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We have developed an efficient computational scheme for integration of the classical
Hamilton equations describing the ion dynamics confined in the radio-frequency
field of the Paul trap. It has permitted a quantitative treatment of cold atom-ion
resonant collisions in hybrid atom-ion traps with taking into account unremovable
ion micromotion caused by the radio-frequency fields (V.S. Melezhik et. al., Phys.
Rev. A100, 063406 (2019)).

The important element of the hybrid atom-ion systems is the electromagnetic Paul
trap confining the charged ion. The oscillating motion of the confined ion is defined
by two frequencies of the Paul trap. It is the frequency of the order of 100 kHz due
to the constant electric field and the radio-frequency of about 1-2 MHz defined by
the alternating electromagnetic field of the ion trap. The necessity to accurately
treat the ion motion in the combined field with two time scales defined by these two
very different frequencies has demanded to develop the stable computational scheme
for integration of the classical Hamilton equations for the ion motion. Moreover, the
scheme must be stable on rather long time-interval of the ion collision with the cold
atom ~ 10 x 27 /w, defined by the atomic trap frequency w, ~ 10kHz and in the
moment of the atom-ion collision when the Hamilton equations are strongly coupled.
The developed numerical method takes into account all these features of the problem
and makes it possible to integrate the system of coupled quantum-semiclassical
equations with the necessary accuracy and quantitatively describes the processes of
atomic-ion collisions in hybrid traps, including resonance effects.
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1. Introduction

In the last decade, there has been great interest in ultracold hybrid atomic-
ion systems, which is due to the new opportunities that arise here for quantum
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simulation of various processes and effects from solid state physics to high-
energy physics: electron-phonon coupling in solid state physics, critical
phenomena in high-energy physics, quantum information processing etc. [1].
However, a realization of the hot proposals with cold atom and ions is impeded
by the unremovable ion micromotion caused by the radio-frequency fields of
the Paul traps used for confining ions in the hybrid confined atom-ion sys-
tems [1]. In the recent work [2| a quantum-semiclassical computational scheme
for treating the collisional atom-ion dynamics in the confined geometry of the
hybrid atom-ion traps was suggested where the ion micromotion caused by
the radio-frequency fields of the ion trap was taken into account. In this work
the following problem was considered: an ion confined in a time-dependent
radio-frequency Paul trap with linear geometry, while the atom is constrained
to move into a quasi-one-dimensional waveguide within the ion trap. In this
approach the atom-ion dynamics was treated semiclassically, namely the atom
dynamics is governed by the time-dependent Schrédinger equation, whereas
the ion motion is described by the classical Hamilton equations of motion.
Both equations were integrated simultaneously.

The quantum-semiclassical computational method [3]-[6] specifically de-
signed for particle collisions such as the problem of ionisation of the helium
ion colliding with protons [5] and antiprotons [6] has been employed and
extended to the time-dependent domain, as the radio-frequency ionic confine-
ment by the Paul trap requires. It has demanded to develop a new stable
computational scheme for integration the classical Hamilton equations for
the ion motion. Here, we describe the scheme and demonstrate its efficiency
by using as an example of the specific Li/Yb™ atom-ion pair, since it is the
most promising atomic pair to reach the s-wave regime in Paul traps and it is
currently under intense experimental investigations [7]-[9].

2. Method

A schematic view of the system under investigation is given in Figure 1.
The ion is assumed to be confined in a linear Paul trap, whose electric fields
read as [10]:
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Here, m, is the ion mass, €); is the radio-frequency (rf), w; = Q1/a/2 is the
secular frequency, ¢ and a are dimensionless geometric parameters (i.e. ¢, = 0,
qQy=-9; =¢ —a,/2=a, =a,=a,and a K q*> < 1). We assume that the
axis of the waveguide in which is travelling the colliding atom is precisely the
z-axis of the Paul trap (see Figure 1). The corresponding ion-trap interaction
potential is given by
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Figure 1. Pictorial illustration of the atom-ion system confined in hybrid trap. The light-
and dark-grey electrodes (the big bars in the figure) of the Paul trap generate
the time-dependent electric fields needed to confine the ion transversally, whereas
longitudinally a static voltage is applied to ensure confinement (not shown). The atom is
injected from the right to the left into a waveguide, whose centre hosts the ion.
The waveguide is orientated along the longitudinal axis, z, of the linear Paul trap.
In the transverse directions, x, y, the confining potential both for the atom and the ion is
strong

Hence, the classical Hamiltonian describing an ion in a Paul trap is given by
2

2m

Hitrap(pi?ri,t) = + U<ri7t>‘ (3)

7

When the atom is confined in the optical waveguide within the Paul trap,
the ion experiences its presence via the atom-ion interaction V,(|r, —r,(t)|),
where r, defines the atom coordinates. The full classical ion Hamiltonian is
therefore given by

Hi(pia ri7t; ra) = H;rap<pi7ria t) + <Vai(|ra - rz<t>|>>7 (4)

where

(Vai(lrg =i (0)])) = (W(rg, t;1,)[Voi(Irg — (D)W (r,, ,))  (5)

is the quantum mechanical average of the atom-ion interaction over the
atomic density instantaneous distribution. We see that the ion Hamiltonian
has parametric dependence on the atom position r,. It leads at the moment of
the atom-ion collision to the strong non-separability of the Hamilton equations

d 0
Epi - _EHi(pivri?ta I‘a),
J 9 (6)
r, = ~—H,;(p;,r;,t;r,)

dt ' dp,
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describing the ion dynamics and, as a consequence, to the requirement of
sufficient stability of the computational scheme to this strong perturbation.

The set of classical equations (6) together with the Schrédinger equation
for the atomic wave function ¥(r,,t,r,) form the complete set of dynamical
equations for describing the confined atom-ion collision in hybrid traps [2].
In order to integrate simultaneously the equations we need proper initial
conditions with physical significance. At the beginning of the collisional
process, the atom and the ion are assumed to be far away from each other
such that they do not interact (V,; = 0). In particular, the atom is initially in
the ground state of the atomic trap with the longitudinal colliding energy, that
is, B < 2fiwg, whereas the ion performs fast (with respect to atom motion)
oscillations in the Paul trap with mean transversal £, and longitudinal EH

energies. Since the atom approaches the region of interaction with the ion
very slowly (E,;/h < wy < w;, ), the initial position of the ion does not

influence the scattering process itself, which depends only on E, and EH'
Specifically, the classical solution of the ion equations of motion (Mathieu
equation) in the Paul trap (without the atom) are well approximated by
A cos(w;t + ¢;)[1 4 q; cos(Qut) /2], ¥V j = x,y, z [11].

The associated kinetic energy depends on the amplitude A, but not on the
phase ¢;. Therefore, we choose, without loss of generality, the ion position

at the initial time ¢ = 0 in the trap centre with transversal energy, E |, and
longitudinal energy, Ej. This can be summarised with the following set of

initial conditions:
rz(t = 0) = (07070>7
pi,x(t =0)=+2m;E,,

Piy(t =0) =0, )

pi(t=0) =/2m;E.

These initial conditions set the mean values of the ion transversal and longitu-
dinal energies as £, = 1.64E | (calculated numerically for our trap parameters
Q¢ = 2 x 2MHz, w; = 27 X 63kHz, a = 0.002 and ¢ = 0.08) and E} = E; /2,
which is in qualitative agreement with the estimate

0\
1+ (= ~1.3E
+(2%)] 3, )

from the first-order solution of the Mathieu equation [11], [12].

For the integration of the Hamilton equations of motion, which involve
three considerably different scales of frequencies, namely €2, w; as well as wy
in the quantum mechanical average (¥(r,,t;r;)|V,,;(|t, —r;(0)])|V(r,, t;1;)),
we employed the second-order Stérmer— Verlet method [13].

_ E
Bi=

Simultaneously to the forward in time propagation t, — ¢, ; =t, + At of
the atom wave-packet W,(r,,t,) — W;(r,,t, ;) we integrate the Hamilton
equations (6) with the initial conditions (7), which describe the dynamics of
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the ion in the Paul trap. To this end, we have adapted the Stérmer—Verlet
method [13] to our problem

i P T o

n n At 6 n n 6 n n
el B g2 ) g ol +1>)}, (9)
(n+1) _ _(nt1/2) At 0 17 (o) D)
b; =DP; 9 or (P Iy ).

(n+1/2) _ _(n) ﬁiH (p" Y2 )y,

K3

. . At n
pg ) =P, (tn) ) PE +/2) =DP; (t” + 7) ’ pf(i ) =Py (tn + At) )

(n)

and the same definition for r,

3. Numerical Example

The computational scheme (9) was successfully applied for numerical inte-
gration of the system of differential equations (6) with the initial conditions (7)
for the Li/Yb™ atom-ion systems confined in the hybrid traps with three abso-
lutely different time-scales t,; = 27/Q; < t;, = 27 /w; <K ty = 27 /w, defined
by the frequencies of Paul trap (2,; = 27 x 2 MHz and w; = 27 x 63 kHz) and
atomic waveguide (w, = 2w x 10kHz). These three time-scales define the de-
mand to the computational scheme. The scheme must be stable in rather
long time-interval (time of atom-ion collision) ~ 10¢, = 10 x 27 /w, and, from
the other side, it must accurately treats the fast oscillations defined by the
frequency (2 of the rf-field.

In Figure 2 we present the calculated trajectory of the ion in the Paul trap
(X, variable) when there is no interaction with the atom: V;, = 0. Here, the
convergence over the step of integration on time At — 0 is demonstrated as
well as the stability of the computational scheme over the entire integration
interval 0 < ¢t < 10¢,. The efficiency of the computational scheme was
confirmed by the calculation of the scattering parameters in the atom-ion
resonant collisions confined in hybrid traps [2] and can be applied for other
resonant low-dimensional atomic and atom-ion systems.
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Figure 2. The calculated evolution in time of the ion trajectory (X, (t)-variable), being
initially at the state with £, /kp = E|/kg = 4.25uK. The time scale is defined by the
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frequency ty, = 27 /w, of the atomic waveguide-like trap (wg, = 27 x 10kHz)
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DddeKTuBHAA BBIYUCIUTEJIbHAsA cXeMa JJisl OIMCAHUS
ANHAMHUKUA MOHA B PAANOYACTOTHOM II0OJI€ JIOBYHIKU
Iaymns

B. C. Menexuk!?

L O6sedunénnpiti uncmumym sadeprox uccaedosanud
ya. Koavwo Kropu, 0. 6, 2. dyora, Mockosckasn obaacmo, 141980, Poccus
2 Iocydapemesennmdi yrusepcumem «/Jy6ray
ya. Ynueepcumemckas, 0. 19, e. Jybna, Mockosckasn obaacmo, 141980, Poccus

B crarne pazpaborana addekTuBHAST BEITUCTUTEIbHAI CXEMA JIJI MHTETPUPOBAHUS
KJIACCUYECKNX ypaBHEHUH ['aMuIbTOHA, ONUCHIBAIONINX JUHAMUKY MOHOB ILJIEHEHHBIX
pajimoYacToTHBIM 1ojiemM JioBymiku [aysisi. OHa 1mo3BosHIa ITPOBECTU KOJTUYECTBEHHBIE
PacUEThl PE30HAHCHBIX ATOMHO-UOHHBIX CTOJKHOBEHUN B THOPUIHBIX ATOMHO-UOHHBIX
JIOBYIIKAX C yIETOM HEYCTPAHUMOTO MUKPOIBIMKEHUS MOHOB, BHI3BAHHOI'O PAIN0YaA~
crorabivMu nostsvu (V.S. Melezhik et. al., Phys. Rev. A100, 063406 (2019)).

BazkHbIM 371eMEeHTOM THOPUIHBIX ATOMHO-UOHHBIX CUCTEM SIBJISIETCS JIEKTPOMATHUT-
nag joBytka llayms, yaepkuBaromas 3apskennbiit non. Koyebareapnoe mBuxkenue
TJIEHEHHOTO MOHA OTIPEIEISIETCST IByMsT IacToTaMu JIOBYIKY 1laymsa. 91o gactora mo-
panka 100 xkI'1 n3-3a MOCTOSHHOTO JIEKTPUYECKOTO TOJIsA U paanodacTorsl 1-2 MI'n
OIpE/IeIsIeTCA IePEMEHHBIM JIEKTPOMATrHUTHBIM [TOJIEM MOHHOM JioByIiiku. Heobxo-
JUMOCTHb TOYHOTO ONUCAHUS ABUKEHUS MOHOB B KOMOMHMPOBAHHOM IIOJIE C JIBYMS
BPEMEHHBIMU IITKAJAMU, 33/[ABAEMbIMU JIBYyMs CHJIBHO PA3IUYAIONIUMUCH IACTOTAMMI,
moTpeboBasia pa3pabOTKN yCTOWYUBOW BBIYUCIUTETHLHON CXEMBI /I MHTEIPUPOBAHUS
kaaccuaeckux ypasrennit (lamuibrona) asmzkenust nonoB. Kpome Toro, Tpebyercs
YCTOHYMUBOCTDH CXEMbI Ha JIOCTATOYHO OOJILIIIOM MHTEPBAJIE BPEMEHU CTOJKHOBEHUS
HOHA C XOJIOJHBIM aToMoM ~ 10 X 27 /w,, OlpejesieMOM YacTOTON ATOMHOM JIOBYIII-
Ku w, ~ 10 k['1, ¥ B caM MOMEHT CTOJIKHOBEHUSI ATOM& C MOHOM IIPH CHJILHOM CBS3M
ypasuenuit ['amuibrona. PazpaboTraHublil YuC/I€HHBIN METO YINTHIBAET BCE OTMe-
YeHHBIE OCOOCHHOCTH 33/Ia9U U ITO3BOJIAET ¢ HEOOXOIMMON TOYHOCTHIO HHTEIPUPOBATH
CUCTEMY CBS3aHHBIX KBAHTOBO-KBA3WKJIACCUYECKUX YPABHEHUN U KOJIMIECTBEHHO OITU-
CHIBATDL IIPOIECCHI ATOMHO-UOHHBIX CTOJIKHOBEHUI B TMOPUIHDLIX JIOBYIIIKAX, BKJIIOYAs
pe3onancubie 3pDHEKTHI.

KnaroueBbie cioBa: XOJIOAHbIE aTOMbI M1 MOHBI, JIOBYIIKAQ HaYJIH, PaanoO9aCcTOTHOE
IoJie, KJIaCCUIECKUE YPpaBHEHU A FaMI/IJIbTOHa7 BbIYHCJINTEJ/IbHad CXeMa





