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In this work, a numerical study of the solutions of the parabolic and hyperbolic
equations of heat conduction with the same physical parameters is carried out and
a comparative analysis of the results obtained is carried out. The mathematical
formulation of the problem is discussed. The action of the laser is taken into account
through the source function, which was chosen as a double femtosecond laser pulse.
In the hyperbolic equation, in contrast to the parabolic one, there is an additional
parameter that characterizes the relaxation time of the heat flux. In addition, the
source of the hyperbolic equation contains an additional term — the derivative of
the power density of the source of the parabolic equation. This means that the
temperature of the sample is influenced not only by the power density of the source,
but also by the rate of its change. The profiles of the sample temperature at different
times and its dynamics at different target depths are shown. The calculations were
carried out for different time delays between pulses and for different relaxation
parameters.
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1. Introduction

The study of the interaction of femtosecond laser pulses with matter is
important in connection with many fundamental problems (physics of non-
equilibrium processes, generation of shock waves, laser acceleration of ions,
modification of the properties of the irradiated material, etc.) [1]-[3].

Currently, there is a growing need for the creation and improvement of
physical models capable of describing various processes in matter. Moreover,
computer modeling now occupies one of the main places in the study of such
problems. There are two approaches to the study and creation of physical
models — atomistic and continuous.

Atomistic approaches (molecular dynamics method) allow natural consider-
ation of the atomic structure of the crystal lattice, the effect of impurities,
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the presence of dislocations, the kinetics of phase transitions, etc. The contin-
ual approach (solving the equations of continuum mechanics) includes the
parabolic and hyperbolic heat equation, the two-temperature model of heat
conduction, the two-temperature hydrodynamic model, etc. [2].

The molecular dynamics (MD) method [4] can be used to describe the
dynamics of fast processes that arise in a substance under the action of a laser
pulse. MD is quite effective for microscopic analysis of the mechanisms of
melting and evaporation [5], [6]. The appearance and propagation of pressure
waves generated by laser radiation [7], [8], as well as the dynamics of laser
ablation [9], are well modeled using the MD.

Each approach has its own problems. When studying transport processes
within the framework of a parabolic equation, a problem that arises is the
infinitely high speed of thermal perturbation propagation (a consequence of the
Fourier law). Generalizing the Fourier law, taking into account the relaxation
time of the heat flux, we obtain the hyperbolic equation of heat conduction.
The relaxation time is a characteristic of nonequilibrium of the heat conduction
process. Under exposure to femtosecond pulses, non-equilibrium heating of
the material occurs. Therefore, the study of such processes may turn out to
be more adequate using the hyperbolic heat equation.

In this work, we carried out a numerical study of the physical processes
arising under the action of femtosecond laser pulses within the framework of
the parabolic and hyperbolic equations of heat conduction and carried out
a comparative analysis of the results obtained.

2. Setting of the problem

When simulating thermal processes arising in materials under the action of
femtosecond laser pulses, we use a hyperbolic model of the heat conduction
equation:

oT 0T 0*T 0A(x,t)
Cp(@t +Trat2) —)\8$2 + A(z,t) + 7, 5 (1)

Here ¢, p, A\ are the specific heat capacity, density, and heat conductivity of
the sample material, respectively. T'(x,t) is the sample temperature, A(z,t)
is the source function, which determines the heat release power density at
the point with the coordinate = at the time moment ¢, 7, is the characteristic
time of energy flux relaxation.

The second term in the left-hand side of equation (1) reflects the fact that
the thermal process is actually hyperbolic rather than parabolic, and this
model of heat conduction is widely used in practice [1], [10]-[12].

The relaxation time 7, of the heat flux is related to the velocity of heat

propagation by the formula v = \/A/cpr,. If v — oo (i.e., 7, — 0), then
we get an equation of the parabolic type. The term 7,0A4/0t means that
the temperature T is affected by not only the power density of its sources,
but also by the rate of its change. For metals [12] 7, = 107! s; for steel
v = 1800 m/s, for aluminum v = 2830 m/s, for amorphous bodies like glass

and polymers the relaxation time attains 10~7 — 107° s; in this case v can
exceed the velocity of sound propagation v, in these media.



1. V. Amirkhanov et al., Numerical simulation of thermal processes ... 7

In general, the heat capacity, thermal conductivity, and material density
depend on temperature. In this work, the temperature dependence of the
parameters of the sample material is disregarded.

Equation (1) is solved with the following initial and boundary conditions:

T(':E7 0) = TO? T(xmax7 t) = TO’
0T (x,t) B OT (x,t)

ot |7 e | T

(2)

The source function is chosen in the factorized form

Az, t) = Iy[1 = R(T,))f1 () fo(t), T, =T(0,1).

Here f,(x), f5(t) are the spatial and temporal shape of the source, respec-
tively, I, is the source intensity, R(7T) is the coefficient of reflection of the

laser pulse from the material surface.
In the present work, f;(z) u fy(t) are chosen the same as in Ref. [13]:

i) = S,

p

folt) = \/% (exp {—%} +exp {—%D .

Here L, is the depth of penetration of laser radiation into the substance,
ty is the time moment when the first pulse of the source takes the maximum
value, 7, is the time shift of the second pulse of the source with respect to
the first pulse. The radiation dose is

b=, / (0t =210,
0

When numerically solving equation (1) with initial and boundary condi-
tions (2), it is convenient to replace the dimensional variables and quantities
with their dimensionless counterparts. This is carried out as follows:

T—T' ,_xif_t_ ,_Ut.E_to_ _)\At.
T, T A A TPTAY 0T AP 0T cpAg?
T o Alxt)At
TT—E, A(z,t) = enTy ,
or _ 0T o2 . 0A(zt
E_FTTTQ k08—2+A(x?t>+Tr ((r% )7 (3)
_ (T (0.1 _ _
T(e,0) =1, ZEO_o 0D o0z Ho1 @
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The dimensionless source function and the normalization conditions in this

case take the form o _ o
A@at) = Aof1(j)f2(t)a
L1 - R(T,))At -

ag= BRI @) = e(0), o= aw/r,
g (E—1,)? (F—1,— 7)) ]
f2(t) = E (exp [—Tﬁ} + exp [—2(;_# , o = QIOAtO't.

3. Discussion of numerical results

Numerical experiments were carried out for aluminum irradiated by the
double-pulse laser with the following parameters:

J

w kg
A =236 T p = 2700 el =920 — e

=3-100"m, T,=300K, R(T,) =0,

J
®=4-10° =, o0,=5-10""s t,=3-10""s
m
Arx=3-10%m, At=10"15s

The total dose ® = 4-10° .J/m? for the specified source corresponds to the

intensity I, ~ 1.5957 - 1017 W /m?2. Dimensionless constants k,, 4, «, t,, 0;
take the following values:

ko =~ 0.10556; A, ~ 8404.34137; a=1; t,=0.3; o, =0.05.

Below

7(6) = () + 7,220

describes the time dependence of the source. For 7, = 0, we get the source
for a parabolic equation.

Equation (3) with the initial and boundary conditions (4) was solved using
a finite-difference three-layer explicit scheme.

Figures 1 and 3 show the time dependence of the source function, tempera-
ture profiles at different times and the dynamics of the sample temperature
at different depths. The times ¢, ¢ = 1,2, ..., 10 are selected in such a way
that the first five of them correspond to the action times of the source first
pulse, and the rest correspond to the action times of the second pulse. The
calculations were carried out until the moment the source was turned off at
different times of the delay between the pulses 7.

Figures 2 and 4 show the temperature profiles at long times, when the
sources are turned off, i.e., f(t) = 0.
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Figure 1. Time dependence of function f(t) = fo(¢t) + 7,.0f5(¢)/0t, temperature profiles at
different time moments T'(x,t;), j = 1,2,...,10, t; = 0.25 ps, t, = 0.3 ps,
t3 = 0.35 ps,t, = 0.45 ps, t5 = 0.55 ps, tg = 0.65 ps, t, = 0.7 ps, tg = 0.75 ps,
tg = 0.85 ps, t;5 = 1 ps, and dynamics of sample temperature at different depths
(T(x;,t),3=1,2,3, x; =0 nm, x5 = 3 nm, 3 = 6 nm), obtained in the framework of
the hyperbolic heat conduction equation for different values of the parameter 7,.
(r,,=0ps, 0.1 ps, 10 ps) u 7, = 0.4 ps
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Figure 2. Temperature profiles at different time moments T'(x,t;), j =1,2,...,5, t; = j ps
and the sample temperature dynamics at different depths (T'(z,;,t), ¢ = 1,2,3, ; = 0 nm,
Ty = 3 nm, x5 = 6 nm), obtained in the frameworks of the hyperbolic heat conduction
equation at different values of parameter 7,. (7,. =0 ps, 0.1 ps, 10 ps) and 7, = 0.4 ps
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Figure 3. Time dependence of function f(t) = f5(t) + 7,.0 f5(t)/0t, temperature profiles at
different time moments T'(x,t,), j = 1,2,...,10, t; = 0.25 ps, t5 = 0.3 ps,
ts = 0.35 ps,ty, = 0.45 ps, t5 = 0.65 ps, tg = 0.75 ps, t, = 0.85 ps, tg = 0.9 ps,
tg =0.95 ps, t;5 = 1.05 ps, and the dynamics of sample temperature at different depths
(T(xz,;,t),3=1,2,3, x; =0 nm, x, = 3 nm, x5 = 6 nm), obtained in the frameworks of
hyperbolic heat conduction equation at different values of parameter 7,
(r.,=0ps, 0.1 ps, 10 ps) and 7, = 0.6 ps
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Figure 4. Temperature profiles at different time moments T'(x,t;), j = 1,2,...,5, t; = j ps
and sample temperature dynamics at different depths (T'(x,,t), ¢ = 1,2,3, ; = 0 nm,
Ty =3 nm, x5 = 6 nm), obtained in the frameworks of the hyperbolic heat conduction
equation at different values of parameter 7,. (7,. = 0 ps, 0.1 ps, 10 ps) and 7, = 6 ps
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4. Conclusion

In contrast to the parabolic equation, the hyperbolic one includes an addi-
tional parameter that characterizes the heat flux relaxation time. A derivative
of the power density of the source of the parabolic equation is additionally
present in the source of the hyperbolic equation. This fact means that the
sample temperature is affected not only by the source power density, but also
by the rate of its variation. Due to this dependence, at some time moments
the source takes negative values depending on the relaxation time parameter.
Nevertheless, the temperature at the sample surface given by the solution
of the hyperbolic equation is higher than that given by the solution of the
parabolic equation.
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YucaenHoe Mojie/IMpOBaHNE TEMJIOBBIX ITPOIIECCOB,
BO3HUKAIOIINX B MaTepuaJiax MIpHU BO3AeUCTBUU
deMTOoCEKYHIHBIX JIAa3€ePHBIX UMITYJIBCOB

. B. AmupxanoB, H. P. Capkep, . Capxagos

Jlabopamopus uHBOPMAUUOHHBLT METHON02UT]
ObsedurenHvill UHRCMUMYM A0EPHLIT UCCAEI08aHUTL
ya. Koavo-Kropu, 0. 6, Hyona, Mockosckas obracmo, 141980, Poccus

B pabore nmpoBejieHO YMCIEHHOE UCC/IEIOBAHUE PEITeHUH TapaboInIecKOro u I'u-
IepOOJIMIECKOT0 YPABHEHUNM TEIJIONPOBOJIHOCTYA IMPU OAWHAKOBBIX (PU3UIECKUX
mapaMeTpax, a TaK»Ke CPaBHUTEIbHBII aHAJIN3 TIOJy9eHHbIX pe3yabTaroB. O0CyxKIeHa
MaTeMaTUIeCcKas OCTAHOBKA 3ajaun. [lelicTBue a3epa yuITeHo depe3 PyHKIMIO UC-
TOYHHUKA, KOTOPYO BBIOPAJIH B BUJIE JBOWHOTO (DEMTOCEKYHIHOTO JIA3EPHOI'O UMITYJIBCA.
B rumepboamdeckoM ypaBHEHWM, B OTJIUYIHE OT MapabOJIMIecKOro, TPUCYTCTBYET JI0-
[TOJTHUTEJIBHBIN [TapaMeTp, KOTOPBI XapaKTepu3yeT BPeMsl PEJIAKCAIINU TOTOKA, TEILIA.
KpOMe 9TOI'0, B UCTOYHUKE FI/IHep6O.HI/ILIeCKOI‘O YpaBHEHUA IPUCYTCTBYET JJOIIOJIHUTE/Ib-
HOE CJIATAeMOe — MMPOU3BOIHAS OT TIOTHOCTH MOIITHOCTH UCTOYHUKA TTAPADOTIIECKOTO
yPaBHEHHUS. JTO O3HAYAET, UTO HA TEMIIEPATYPY 00pa3la OKA3BbIBACT BJIUSHUE HE
TOJIBKO TIJIOTHOCTH MOIIHOCTY UCTOYHUKA, HO U CKOPOCTHU ero m3meHenus . [IpuBeme-
HBbI TPOMUIM TEMIIEpaTyPbl 00pa3Iia B pa3Hble MOMEHTHI BPEMEHHU U €€ JIUHAMUKA
Ha Pa3HbIX TUIYOMHAX MUIIEHU. PACU6ThI TPOBOIUINCEH TIPU PA3IUIHBIX BPEMEHAX
3a/IEP>KKNA MEXK]Iy UMITYJIbCAMU U TIPU PA3JIUIHBIX [TAPAMETPAX PEJIAKCAIHN.

KiroueBbie ciioBa: mapabouvieckoe U TUepOOIuIecKoe ypPaBHEHUS TEILIONPO-
BOIHOCTH, (DEMTOCEKYHIHBIN JIA3€PHBIA WMIIYJILC, YUCJICHHOE MOICIUPOBAHUE



