

As different time series problems are studied in many different fields, a large
number of new architectures have been developed in recent years. This has also been
simplified by the growing availability of open source frameworks, which make the
development of new custom network components easier and faster.

In this paper three different Deep Learning Architecture for Time Series Forecasting
are presented: Recurrent Neural Networks (RNNs), that are the most classical and
used architecture for Time Series Forecasting problems; Long Short-Term Memory
(LSTM), that are an evolution of RNNs developed in order to overcome the vanishing
gradient problem; Gated Recurrent Unit (GRU), that are another evolution of RNNs,
similar to LSTM.

The article is devoted to modeling and forecasting the cost of international air
transportation in a pandemic using deep learning methods. The author builds time
series models of the American Airlines (AAL) stock prices for a selected period using
LSTM, GRU, RNN recurrent neural networks models and compare the accuracy
forecast results.

Key words and phrases: neural networks, financial forecasting, deep learning,
international air travel

1. Introduction

In 2020, there was a significant drop in quotations of American Airlines
(AAL) associated with the COVID-19 pandemic and a record-breaking de-
crease in the number of air travel in the world. The generally accepted
econometric methods of modeling and forecasting financial time series in
these conditions turned out to be ineffective for making even short-term fore-
casts [1], [2]. In the present paper, methods for modeling and forecasting
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international air traffic in the 2019–2020 pandemic are explored using recur-
rent neural networks with different architectures. As an object of research,
the day quotes of the American company AAL, traded on the NASDAQ ex-
change, were selected; data from September 27, 2005 to September 30, 2020
from the information portal Yahoo Finance [3] were taken. The shares of this
US company were selected due to its leading positions in the international air
transportation market, high values of the trading turnover on the NASDAQ
exchange, which in turn provides liquidity and shows investor interest in this
exchange commodity [4]. Using the example of the value of AAL shares, we
will try to build a reliable forecast using deep learning methods, in particular,
recurrent neural networks [5]–[7].

2. Pre-processing of input data

As input data for the neural network model, we will take a sequence
consisting of the following values:

— Opent-1 — opening price for the previous period;
— Lowt-1 — the minimum price for the previous trading day;
— Hightt-1 — the maximum price for the previous trading day;
— Volumet-1 — the amount of shares sold and bought for the previous

trading day;
— Closet-1 — closing price for the previous trading day.

Based on the input data, neural networks will generate an output value
that can be interpreted as the predicted value of the closing quotation today.
For the correct operation of neural networks, it is necessary to normalize the
data within the limits of [0 ∶ 1], as well as create training and test samples in
the ratio 80:20 from the initial data having the dimension 3636. Thus, 2909
observations for the training sample and 727 observations for the test sample
were obtained. The table 1 shows a fragment of the input data.

It is necessary to remove the Date and Adj Close columns from the received
data. The table 2 presents descriptive statistics of input data. It is seen that
the average closing price is $27.13 and the standard deviation is $16.74.

To study the statistical properties of the data further, let us build scatter
diagrams of the profitability of the opening price and the closing price, as well
as the profitability of the closing price shifted by one lag, and the closing price
today. To calculate the profitability, we will use the following formula [8]–
[10]:

𝑅 = 𝑦𝑡
𝑦𝑡−1

− 1, (1)

where 𝑅 is the profitability; 𝑦𝑡–1 is the previous observation value; 𝑦𝑡 are the
values for the current time period.

The scatter diagram of the profitability of the opening and closing prices is
shown in the figure 1.

The figure 1 shows that there is no correlation between the variables under
consideration. Next, we will construct a histogram of the distribution of the
profitability of closing prices (figure 2). Obviously, most of the observations
are in the range from −0.1 to 0.1. This means that in most observations, the
price changed from −10% to 10% in one period.
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Table 1

A fragment of the input data

Obser-

vation

num-

ber

Date Open, $ High, $ Low, $ Close, $ Adj

Close1, $

Volume, $

0 27.09.2005 21.05 21.4 19.1 19.3 18.19 961200

1 28.09.2005 19.3 20.53 19.2 20.5 19.33 5747900

2 29.09.2005 20.4 20.58 20.1 20.21 19.05 1078200

3 30.09.2005 20.26 21.05 20.18 21.01 19.81 3123300

4 3.10.2005 20.9 21.75 20.9 21.5 20.27 1057900

... ... ... ... ... ... ... ...

3634 6.03.2020 15.02 17.12 14.8 15.97 15.97 54505000

3635 9.03.2020 14.87 15.79 14.46 14.75 14.75 42558000

3636 10.03.2020 15.82 17.67 14.61 17 17 56858200

Table 2

Descriptive statistics of input data

Indicators Open High Low Close Volume

Total number of obser-

vations

3637 3637 3637 3637 3.637e+03

Mean value, $ 27.15 27.64 26.64 27.13 7.603118e+06

Standard deviation, $ 16.74 16.95 16.53 16.74 6.070650e+06

Minimal value, $ 1.81 2.03 1.45 1.76 1.385e+05

25% percentile, $ 9.57 9.81 9.32 9.58 4.1782e+06

50% percentile, $ 29.9 30.48 29.28 29.89 6.5025e+06

75% percentile, $ 41.74 42.24 41.02 41.68 9.5455e+06

Maximum value, $ 62.7 63.27 62 62.95 1.377672e+08

To test the hypothesis about whether the distribution of the closing price
profitability is a special case of the normal distribution, we use the Shapiro–
Wilk and Jarque–Bera tests. The Jarque–Bera test rejected the null hypothesis
at a significance level of 𝑎 = 0.05. The results of the Shapiro–Wilk test and
the Jarque–Bera test coincided. This means that the profitability of closing
prices has a distribution that is different from the normal one.
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Figure 1. Scatter diagram of opening and closing prices

Figure 2. Distribution of closing price profitability

To check the stationarity of the profitability series, we will use the Dickey–
Fuller test, which is one of the unit root tests. A time series has a unit root if
its first differences form a stationary series, i.e. a series whose properties do
not change over time. This condition is written as 𝑦𝑡 ∼ 𝐼(1) if the series of
the first differences Δ𝑦𝑡 = 𝑦𝑡 − 𝑦𝑡−1 is a stationary series Δ𝑦 ∼ 𝐼(0) [11]. If
the time series has a unit root, then it is not a stationary time series, but an
integrated first-order time series [12]–[14]. As one would expect, the observed
time series has no unit roots and, therefore, is stationary. For the convenience
of using the input data, we will normalize them. The results are presented in
the table 3.
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Table 3

Normalized raw data

Number of

observation

Open High Low Close Volume

0 0.31598 0.316297 0.291495 0.286648 0.005978

1 0.287239 0.30209 0.293146 0.306259 0.040757

2 0.305305 0.302907 0.30801 0.30152 0.006828

3 0.303005 0.310581 0.309331 0.314594 0.021687

4 0.313516 0.322012 0.321222 0.322602 0.00668

... ... ... ... ... ...

3634 0.216949 0.246408 0.220479 0.232227 0.395023

3635 0.214485 0.22469 0.214864 0.21229 0.308217

3636 0.230087 0.255389 0.217341 0.24906 0.412121

Next, we turn to the description of the main models of recurrent neural
networks and their application in the analysis of financial time series.

3. Basic models of deep neural networks for simulation
of financial time series

3.1. Basic recurrent neural network

The architecture of the proposed basic recurrent neural net (RNN) is as
follows. A matrix with a dimension of 1 by 5 is fed to the input of the neural
network, then the values are transferred to a recurrent layer with 25 neurons,
after which the operation is repeated and the values are again fed to the
recurrent layer with 25 neurons. At the penultimate step, the values are
transferred to an aggregating layer with a dimension of 5 neurons, the result
is displayed as a predicted value. Hidden layers have a hyperbolic tangent as
an activation function. This activation function is nonlinear, which allows
layers to be linked, i.e. combines them, because the combination of non-linear
functions is also a non-linear function. Another advantage of the hyperbolic
tangent function is that it is a smooth function, and this function is not
binary and takes values in the range (–1, 1), which eliminates overloading
from large values. The hyperbolic tangent is very similar to the sigmoid with
the difference that it has a larger gradient than the sigmoid. On the aggregate
layer, a linear function is used as the activation function. The proposed neural
network model, all procedures for its training and testing were implemented
in the Keras library of the Python programming language [15].



E.Yu. Shchetinin, Study of the impact of the COVID-19 pandemic … 27

The mean squared error (MSE) will be used as the loss function, and the
optimization is performed using the Adam algorithm. The epoch parameter
of the fit function reflects how many times the sample is passed through
the neural network, in this case epoch = 150. The batch_size parameter is
responsible for the size of the so-called batch. In cases where the training
sample is too large, there is a need to divide it into parts. These parts are
called batches. Thus, the training set with 2109 observations is divided into
210 batches with a size of 10, except for the last one with 9 observations.
Thus, 210 iterations were required to pass one epoch.

Due to the tendency of recurrent neural networks to overfit, it is necessary
to apply various regularization algorithms [10], [16]. As such an algorithm,
the early stop method is used, which tracks the amount of losses. If during
20 epochs the improvement is less than 0.000002, then the training of the
model will be stopped. The graph of the loss function on the training sample
is shown in the figure 3.

Figure 3. Plot of the RNN learning loss function:

1 — train loss; 2 — validation loss

After checking and training the neural network, we will construct a forecast
of closing prices for the test sample. For a better visual appearance, the
predicted values are shifted ten units up. Let us display the forecast of the
last 50 observations of the test sample for a more accurate visual examination
(figure 4). It can be seen from the figure that the neural network predicts
closing prices closely enough.

3.2. Neural network with a gated recurrent unit

A recurrent neural network based on a cell architecture with a gated
recurrent unit (GRU) repeats the structure of the RNN model of a recurrent
network. The input layer takes the values of a matrix with a dimension of 1
by 5. Then, recurrent layers with 25 neurons and a hyperbolic tangent as an
activation function are sequentially accepted and processed.
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Figure 4. Forecast of the closing price for the last 50 values of RNN model network:

1 — real values stock price; 2 — forecast price

The aggregating layer has 5 neurons with a linear activation function. After
processing by the last layer, the predicted value is supplied. It should be noted
that the default activation function for layers with the GRU architecture is
the hyperbolic tangent [16], [17]. The loss plot for the GRU recurrent neural
network is shown in the figure 5.

Figure 5. Loss plot for GRU model network:

1 — train loss function; 2 — validation loss function

The early stop regularization terminated the training of the neural network
to prevent overfitting at epoch 72. The plot of predicted closing prices for
all observations of the model of a recurrent neural network with the GRU
architecture is shown in the figure 6. As in the case of the RNN, to facilitate
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visualization the predicted values have been shifted ten units upward. It is
also worth noting that the neural network accurately reproduced the closing
price behavior. For a detailed consideration, we take the last 50 values of the
test sample and display them in the figure 7.

Figure 6. Closing price forecast for the entire GRU test sample:

1 — real values stock price; 2 — forecast stock price

Figure 7. Closing price forecast for the last 50 values of GRU:

1 — real values of stock prices; 2 — forecast stock prices

The mean square forecast error and the R2 index have the following values:
MSE = 0.9953, 𝑅2 = 0.9885.
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3.3. Neuron network with long short-term memory (LSTM)

Just like the previous networks, constructively recurrent neural network
with long short-term memory (LSTM) will repeat the previous values. An
input that accepts a 1-by-5 matrix transmits information to two recurrent
layers with 25 neurons per layer and a hyperbolic tangent as an activation
function. Then an aggregating layer of five neurons with a linear activation
function passes the value to the output layer.

The closing price prediction plot calculated using a recurrent neural network
with the LSTM architecture is shown in the figure 8.

Figure 8. LSTM model network loss plot:

1 — train loss function; 2 — validation loss function

Forecasted values are shifted ten points. Based on the plot, we can conclude
that the neural network under consideration predicts the required values quite
accurately.

The forecast of the closing price for the entire LSTM test sample and for
the last 50 values is shown in figures 9 and 10 respectively. For this recurrent
neural network, MSE = 0.8508, 𝑅2 = 0.99.

Let us display a comparative plot of losses during training of various
constructions and architectures of the considered neural networks (figure 11).
Note that the RNN recurrent neural network demonstrated the highest loss
rates on the training set. Except for separately taken random epochs, its loss
value was greater than that of the rest. LSTM and GRU recurrent neural
networks have close values of losses on the training set. It is worth noting
that the early stopping algorithm worked for all types of recurrent neural
networks. For the RNN model, the algorithm stopped training at 71 epochs,
for GRU — at 72. The least number of epochs – 62 — was required to train
the neural network built using the LSTM architecture.

The table 4 shows the values of the mean square error and the coefficient
𝑅2 for all constructed neural networks.



E.Yu. Shchetinin, Study of the impact of the COVID-19 pandemic … 31

Figure 9. Forecast of the closing price for the entire LSTM model network test sample:

1 — Real values stock prices; 2 — forecast stock prices

Figure 10. Forecast of the closing price of the last 50 values of LSTM model network:

1 — Real values stock prices; 2 — forecast stock prices
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Figure 11. Plot of losses for different models of neural networks:

1 — LSTM model loss function; 2 — RNN model loss function; 3 — GRU model loss

function

Table 4

Values of MSE и 𝑅2 for all constructed neural networks

Neural network MSE 𝑅2

RNN 1.2232 0.9858

GRU 0.9953 0.9885

LSTM 0.8508 0.9901

4. Discussion of results of computer experiments

In the process of investigating the impact of the COVID-19 pandemic on
AAL stock quotes, recurrent neural network models were built with various
architectures, such as cells with long short-term memory LSTMs, cells with
gated recurrent unit GRU, and a basic recurrent network. The analysis of the
constructed models was carried out, as well as the comparison of the results
on the training and test data. During the analysis, it was found that the
neural network with long short-term memory cells (LSTM) coped best with
the task of predicting the data under study.

Summing up, we can say that all networks have shown a satisfactory result,
but they predict the price with a certain delay, which may entail unplanned
financial losses. In view of this, it can be concluded that these models are
not suitable for carrying out short-term operations in the financial market,
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are not able to serve as an indicator that helps to improve the efficiency of
a trading strategy and cannot be used for risk management tasks.

5. Conclusion

The purpose of the article was to investigate the quality of various neural
network models that predict the closing price of a stock. In the course of the
study, sufficiently accurate results of modeling and forecasting financial time
series for the intraday closing prices of shares of the American airline ALL
were obtained, which confirmed the effectiveness of using the proposed models
of deep neural networks. However, in the context of the practical application
of the developed models, it is necessary to take into account time delays in
obtaining forecast results, as well as the horizon of financial forecasting.
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Исследование влияния пандемии COVID-19
на международные авиаперевозки
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Прогнозирование временных рядов играет важную роль во многих областях
исследований. Вследствие растущей доступности данных и вычислительных
мощностей в последние годы глубокое обучение стало фундаментальной частью
нового поколения моделей прогнозирования временных рядов, получающих
отличные результаты.

В данной работе представлены три различные архитектуры глубокого обу-
чения для прогнозирования временных рядов: рекуррентные нейронные сети
(RNN), которые являются наиболее известной и используемой архитектурой для
задач прогнозирования временных рядов; долгая краткосрочная память (LSTM),
которая представляет собой обобщённую и развитую РНС, разработанную для
преодоления проблемы исчезающего градиента; закрытый рекуррентный блок
(GRU), который является ещё одной эволюционной моделью РНС.

Статья посвящена моделированию и прогнозированию стоимости международ-
ных авиаперевозок в условиях пандемии с использованием методов глубокого
обучения и моделей рекуррентных сетей. В работе построены модели временных
рядов цен акций American Airlines (AAL) с использованием моделей рекуррент-
ных нейронных сетей LSTM, GRU, RNN и проведён сравнительный анализ
результатов точности прогноза на выбранный период. Его результаты показа-
ли эффективность применения алгоритмов глубокого обучения для оценивания
точности прогнозирования временных рядов.

Ключевые слова: нейронные сети, финансовое прогнозирование, глубокое
обучение, международные авиаперевозки


