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We study the geodesics motion of neutral test particles in the static spherically
symmetric spacetimes of black holes and naked singularities supported by a self-
gravitating real scalar field. The scalar field is supposed to model dark matter
surrounding some strongly gravitating object such as the centre of our Galaxy. The
behaviour of timelike and null geodesics very close to the centre of such a configuration
crucially depends on the type of spacetime. It turns out that a scalar field black
hole, analogously to a Schwarzschild black hole, has the innermost stable circular
orbit and the (unstable) photon sphere, but their radii are always less than the
corresponding ones for the Schwarzschild black hole of the same mass; moreover,
these radii can be arbitrarily small. In contrast, a scalar field naked singularity
has neither the innermost stable circular orbit nor the photon sphere. Instead,
such a configuration has a spherical shell of test particles surrounding its origin and
remaining in quasistatic equilibrium all the time. We also show that the characteristic
properties of null geodesics near the centres of a scalar field naked singularity and
a scalar field black hole of the same mass are qualitatively different.
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1. Introduction

In recent years new astrophysical observations give us convincing evidence
for the presence of strongly gravitating objects in the center of most of normal
galaxies. These objects are commonly identified with supermassive black
holes, but the modern astrophysical data are not quite enough to exclude
other possibilities, such as naked singularities, boson stars, and wormholes.
For example, the shadow in the centre of the galaxy M87 and the real image of
the photon ring around the shadow, observed by the Event Horizon Telescope
collaboration this year, have been immediately interpreted as the existence
of the photon sphere and, consequently, the event horizon [1]. However, it is
shown in Ref. [2] within a simple model that a naked singularity can also have
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both the shadow and the photon sphere. In fact, a natural way to distinguish
between the different types of the gravitating objects is to explore spacetime
geometry through the study (both observationally and theoretically) of the
motion of test particles and light rays near the centres of galaxies [3]–[5].

The observational efficiency directly depends on a model in which the
astrophysical data for the central objects will be interpreted. First, one
should not think of the central objects in galaxies as being in vacuum,
because dark matter is mainly concentrated around them. Another problem
is that the nature of dark matter and its distribution near galactic centres
remain unknown at present. This means that a meaningful interpretation of
the observations should be based on an appropriate mathematical model of
the central regions: we model dark matter by a nonlinear scalar field which
is assumed to be minimally coupled to gravity. Our aim is to compare the
behaviour of timelike and null geodesics for a scalar field black hole and
a scalar field naked singularity of the same mass. For such configurations,
the general properties of timelike geodesics were studied in Refs. [6]–[8]. In
this paper, we focus our attention on the comparison of bound trajectories of
massive test particles and light rays in the immediate vicinity of the centres
of scalar field black holes and scalar field naked singularities.

The paper is organised as follows. In Section 2 we describe the necessary
mathematical background for static, spherically symmetric scalar field config-
urations restricting our attention to the case of the minimal coupling between
curvature and a real scalar field. In Section 3 we discuss general features of
bound and unbound orbits of free neutral massive and massless particles. In
Section 4 we consider a simple example which illustrates some characteristic
features of the photon orbits of scalar field black holes and scalar field naked
singularities in comparing with the orbits of massive test particles.

In this paper, we use the geometrical system of units with 𝐺 = 𝑐 = 1
and adopt the metric signature (+ − − −). In tensor notation, we use the
summation convention over repeated indices, and Greek indices take the
values 0, 1, 2, 3.

2. Self-gravitating spherically symmetric scalar field
configurations

We begin with the action

Σ = 1
8𝜋

∫ (−1
2

𝑅 + ⟨𝑑𝜙, 𝑑𝜙⟩ − 2𝑉 (𝜙)) √|𝑔| 𝑑 4𝑥 ,

where 𝜙 is a real scalar field, 𝑅 is the scalar curvature, 𝑉 (𝜙) is a self-interaction
potential, and the angle brackets denote the scalar product with respect to
the spacetime metric. The metric of a spherically symmetric spacetime in the
Schwarzschild-like coordinates can be written in the form

𝑑𝑠2 = 𝐴𝑑𝑡2 − 𝑑𝑟2

𝑓
− 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2),
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where the metric functions 𝐴 and 𝑓 depend only on the radial coordinate 𝑟.
For the metric function 𝐴, it is convenient to make the substitution

𝐴(𝑟) = 𝑓(𝑟)e2𝐹(𝑟),

so that the Einstein-Klein-Gordon equations take the form

−𝑓 ′

𝑟
− 𝑓 − 1

𝑟2 = 𝜙′2𝑓 + 2𝑉 , (1)

𝑓
𝑟

(2𝐹 ′ + 𝑓 ′

𝑓
) + 𝑓 − 1

𝑟2 = 𝜙′2𝑓 − 2𝑉 , (2)

−𝑓𝜙″ − 𝜙′

2
𝑓 ′ − 𝜙′𝑓 (𝐹 ′ + 1

2
𝑓 ′

𝑓
+ 2

𝑟
) + 𝑑𝑉

𝑑𝜙
= 0 , (3)

where a prime denotes differentiation with respect to 𝑟.
By adding equations (1) and (2), we obtain

𝐹 ′ = 𝑟𝜙′2. (4)

Now we can eliminate 𝐹 ′ from the two other equations and, as a result, solve
those in the form of quadratures [9]–[15]. For our goal, we will employ the
integral formulae obtained in Ref. [13]:
A general static, spherically symmetric, asymptotically flat solution of

equations (1)–(3) with an arbitrary self-interaction potential is given by the
quadratures

𝐹(𝑟) = − ∫
∞

𝑟
𝜙′2𝑟𝑑𝑟 , 𝜉(𝑟) = 𝑟 + ∫

∞

𝑟
(1 − e𝐹) 𝑑𝑟 , (5)

𝐴(𝑟) = 2𝑟2 ∫
∞

𝑟

𝜉 − 3𝑀
𝑟4 e𝐹𝑑𝑟 , 𝑓(𝑟) = e−2𝐹𝐴 , (6)

̃𝑉 (𝑟) = 1
2𝑟2 (1 − 3𝑓 + 𝑟2𝜙′2𝑓 + 2 e−𝐹 𝜉 − 3𝑀

𝑟
) , (7)

where the parameter 𝑀 is the Schwarzschild mass.
It is important to stress that each solution of equations (1)–(3) satisfies these
quadratures independently of the monotonicity of the field function.
In order to use these quadratures, we will work with a specially defined

function 𝜉(𝑟) which must satisfy the asymptotic condition

𝜉 = 𝑟 + 𝑂 (1/𝑟) , 𝑟 → ∞, (8)

and then will sequentially find the metric functions (e𝐹 = 𝜉′), the scalar field
(by integrating (4)), the function ̃𝑉 (𝑟), and the self-interaction potential

𝑉 (𝜙) = ̃𝑉 (𝑟(𝜙)). This method is commonly known as ’the inverse problem
method for self-gravitating scalar field configurations’. It is also important
to stress that we consider the scalar field as a phenomenological model of
dark matter rather than as a really existing fundamental field. Note that
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we could include the cosmological constant in the potential as the additional
term Λ/2, but its contribution to the geometry of the central region would
be negligible. The absence of the cosmological constant simply means that
𝑉 (𝜙(∞)) = 0. Therefore, the so-called ’no-hair theorem’ is not essential in
the current astrophysical context.
Using quadratures (5) and (6), we can write algebraically independent

components of the curvature in the orthonormal basis, associated with the
metric (2), in the form

𝑅0101 = 𝜙′2𝑓 − 𝑓 − 1
𝑟2 , 𝑅2323 = 𝑓 − 1

𝑟2 , (9)

𝑅0202 = 𝑅0303 = − 𝑓
𝑟2 + e−𝐹 𝜉 − 3𝑀

𝑟3 , (10)

𝑅1212 = 𝑅1313 = 𝑓
𝑟2 − 𝜙′2𝑓 − e−𝐹 𝜉 − 3𝑀

𝑟3 . (11)

On the other hand, in spherically symmetric spacetimes, the Kretchmann

invariant, 𝐾 = 𝑅𝛼𝛽𝛾𝛿𝑅𝛼𝛽𝛾𝛿/4, equals the sum of the squared curvature

components and, therefore, diverges if at least one of the curvature components
do. Thus, in this case 𝐾 and the scalar curvature 𝑅 diverge at 𝑟 = 0 for all
solutions with the exception of some specific ones satisfying the conditions

𝜉(𝑟) = 3𝑀 + e𝐹(0)𝑟 + 𝑂 (𝑟3) , 𝑓(0) = 1 + 𝑂 (𝑟2) , 𝑟 → ∞.

In the generally accepted manner, we call a solution a naked singularity (a

black hole) if 𝐾 diverges at 𝑟 = 0 and 𝑓 > 0 for all 𝑟 > 0 (respectively, 𝑓 = 0
at some radius 𝑟ℎ > 0 and 𝑓 > 0 for all 𝑟 > 𝑟ℎ).
For a given nonzero scalar field 𝜙(𝑟), it follows directly from (5) that

𝜉′ = e𝐹 > 0 for all 𝑟 > 0 and 𝜉(0) > 0, so that the metric function 𝐴, given
by the quadrature (6), passes through zero and becomes negative as 𝑟 → 0 if
and only if 3𝑀 > 𝜉(0). In other words, the corresponding configuration of
mass 𝑀 will be a naked singularity or a black hole if and only if

0 < 3𝑀 < 𝜉(0) (naked singularities) or 3𝑀 > 𝜉(0) (black holes),

respectively. In what follows we deal only with ’generic’ configurations and
do not consider the special (fine-tuned) case 3𝑀 = 𝜉(0); the latter leads to
a naked singularity or a regular solution.
The geometrical system of units (𝐺 = 𝑐 = 1) does not fix a unit of length.

On the other hand, the geodesic structure of spacetime is scale invariant
at the classical level, and the solution (6)–(7) is invariant under the scale
transformations

𝑟 → 𝑟/𝜆, 𝑀 → 𝑀/𝜆, 𝑉 → 𝜆2𝑉 , 𝜆 > 0,

so that we can use an arbitrary unit of length. By applying 𝜆 = 𝑀 in this
transformation, we can take, as it is usually done in general relativity, the
mass of a scalar field configuration as the current unit of length. Thus, without
loss of generality, we suppose everywhere below that 𝑀 = 1.
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3. Geodesic motion around scalar field configurations

In all stationary spherically symmetric spacetimes we have the conserved
energy and angular momentum of a test particle. Together with the constancy
condition for the norm of the four-velocity, this implies the existence of three
integrals of motion. For the metric (2) they can be written in the form

𝑑𝑡
𝑑𝑠

= 𝐸
𝐴

, 𝑑𝜑
𝑑𝑠

= 𝐽
𝑟2 , (𝑑𝑟

𝑑𝑠
)

2
= e−2𝐹 (𝐸2 − 𝑉

eff
) , (12)

𝑉
eff

= 𝐴 (𝑘 + 𝐽2

𝑟2 ) , (13)

where 𝑉eff(𝑟) is the effective potential, 𝐸 and 𝐽 are, respectively, the specific
energy and the specific angular momentum of a test particle, and 𝑘 = 0 or
𝑘 = 1 depending on whether we are considering null or timelike geodesics;
for null geodesics, 𝑠 is an arbitrary geodesic parameter, but not the interval.
For any asymptotically flat spacetime and for any value of 𝐽, 𝑉eff → 0 or

𝑉eff → 1 as 𝑟 → ∞ depending on whether 𝑘 = 0 or 𝑘 = 1 , respectively. An-
other difference between null and timelike geodesics which is more interesting
is that the behaviour of a null geodesic effectively depends only on the impact
parameter 𝑏, so that

(𝑑𝑟
𝑑𝑠

)
2

= 𝐸2e−2𝐹 (1 − 𝑏2 𝐴2

𝑟2 ) , 𝑏 = 𝐽
𝐸

, (14)

where the coefficient 𝐸2 on the right hand side can be eliminated by redefining
the parameter: 𝜆 = 𝑠𝐸.
It is shown in Ref. [8] that for a scalar field black hole spacetime, defined

by the quadratures (5)–(7) and the conditions (8) and 3𝑀 > 𝜉(0), the lapse
function 𝐴(𝑟) is a strictly increasing function outside the event horizon. In
contrast, for a naked singularity spacetime, satisfying the conditions (8)
and 3𝑀 < 𝜉(0), 𝐴(𝑟) necessarily has at least one minimum in the region
0 < 𝑟 < ∞. These properties give us a key distinguishing feature for the
two types of scalar field configurations: they cause different behaviours of
bound orbits close to the centre. The various numerical simulations with
scalar field black hole solutions allow us to conclude that the radius of
the corresponding innermost stable circular orbit, which is an important
observational characteristic for black holes, is of order 3𝑟ℎ (analogously to
the vacuum case). On the contrary, a scalar field naked singularity has no
innermost stable circular orbit but has a unique degenerated static orbit,
which has 𝐽 = 0 and is located at 𝑟 = 𝑟0, where 𝑟0 is the unique solution of
the equation 𝐴′(𝑟) = 0. From the point of view of a distant observer resting
relative to the centre, a test particle remains at rest in the static orbit all
time. Particles in such a static orbit, together with particles having zero or
small specific angular momentum and specific energy 𝐸2 ⪆ 𝐴(𝑟0), can make
up a spherical shell consisting of cold gas or fluid. For a distant observer, this
shell would look like a shadow similar to that of a black hole.
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The expressions for trajectories of timelike and null geodesics can be
expressed directly from (12) and (14). They are, respectively,

𝜑 = 𝐽 ∫ e𝐹

𝑟2√𝐸2 − 𝑉eff
𝑑𝑟 and 𝜑 = 𝑏 ∫ e𝐹

𝑟2√1 − 𝑏2𝐴2/𝑟2
𝑑𝑟 .

4. Geodesics: analytic examples

For the sake of brevity and simplicity, we will explore a fully analytic,
one-parameter family of solutions defined by the functions

𝜉 = √𝑟2 + 2𝑎𝑟 + 5𝑎2 − 𝑎, e𝐹 = 𝜉′ = 𝑟 + 𝑎√
𝑟2 + 2𝑎𝑟 + 5𝑎2

, (15)

which uniquely determine the metric function 𝐴(𝑟) and the scalar field 𝜙(𝑟).
By direct integration in (6), we obtain

𝐴 = 1 + 2𝑎
3𝑟

− 2 𝑎 + 3𝑚
15𝑎

{
√

𝑟2 + 2𝑎𝑟 + 5𝑎2

𝑟
(1 + 𝑟

𝑎
− 𝑟2

𝑎2 ) + 𝑟2

𝑎2 } , (16)

where 𝑎 is the parameter of ’intensity’ of the scalar field. Using (9)–(11) we
find that the Kretchmann invariant diverges at the centre. In accordance

with the condition 3𝑀 < 𝜉(0), the inequality 𝑎 > 3/(
√

5 − 1) determines the
subfamily of scalar field naked singularities.
The results of numerical simulation of geodesics are presented in Figures 1–3.
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Figure 1. The left (right) panel shows the effective potentials of massive particles (of

photons): for the scalar field black hole (solid curve) with 𝑎 = 6, 𝑀 = 3, 𝐽 = 7.2 and naked

singularity (dashed curve) with 𝑎 = 6, 𝑀 = 1, 𝐽 = 7.2, and for the Schwarzschild black
hole (dotted curve) with 𝑀 = 3, 𝐽 = 7.2
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Figure 2. The shape of orbits of massive particles. Left panel: the scalar field black hole

with 𝑎 = 5, 𝑀 = 3, 𝐽 = 9, 𝐸2 = 0.948 (solid curve) and the Schwarzschild black hole

(dotted curve) with 𝑀 = 3, 𝐽 = 12, 𝐸2 = 0.9517. Right panel: the scalar field naked
singularities with 𝑎 = 5, 𝑀 = 1 and 𝐽 = 0.5, , 𝐸2 = 0.88 (solid curve) and

𝐽 = 1, 𝐸2 = 0.9011 (dashed curve)
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Figure 3. The shape of orbits of photons. Left panel: the scalar field black hole with

𝑎 = 7, 𝑀 = 3, 𝑏 = 6 (solid curve), the scalar field naked singularity with

𝑎 = 7, 𝑀 = 1, 𝑏 = 6 (dashed curve), and the Schwarzschild black hole (dotted curve) with

𝑀 = 3, 𝑏 = 20. Right panel: analogously to the left panel, but with parameters
𝑎 = 7, 𝑀 = 3, 𝑏 = 2.5 (solid curve), 𝑎 = 7, 𝑀 = 1, 𝑏 = 2 (dashed curve), and

𝑀 = 3, 𝑏 = 12 (dotted curve)

The typical effective potentials are shown in Figure 1, where the difference
between timelike and null geodesics is obvious: in particular, the effective
potentials of photons in the spacetime of a scalar field naked singularity do
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not have extrema, so that there does not exist the photon sphere. In Figure 2,
the shape of geodesics for massive test particles are plotted. The shape of an
orbit depends on the specific angular momentum 𝐽 and the specific energy 𝐸
of a test particle. Numerical simulation shows that the number of oscillations
per revolution decreases with increasing 𝐽 when the value of 𝐸 is fixed, as
well as with decreasing 𝐸 when the value of 𝐽 is fixed. Figure 3 presents
photon orbits. The difference in the behaviour of null geodesics is obvious.

5. Conclusions

The observations of timelike and null geodesics very close to the centres
of galaxies are of great importance, allowing us to study the spacetime
geometry near the centres as well as to understand the nature of the central
supermassive self-gravitating objects. The available astrophysical data are
so far insufficient to identify the strongly gravitating objects and even to
definitely distinguish between black holes and naked singularities. However,
we can hope that the future development of the spatial resolving power of
precise astronomical instruments will be sufficient to observe the central region
of Sgr A* (about 15𝑀 ≈ 0.15𝑚𝑎𝑠). In particular, the facilities of the Event
Horizon Telescope are expected to achieve the required sensitivity within the
next fifteen years [16], [17].
In this paper, we study (in a fully analytical manner) the characteristic

features of the trajectories of null and timelike geodesics in the neighbourhoods
of static, spherically symmetric scalar field black holes and naked singularities,
having in mind the centre of a galaxy surrounded by dark matter. It turns out
that a scalar field black hole, analogously to a Schwarzschild black hole, has
the innermost stable circular orbit and the (unstable) photon sphere, but their
radii are always less than the corresponding ones for the Schwarzschild black
hole of the same mass; moreover, these radii can be arbitrarily small. We
show that a scalar field naked singularity has a positive Schwarzschild mass
(as opposed to vacuum naked singularities), but has neither the innermost
stable circular orbit nor the photon sphere. Instead, such a configuration
has a spherical shell of test particles surrounding its origin and remaining in
quasistatic equilibrium all the time. We have shown that the characteristic
properties of null geodesics near the centres of a scalar field naked singularity
and a scalar field black hole of the same mass are qualitatively different. In
particular, the quasistatic equilibrium shell can consists of sufficiently cold
particles and be observed as a dark shadow surrounded by a photon image. It
means that the observation of only the central shadow, circled by a bright ring,
is not by itself enough to identify with confidence the central objects. In fact,
a key role in the identification of these objects plays observations of the orbits
of stars and gas clouds very close to the centre. Note also (this is important
for astrophysical applications) that the behaviour of geodesics in the region
𝑟 ≳ 15𝑚, where the metrics of a scalar field configuration becomes close to
the Schwarzschild one, is qualitatively similar to each other and quantitatively
almost the same, so that the observations of the geodesic motion in this region
are not sufficiently informative.
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Геодезическое движение вблизи самогравитирующих
конфигураций скалярного поля

И. М. Поташов, Ю. В. Чемарина, А. Н. Цирулев

Математический факультет
Тверской государственный университет

Садовый пер., д. 35, г. Тверь, 170002, Россия

В работе изучается геодезическое движение нейтральных пробных частиц
в пространстве-времени статических сферически-симметричных чёрных дыр
и голых сингулярностей, порождённых самогравитирующим скалярным полем.
Предполагается, что скалярное поле моделирует тёмную материю, окружаю-
щую некоторый объект с сильным гравитационным полем, такой как центр
нашей Галактики. Поведение времениподобных и изотропных геодезических,
проходящих очень близко к центру такой конфигурации, в решающей степе-
ни зависит от типа пространства–времени. Оказывается, что скалярно-полевая
чёрная дыра, подобно чёрной дыре Шварцшильда, имеет последнюю устойчи-
вую круговую орбиту и (неустойчивую) фотонную сферу, но их радиусы всегда
меньше соответствующих радиусов для чёрной дыры Шварцшильда той же мас-
сы; кроме того, эти радиусы могут быть сколь угодно малыми. Напротив, голая
сингулярность, порождённая скалярным полем, не имеет ни последней устойчи-
вой круговой орбиты, ни фотонной сферы. Вместо этого такая конфигурация
имеет сферическую оболочку из частиц, окружающую её центр и всё время на-
ходящуюся в квазистатическом равновесии. Также показано, что характерные
свойства изотропных геодезических вблизи центра скалярного поля голой сингу-
лярности и центра скалярного поля чёрной дыры, имеющих одинаковую массу
качественно различны.

Ключевые слова: геодезическая, чёрная дыра, голая сингулярность, скалярное
поле




