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Pair-copula constructions have proven to be a useful tool in statistical modeling,
particularly in the field of finance. The copula-based approach can be used to choose
a model that describes the dependence structure and marginal behaviour of the data
in efficient way, but is usually applied to pairs of securities. In contrast, vine copulas
provide greater flexibility and permit the modeling of complex dependency patterns
using the rich variety of bivariate copulas which may be arranged and analysed in
a tree structure. However, the number of possible configurations of a vine copula
grows exponentially as the number of variables increases, making model selection
a major challenge in development. So, to learn the best possible model, one has to
identify the best possible structure, which necessitates identifying the connections
between the variables and selecting between the multiple bivariate copulas for each
pair in the structure.

This paper features the use of regular vine copulas in analysis of the co-dependencies
of four major Russian Stock Market securities such as Gazprom, Sberbank, Rosneft
and FGC UES, represented by the RTS index. For these stocks the D-vine structures
of bivariate copulas were constructed, which models are described by Gumbel, Student,
BBland BB7 copulas, and estimates of their parameters were obtained. Computer
simulations showed a high accuracy of the approximation of the explored data by
D-vine structure of bivariate copulas and the effectiveness of our approach in general.

Key words and phrases: copula, multivariate models, dependence structure, vines,
securities

1. Introduction

In the field of financial analysis, finding new useful models and improving
the existing ones is a constant struggle. Finding an appropriate multivariate
model that efficiently describes the dependence structure as well as marginal
behavior of the data being analyzed can be a very challenging task, especially
in the case of higher dimensions. The approach that relies on copulas tends
to outperform other methods when it comes to financial analysis, for example
modeling financial returns.
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Usually the Student n-dimensional copula is a good choice for financial
data of various kinds [1], and as such deserves special attention. Of course,
generally speaking, thorough analysis is needed for the best results — especially
if the data being analysed has different behaviour in the tails, in which case
the Student copula might not capture the dependence structure very well.

We will be discussing pairwise model into bivariate copulas as laid out by
Aas |2]. This approach will let us easily track the parameters relevant to
the tail dependence. In order to find the most appropriate approach for our
specific case, we will rely on the detailed comparison and overview of different
approaches by Berg [3].

The relatively recent concept of vines, introduced by T. Bedford and R.
M. Cooke [4], is very relevant to pairwise decomposition of multivariate
distributions. Vines essentially a subclass of trees that can be used to
efficiently represent a pairwise decomposition. We will focus primarily on
D-vines and canonical vines [5], [6]. Our main source for the elements of
copula theory is R. B. Nelsen, H. Joe [7]-]9].

2. Basics of copula theory

Deflnition (pair-copula)

A pair-copula or simply copula is a function C : [0,1]? — [0, 1] that satisfies
the following properties:

For any u, v € [0,1]

1) C(u,0) = C(0,v) = 0;

2) C(u,1) =u, C(1,v) = 1.

For any wu,,uy,vy,v5 € [0,1] such that u; < uy and v; < vy

3) Clug,vy) — Clug, vy) — Clug,v1) + Clug, vy) 2 0.

One of the most important theorems of copula theory is Sklar’s Theorem.
In terms of probability theory, it states that any joint distribution function
can be can be written in terms of marginal (univariate) distribution functions
and a copula function that can describe the dependence structure between
the random variables.

Sklar’s Theorem.

Let X and Y be random variables with distribution functions F' and G,
respectively, and let H be their joint distibution function. Then there exists
a copula C : [0,1]?> — [0, 1] such that for any z,y € R the following equation
is true:

H(z,y) = C(F(z),G(y)). (1)
If Fand G are continuous, then C'is unique. If not, then C'is unique only
on RanFxRanG (here RanF is the range of F'and RanG is the range of G).
Conversely, if C'is a copula and F'and G are distribution functions of X and
Y, respectively, then H, defined by (1), is a joint distribution function for the
random variables X and Y, and F'and G are marginal distribution functions
for X and Y, respectively.
It is not hard to describe the n-dimensional case, as well. But first, we have
to define the notions of n-Box and the H-volume of an n-Box and discuss
notation.
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Let us use the following notation:
a=(a,,ay,..,a,) ER', b=(b,by,..,0,) €R",
a < b means a;, < b, for all £ from 1 to n.
When a < b we will use the following notation:
[a,b] = [a,by] X [ag,bs] X ... X [a,,,],,].

n»-n

The construction above is called the n-box. The vectors of the type
¢ = (¢q,¢y,...,¢,) where ¢, equals a; or b, for all k are called the vertices of
the n-box.

The notion of the C-volume of the n-box, V]a,b] . is discussed in [10], [11].

Definition (n-copula)

An n-copula is a function C' : [0,1]™ — [0, 1] that satisfies the following
properties:

For any u = (uq, ug, ..., u,) in [0, 1]

1) C(u) =0 if any u;, = 0.

2) C(u) = uy, if all the coordinates except u,, are equal to 0.

For any a,b € [0,1]™ such that a <b

3) Vcla,b] 2 0.

The n-dimensional version of Sklar’s theorem is discussed in Nelsen [7], and
conditional copulas are discussed in Patton [12].

3. Decomposition of a multivariate distribution
function using pair-copula constructions

The general product rule (also called the chain rule of probability) allows
us to decompose a multivariate density function in the following, non-unique
way:

fi2.m = f1f2|1f3\12"'fn|12...n71' (2)

If we assume that F'is strictly continuous and use the definition of a copula
and Sklar’s Theorem, we get

Ji2.n = Cranf1fo - [o- (3)

To get to the pair-copula decomposition we will also have to use the useful
factorizations of this type:

f2|1 = % = ¢12.fs- (4)
1
_ fi23 _ J1fasn _ faan _ fop f31Ca3n
J12 fapfa fon fon

Now let’s apply (2), (3), (4) and (5) to a 3-dimensional density function to
get a pair-copula decomposition:

f3|12

= 023\1f3|1 = 023|1C13f3- (5)
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3
fi23 = fifop fajn2 = ficiafocaspciafs = c1aC13Ca3 H fi- (6)
i=1

If we pick another conditioning variable we get another decomposition, for
example

3
fi23 = f1f2\1f3|12 = f1C12f2013|2023f3 = C12€13)2€23 H fi- (7)
i=1

The number of possible pair-copula decompositions for a 3-variable density
function is 24 [13|, [14] and this number rises rapidly with the number of
dimensions, which makes it very complicated to find the decomposition that
best preserves the known information about the dependence structure. The
concept of vines is very useful in this regard.

4. The concept of vines

Vines are a concept first introduced by Bedford and Cooke [4]. A vine is
a sequence of trees {T}} in which the edges of T; are the nodes of T}, ;. Each
vine is a representation of a particular way of decomposing a multivariate
distribution. The two kinds of common vines that we will use in our work
are canonical vines and D-vines. Different types of vines represent different
types of dependency structures. A canonical vine corresponds to the case
where one “main” variable “interacts” with all the others, while in the case
of a D-vine there is no such “main” variable. This idea is represented in the
illustrations provided in Figures 1 and 2.
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Figure 1. C-vine Figure 2. D-vine

The following general formulas give us the expressions for the decomposition
of an n-dimensional density function using the D-vine and the canonical vine:

n n—1n—j

D-vine: f5 ,, = J H H Ci it jlit1,... i+j—1" (8)
1

j=1i=1
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n—1n—j

Canonical vine: f, ,, = H fi H H Cj it 1ot 9)

k=1 ]12

Each edge in each of the trees corresponds to a pair-copula, the density of
which is used as one of the multipliers of the pair-copula construction, as we
can see in (8) and (9). The first tree, 77, should be constructed in a way that
best represents the supposed dependence structure of the variables.

Alternative constructions may involve using the copula parameter estima-
tions to get insight into the dependence structure — for example, we could
assign a Student-t topula to all the pairs and, knowing that a low number of
df indicates strong dependence, could construct a tree that represents that
dependence structure.

Algorithm 1. Sequential algorithm

Input: Data (z;,...,2;,,  =1,..., N (realization of i.i.d. random vectors).
Output: R-vine copula specification, i.e., V, B.

1: Calculate the empirical Kendall’s tau ?j’ i, for all possible vari-
able pairs {j,k}, 1 < j <k < n.

2: Select the spanning tree that maximizes the sum of absolute
empirical Kendall’s taus, i.e.,

max Z H?jk”

e={J,k}in spanning tree

3: For each edge {j,k} in the selected spanning tree, select
a copula and estimate the corresponding parameter(s). Then

transform F‘k(xl]kclk) and Fkb(xlkkclj) I =1,...,N, using

the fitted copula C’ (see (2)).

4: fori=2,...,n—1 do {Iteration over the trees}

5: Calculate the empirical Kendall’s tau 7, for all
conditional variable pairs {j, k|D} that can be part
of tree T, i.e. all edges fulfilling the proximity
condition (see Definition 2.1).

6: Among these edges, select the spanning tree that

maximizes the sum of absolute empirical Kendall’s
taus, i.e.,

max Z \7;.k1Dl-
e={j,k|D}in spanning tree
7 For each edge {j,k|D} in the selected spanning
tree, select a conditional copula and estimate
the corresponding parameter(s). Then transform
Fj|kUD(mlj‘$lkaXlD) and FJ‘EUD(%H%]’:XZD)’ = L. ’N’
using the fitted copula Cy, 4 (see (2)).
8: end for
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5. Numerical experiment: choosing the right vine
structure

We will now apply the theory and methods discussed above to the analysis,
modeling and visualization of the returns of four major Russian companies.
Our data-set consists of the log-returns of Gazprom, Sberbank, Rosneft and
FGC UES from 06.06.2014 to 06.06.2018.

We will use the VineCopula package for the R programming language for
most of our computational needs [15].

Our main goal is to build a model that best represents core features of
our data’s dependency structure. We will use the sequential method [13]
with Akaike’s criterion [11], [16]-[18] (to determinine the most appropriate
copula families) and one of the versions of Prim’s algorithm (to determine
maximum spanning trees [19], [20]) to ultimately determine and specify the
most appropriate vine structure. We have provided the results below.

Figure 3 illustrates the D-vine structure of our model.
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Figure 3. D-vine structure of our model

We also need to verify our model. The verification process involves drawing
observations from the vine and comparing the empirical values of Spearman’s
Rho and some of the plots for the original observations and the sampled
observations. In other words, we must observe how well the dependence
structure was preserved.

For the sake of brevity, let us denote Rosneft by R, Gazprom by G, FGC
UES by F and Sberbank by S.

Using AIC and MLE we have determined that:

cgr is a rotated BB1 copula with 6 = 0.1980236 and § = 1.421392.

cgq is a rotated BB7 copula with 6 = 1.920555 and ¢ = 0.7580773.

car is a rotated BB7 copula with 6 = 2.025809 and § = 0.9424809.
CGRrls 1s a rotated Gumbel copula with 6 = 1.2104850.

Csp|c 18 a t-copula with p = 0.3746501 and v = 6.7874375.

cprjse 1s a rotated BB8 copula with § = 1.4269045 and 0 = 0.8675492.
The D-vine tree structure for our model is presented on Fig. 4-6. Corre-

sponding graphs of bivariate copula density models with estimated parameters
are shown in Fig. 7.

SRl ol
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Gazprom,Rosneft

Figure 4. First tree

Sberbank,

Figure 5. Second tree

FSK,Rosneft;Gazprom,Sberbank

Figure 6. Final tree
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Figure 7. Bivariate copula densities for the vine structure of our model
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We drew 1003 observations from our D-vine — the same number as in
our real-world dataset and calculated Spearman’s rho values, shown below
in Table 2. Judging from Table 2 and the overlaid plots, the modeled
dependencies were captured in a satisfactory way. Graphical comparison of
empirical and simulated data with their scatterplots is presented on Fig. 8.

Table 1 Table 2
Empirical Spearman’s Rho values Empirical Spearman’s Rho values
for the original observations for the observations from sampling
G F R G F R
S|0.64 0.5 0.63 S 106 054 0.65
- 0.49 0.e7 G| - 0.5 0.65
F - 0.49 F - 0.53

Sim(red) vs. Real(black) Sim(red) vs. Real(black)

Sberbank
Rosneft

Gazprom o o Gai;;fnm

Figure 8. Real and simulated data comparison

6. Conclusions

In this paper we have demonstrated the usefulness of the vine copula-
based approach to modeling a real-world dataset with a complex dependence
structure. We have successfully specified a model that captures some of the
essential dependencies that characterize our dataset. In a sense, by focus-
ing, for the sake of brevity, exclusively on C-vines and D-vines and specific
methods of copula selction and parameter estimations, we were forced to ne-
glect other approaches which could provide additional insights. Extensive
functionality provided by the VineCopula package for the R programming
language let us circumvent many computational dificulties, allowing for faster
and more efficient analysis.
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MopgenaunpoBaHue MHOTOMEPHBIX CTPYKTYP
CTATUCTUYECKOIl 3aBUCHUMOCTHU HA POCCHUICKOM (POHIOBOM
PBIHKE

E. FO. lllerunun

Zenapmamenm anasuda 0aHHoIT, NPUHATIUA PEUEHUT U HUHAHCOBDIT TETHOA02UT
Qunancosuiili ynusepcumem npu Ilpasumesvcmee Poccutickoti @edeparuu
Jlenunepadcxuti npocnexm, 0. 49, Mocksa, 125993, Poccus

Monenu komyst sBasioTcs 3PHEKTUBHBIM UHCTPYMEHTOM B CTATUCTAYECKOM MO/IE-
JINPOBAHUU, B YACTHOCTHU B 00J1aCTH (PUHAHCOBOTO aHam3a. [101X01 K MOIeIMpOBAaHIIO
MHOTOMEPHBIX CTPYKTYP C UX HCIOJb30BAHUEM ITO3BOJISET OIUCATH KAK CTPYKTYPY
CTATUCTUIECKON 3aBUCUMOCTH, TaK ¥ MapXKWHAJbHBIE CBOWCTBA JAHHBIX, HO OOBITHO
IOIPpUMCHACTCA K IMapaM IEeHHbIX 6yMaF. Hapﬂ,zgy C 93TUM, MOJEJIN BBIOINXCA KOILYJI
obecrieauBaioT OOJIBIIYIO0 THOKOCTD U MO3BOJISIIOT MOJEIUPOBATE CJIOXKHBIE CTPYKTY-
PBI 3aBUCUMOCTEH, MCIOJIb3ysi OO/IbIoe pa3HOOOpa3ue JIByMEPHBIX KOILYJI, KOTOPbIE
MoryT 6bIT]:> OpPTraHU30BaHbI B IDEBOBUJIHYIO CTPYKTYDPY. O‘ILHaKO YUCJIO BOBMOZKHBIX
KOHGUTYPAIuil BHIOIIUXC KOITYJI PACTET IKCIIOHEHIINAIHHO 110 MEPE YBEJIUYEHUS HC-
Jia IEHHBIX OyMar, 9To jejiaeT BhIOOD MOJeJIn OCHOBHON Hay4HOU mpobiemoii. Takum
00pa3oM, 9TOOBI TOCTPOUTH MOJIEJIb MHOIOMEDPHBIX CTPYKTYD IEHHBIX OyMar, HyKHO
OIIPEeJEeINTh HAWIYUIIYIO BO3MOXKHYIO CTPYKTYPY, KOTOpas TpedyeT BbIABICHUS CB-
3eil MexK/1y €€ IMepeMeHHbIMU, & TaKKe BbIOOPA MEXKJy HECKOJIbKUMU JBYMEPHBIMU
KOITyJIAMU JIJIsi KaXKJI0i Napbl B CTPYKTYPE.

B nannoit pabore npogeMOHCTPUPOBAHO IPUMEHEHUE PETYJIAPHBIX BHIOITUXCS KOITYJT
B (DMHAHCOBOM aHAJM3€ CTATUCTUIECKUX CBA3EH KPYITHEHINX POCCUNCKUX IMEHHDBIX
oymar, takux Kak 'asmpom, Coepbank, Pocuedpts 1 PCK EIC, npencraBieHHbIX
B uugekce PTC. Jljist 9Tux 1eHHbIX OyMar ObLIM MOCTPOeHbI D-vine CTPyKTYphI
MOTIAPHBIX KOITYJI, BKIFOUaromumx Mogesn 'ymbens, CreionenTa, BB1 u BB7, a tak-
2Ke TI0JIyY€eHbl OIEHKN MX HapaMeTpoB. KoMIIbIoTepHOE MOJIeJIMPOBAHUE TTOKA3AJIO
BBICOKYIO TOYHOCTH AITPOKCUMAIIUU MCCJIEyEMbIX JAHHBIX U 3(P(HEKTUBHOCTD IIPE/I-
JIOXKEHHOT'O TIOJIX0/A B IIEJIOM.

Kirouesbie ciioBa: (GDUHAHCOBBII aHAJN3, TIEHHBbIE OyMaru, MHOTOMEPHBIE CTPYKTY-
PBI CTATUCTUYECKNX CBA3€H, KOIYJIbI, BHIOIINECH KOITYJIbI





