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We analyzed numerically computed velocity autocorrelation functions and gener-
alized frequency spectra of charge distribution in homogeneous DNA sequences at
finite temperature. The autocorrelation function and generalized frequency spectrum
(frequency-dependent diffusion coefficient) are phenomenologically introduced based
on the functional of mean-square displacement of the charge in DNA. The charge
transfer in DNA was modeled in the framework of the semi-classical Holstein model.
In this model, DNA is represented by a chain of oscillators placed into thermostat
at a given temperature that is provided by the additional Langevin term. Corre-
spondence to the real DNA is provided by choice of the force parameters, which are
calculated with quantum-chemical methods. We computed the diffusion coefficient
for all homogenous DNA chains with respect to the temperature and found a special
scaling of independent variables that the temperature dependence of the diffusion co-
efficient for different homogenous DNA is almost similar. Our calculations suggest
that for all the sequences, only one parameter of the system is mainly responsible for
the charge kinetics. The character of individual motions contributing to the charge
mobility and temperature-dependent regimes of charge distribution is determined.

Key words and phrases: charge transfer, velocity autocorrelation function, gener-
alized frequency spectrum, DNA, Holstein model

1. Introduction

Kinetics of charge transfer in polarized one-dimensional chains at finite
temperature is an attractive and pressing theoretical problem by itself [1]–[4].
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Its particular importance is related to the discovery of conducting properties
in DNA [5]–[7]. On the first hand, this transfer may determine the biological
functions of DNA. On the second hand, this opens up fresh opportunities in
nanobioelectronics [8]–[10].

A basic qualitative simulation of charge transfer in DNA is a pioneered
Holstein model for describing the charge transfer process in one-dimensional
chains [11]. In the semi-classical approximation, DNA nucleotide pairs are
modeled by a sequence of unconnected oscillators arranged in a chain [12].
A charge travels along a chain in the strong coupling approximation. Motions
of the sites influence the charge propagation, and conversely, the charge
probability density affects the charge motion.

The Holstein model is rather simple and can hardly describe the charge prop-
agation in DNA realistically. Nevertheless, it is nonlinear and demonstrates
different regimes. The study of this model can give qualitative insight into
the nature of charge transfer in one-dimensional chains, including biological
polymers.

The Holstein model is thoroughly investigated. Numerous papers are
devoted to the analytical and numerical analysis of the original quantum
model and its semi-classical approximation. However, the charge transfer
kinetics at finite temperature is still to be understood. Of importance in
this respect is the diffusion coefficient of a charge. Earlier, we studied
its temperature dependence inhomogeneous chains of different nucleotide
structures and found the scales which mainly determine differences in the
charge diffusion in different chains [13].

This work continues the earlier started analysis. In order to better appreci-
ate the kinetics of an added charge propagation along an infinite homogeneous
chain, find all the motions which contribute into its mobility and determine
the diffusion coefficient, we calculate and analyze autocorrelation functions of
the charge propagation velocities and a relevant generalized frequency spec-
trum which is a frequency-dependent diffusion coefficient. We show that the
earlier suggested scale is natural for the model, and the diffusion coefficients
differ only in the low-frequency range for different sequences. In the limit of
high and low temperatures, the nucleotide structure is irrelevant. Analysis of
autocorrelation functions suggests that the charge propagation is contributed
by dissipation and reflection at long distances as well as reflections from neigh-
boring sites. As the temperature grows, these motions arise, coexist, and
alternate. In the limit of finite temperature, the charge diffusion ceases.

A detailed straightforward analysis of the Holstein model kinetics at fi-
nite temperature requires direct numerical simulation concerned with a vast
amount of computations. Determinate time dependencies should be identified
from chaotic trajectories by averaging a large number of such trajectories. An
essential tool to accomplish these ends is our unique method [14], [15], which
enables speeding up calculations by three orders of magnitude as compared
to difference schemes. The approach implies combining Magnus expansion
methods used to reveal a charge evolution with a stochastic difference scheme
applied to calculate motion trajectories of classical sites. This computational
method enabled us to model reasonably sized samples so that to calculate
a velocity autocorrelation function smooth enough to be subsequently ana-
lyzed.
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2. Theory

2.1. Discrete Holstein model in semi-classical approximation.
Modelling a thermostat

The charge transfer in a one-dimensional double-strand chain will be consid-
ered in the framework of the Holstein model. An electron travels along a chain
whose sites are modeled by unconnected classical harmonical oscillators. The
model Hamiltonian reads:

�̂� = ∑
𝑛,𝑚

𝜈𝑛𝑚 |𝑛⟩ ⟨𝑚| + 𝛼 ∑
𝑛

𝑞𝑛 |𝑛⟩ ⟨𝑛| + ∑
𝑛

1
2

𝐾𝑞2
𝑛 + ∑

𝑛

1
2

𝑀 ̇𝑞𝑛
2, (1)

where 𝜈𝑛𝑚 are matrix elements or energies of electron transitions between the
sites 𝑛 and 𝑚, 𝛼 is a constant of electron coupling with displacement of the
𝑛-th site 𝑞𝑛, 𝑀 and 𝐾 are mass and elasticity coefficient of the oscillators,
respectively.
We will deal with homogeneous chains in the nearest neighbor approxima-

tion:
𝜈𝑛𝑚 = 𝜈𝛿𝑛,𝑚±1.

If we seek a solution corresponding to Hamiltonian (1), in the form

|Ψ⟩ = ∑
𝑛

𝑏𝑛 (𝑡) |𝑛⟩ ,

then the relevant Schroedinger equation for a charge and the equation for the
sites motion at finite temperature is written as:

𝑖ℏ𝑑𝑏𝑛
𝑑𝑡

= 𝜈 (𝑏𝑛−1 + 𝑏𝑛+1) + 𝛼𝑞𝑛𝑏𝑛, (2a)

𝑀𝑑2𝑞𝑛
𝑑2𝑡

= −𝐾𝑞𝑛 − 𝛼 |𝑏𝑛|2 + Γ𝑑𝑞𝑛
𝑑𝑡

+ 𝐴𝑛 (𝑡) . (2b)

To model the temperature of the surrounding medium we place the chain in
a Langevin thermostat. For this purpose equation for classical sites (2b) will
include a term with friction (where Γ is a friction coefficient) and a random
force 𝐴𝑛 (𝑡) with a normal distribution and the autocorrelation function:

⟨𝐴𝑛 (𝑡) 𝐴𝑚 (𝑡′)⟩ = 2Γ𝑘𝐵𝑇 𝛿𝑛,𝑚𝛿 (𝑡 − 𝑡′) ,

where 𝑇 is temperature and 𝑘𝐵 is the Bolzmann constant.

2.2. Change-over to dimensionless parameters. Scaling
of autocorrelation functions

If we neglect the influence of quantum equation (2a) on classical equation
(2b), the latter becomes a Langevin-type equation, and the solutions do not
depend on the charge distribution over the chain. In paper [16], we called this
variant of the system an “adiabatic approximation”. In the complete system,
the quantum subsystem affects classical displacements but to a limited extent.
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Therefore we explicitly separate a temperature multiplier in front of them,
proceeding from the expression for dispersion of the oscillator coordinate 𝑞𝑛
with the elasticity coefficient 𝐾:

⟨𝑞2
𝑛⟩ = 𝑘𝐵𝑇

𝐾
.

This expression follows from virial theorem and determines the scale of
variation of a classical oscillator amplitude as a function of temperature:

𝑞𝑛 = √𝑘𝐵𝑇
𝐾

𝑢𝑛.

The time scale specifies the matrix element 𝑡 = 𝜏ℏ/𝜈. Let us rewrite
equations (2) with regard to the chosen scales in dimensionless form:

𝑖𝑑𝑏𝑛
𝑑𝜏

= 𝑏𝑛−1 + 𝑏𝑛+1 + 𝜃𝑢𝑛𝑏𝑛, (3a)

𝑑2𝑢𝑛
𝑑𝜏2 = −𝜔2

0𝑢𝑛 − 𝜒
𝜃

|𝑏𝑛|2 + 𝛾𝑑𝑢𝑛
𝑑𝜏

+ 𝑍𝑛 (𝜏) , (3b)

⟨𝑍𝑛 (𝜏) 𝑍𝑛 (𝜏 ′)⟩ = 2𝛾𝜔2
0𝛿 (𝜏 − 𝜏 ′) ,

where

𝜔0 = ℏ
𝜈

√ 𝐾
𝑀

, 𝛾 = ℏ
𝜈

Γ
𝑀

, 𝜒 = 𝛼2 ℏ2

𝜈3𝑀
, 𝜃 = 𝛼

𝜈
√𝑘𝐵𝑇

𝐾
.

The quantum equation contains only one dimensionless parameter 𝜃, which
is the amplitude multiplier of classical displacements. It is mainly responsible
for the influence of the classical subsystem on the quantum one, depending on
temperature. This fact suggests that the electron distribution kinetics may
mainly depend on 𝜃 for all chain sequences. In particular, the influence of
the classical system becomes negligible for 𝜃 → 0, and the dependence on the
nucleotide sequence completely disappears. Our results demonstrate that this
choice of the scale is appropriate.

Apart from frequency 𝜔0 and friction 𝛾, responsible for oscillator motion
characteristics, the classical equation involves a parameter 𝜒/𝜃, which de-
termines a reverse influence of the quantum subsystem on the classical one.
Analysis of 𝜒/𝜃 suggests that this influence is neglectable for high tempera-
tures. Besides, we also can neglect it in the case of nucleotide chains with
a large matrix element 𝜈. If we set a constant 𝜒 = 0 for these cases, we obtain
an adiabatic approximation considered earlier in [16].

2.3. Charge mean-square displacement and generalized frequency
spectrum

The kinetic properties of stochastic system (3) are described by the velocity
autocorrelation function and the generalized frequency spectrum. These
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functions can be calculated from the density of probability of finding an
electron at site 𝑛 in a chain of length 2𝑁 + 1:

𝑃 (𝑛, 𝜏) = 𝑏𝑛 (𝜏) 𝑏∗
𝑛 (𝜏) .

In the semi-classical approximation the root-mean-square displacements in
dimensionless form are calculated by the formula:

⟨𝑥2⟩ = 𝜉(𝜏) =
𝑁

∑
𝑛=−𝑁

𝑛2𝑃(𝑛, 𝜏). (4)

Then the diffusion coefficient can be found as a slope of the curve 𝜉 (𝜏) on its
linear segment or as an asymptotic value of the derivative of the displacement

with respect to time 𝜂 (𝜏) = 𝜉 (𝜏)′
, or via the integral of the second derivative

of the displacement with respect to time 𝜓 (𝜏) = 𝜉 (𝜏)″
. We will call this

coefficient a static one and denote it as 𝐷 (0):

𝐷 (0) = 1
2

∫
∞

0
𝜓 (𝜏) 𝑑𝜏.

The natural generalization of the static diffusion coefficient is a frequency-
dependent diffusion coefficient 𝐷 (𝜙), which can be found as a generalized
frequency spectrum of the second derivative of the displacement function with
respect to time:

𝐷 (𝜙) = 1
2

∫
∞

0
𝜓 (𝜏) cos (2𝜋𝜙𝜏) 𝑑𝜏, (5)

where 𝜙 is dimensionless frequency which is related to frequency in hertz
(𝑓) as:

𝑓 = 𝜈
ℏ

𝜙 = 2𝜋 𝜈
ℎ

𝜙.

Function 𝜓 (𝜏) in semi-classical approximation is a velocity autocorrelation
function.

3. Results and discussion

At the initial moment a charge was inserted in the center of a homogeneous
chain of length 2𝑁 +1 with temperature distribution of the degrees of freedom
of harmonical oscillators:

𝑏𝑛(0) = 𝛿𝑛,0, 𝑑𝑢𝑛
𝑑𝜏

(0) = 𝒩 (0, 1) , 𝑢𝑛 (0) = 𝒩 (0, 1) , (6)

where 𝛿𝑖,𝑗 is Kronecker delta, 𝒩 (𝜇, 𝜎) is a normal distribution with the mean
𝜇 and dispersion 𝜎2.
The trajectory of the system motion was calculated from initial states (6),

each time with new values of 𝑢𝑛 and �̇�𝑛. The calculations were carried out by
the method, which combines Magnus expansion with a stochastic difference
scheme [14], [15]. For the trajectories to correspond to charge propagation
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along an infinite chain, the chain length 𝑁 was chosen such that during the
time of modeling the front of propagation of the charge probability density
would not come up to its end.
Then we calculated the second derivative of the root-mean-square displace-

ment with respect to (3), (4) by averaging over samples. After that, we found
the frequency spectrum by formula (5) using the fast cosine transform.
We chose the parameters listed in Table 1 as in our previous work [13].

These parameters are typical for DNA.

Table 1

Dimensional parameters of the Holstein model for dsDNA

𝑀 = 10−21 g 𝐾 = 0.062 eV/Å2 Γ = 6 ⋅ 10−10 g/s 𝛼 = 0.13 eV/Å

𝜈𝐴 = 0.030 eV 𝜈𝐶 = 0.041 eV 𝜈𝐺 = 0.084 eV 𝜈𝑇 = 0.158 eV

We repeated the calculations for a set of temperatures and homogeneous
dsDNA chains composed of different nucleotides. Table 2 lists dimensionless
parameters.

Table 2

Dimensionless parameters for dsDNA as a function of a nucleotide sequence

parameter poly A poly C poly G poly T

𝜔0 0.02193 0.01605 0.007837 0.004167
𝛾 0.01316 0.009631 0.004702 0.0025
𝜒 0.004219 0.001654 1.925 × 10−4 2.894 × 10−5

A common property of the velocity autocorrelation functions at any tem-
perature is that they are equal to 4 in the small area after an initial time
instant. This value corresponds to the velocity of the ballistic motion at zero
temperature, which is equal to 2. A comparison of autocorrelation functions
for chains composed of different nucleotides suggests that for the same value
of 𝜃, the functions differ only in the attenuation asymptotics. The spectra
demonstrate differences at low frequencies for finite values of 𝜃 and, accord-
ingly, different diffusion coefficients 𝐷 (0) (see Figure 1, dashed lines). Here
we use the scale were these differences are insignificant. In particular, they
lack in the limit of low and high temperatures.
Earlier in work [13], we carried out a more detailed analysis of the temper-

ature dependencies of the static diffusion coefficient for homogeneous dsDNA
chains with different nucleotide sequences and suggested the scales in which
the temperature dependencies of 𝐷 (0) are close for chains with different se-
quences. Analyzing the spectra in this scale here, we see that differences in
the frequency-dependent diffusion coefficient blend as the frequency is increas-
ing, and virtually disappear at the frequency, where an absolute maximum of
the spectrum is observed (see Figure 1, solid lines).
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Figure 1. Temperature dependencies of the frequency-dependent coefficient; A,

Poly A dsDNA; B, Poly C dsDNA; C, Poly G dsDNA; D, Poly T dsDNA. Dashed lines for

the dependencies of 2𝐷 (0) on 𝜃; solid lines for the dependencies of (max2𝐷 (𝜔))𝜃 on 𝜃

As the temperature changes, the form of autocorrelation functions and
spectra change too. Their analysis enables us to identify four different regimes.
Since we have shown that any differences between the chains with different
nucleotide structures are insignificant in our scale, and their character is
determined, we will deal only with Poly A dsDNA chains in what follows. In
the limit of infinitely small temperatures, the autocorrelation function tends
to attenuate exponent:

𝜓 (𝜏) = 𝜓 (0) 𝑒−𝜏/𝜏0 .
Its generalized frequency spectrum has an analytical form similar to that

of the real part of the frequency-dependent conductivity, according to Drude
formula:

𝐷 (𝜙) = 𝜓 (0) 𝜏0
1 + 4𝜋2𝜙2𝜏2

0
.

In accordance with fluctuation-dissipative theorem, the mobility 𝜇 (𝜔) is
related to 𝐷 (𝜔) as [17]:

𝜇 (2𝜋𝜙) = 𝑒
𝑇

𝐷 (2𝜋𝜙) .

The dependence of 𝜇 (0) on temperature is given in [18].
Notice also that the maximum of the frequency-dependent diffusion coeffi-

cient and, accordingly, the mobility at the relevant frequency is greater than
the static diffusion coefficient (see Figure 1). It suggests that DNA can serve
as a conductor of alternating current.
In the range of extra-low temperatures for near-zero 𝜃, the autocorrelation

functions and the spectra keep monotonously attenuating (see Figure 2) until
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the dimensionless parameter 𝜃 reaches the value 𝜃 = 0.14 in Poly T dsDNA or
𝜃 = 0.3 in Poly A dsDNA. This boundary is slightly different for chains with
different nucleotide sequences (see Figure 1). For the first regime, scattering
at long distances exceeding one site on the average is typical.
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Figure 2. (a) Velocity autocorrelation functions and (b) generalized frequency spectrum of

the charge propagation along Poly A dsDNA in the range of low and extra-low temperatures;

A, 𝜃 = 0.1; B, 𝜃 = 0.2; C, 𝜃 = 0.4; D, 𝜃 = 0.8

In the range of low temperatures, until the dimensionless parameter be-
comes 𝜃 = 1, reflection at long distances arises. In this regime, the velocity
autocorrelation function (see Figure 2(a)) is not monotone and has a single
minimum in the negative range. The absolute value of the minimum increases
with growing 𝜃, while its coordinate decreases. Now the spectra demonstrate
a low-frequency maximum whose frequency increases with growing 𝜃, while
the value decreases (see Figure 2(b)).
Then, up to the value of 𝜃 = 3.5, a range of moderate temperatures is

observed. In this temperature range a high-frequency maximum caused by
oscillations of the autocorrelation function 𝜓 (𝜏) occurs after the first minimum
(see Figure 3(a)). At the same time, the absolute value of the first minimum
of the autocorrelation function keeps growing. High-frequency oscillations
arise while the function attenuates after the first minimum. Thus, in the
range of moderate temperatures, reflection at long distances, and reflection
from neighboring sites coexist.
Looking at the spectrum 2𝐷 (𝜔), we see that the low-frequency maximum

keeps decreasing, while its frequency decreases and approaches the frequency
of the second maximum (Figure 3(b)). The position of the high-frequency
peak on the spectrum is independent of temperature. The first and the second
maxima of the spectrum are well seen and have nearly the same value for
𝜃 = 1.9 (see the inset in Figure 3(b)).
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Figure 3. (a) Velocity autocorrelation functions and (b) generalized frequency spectrum of

the charge propagation along Poly A dsDNA in the range moderate temperatures; A,

𝜃 = 1.2; B, 𝜃 = 1.6; C, 𝜃 = 1.9; D, 𝜃 = 2.4; E, 𝜃 = 3.5

Notice that the value of the parameter 𝜃 = 1.9 for which the high-frequency
peak is approximately equal in value to the low-frequency one is the same
for different types of chains, which is confirmed by the curves of the maxima
shown in Figure 1. The value of the parameter 𝜃 for which the low-frequency
maximum of the spectrum disappears while the high-frequency one emerges
can reasonably be called a critical value. Dimensional critical temperatures
corresponding to the critical parameter are listed in Table 3 for different types
of chains.

Table 3

Critical temperature for 𝜃 = 1.9 and position of high-frequency peak for different nucleotide

sequences

units poly A poly C poly G poly T

𝑓𝑝 THz 14.5 19.8 40.6 76.4
𝑇𝑐

∘ C −134.76 −14.68 811.80 3565.37

Regularity and homogeneity of the chain cause the high-frequency peak. It
occurs at a frequency of 𝜙 = 1/𝜋. The dimension frequency depends only on
matrix element:

𝑓𝑝 = 2 𝜈
ℎ

.

The values of this peak frequency for the different nucleotide sequences are
presented in Table 3. Obviously, in the case of inhomogeneous regular chains,
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these frequencies will be more than one, and the spectra will contain several
relevant peaks.
In the range of high temperatures, motion mainly fulfills as hopping between

neighboring sites. As distinct from the previous regimes, the absolute value of
the first minimum of the autocorrelation function decreases here with growing
𝜃 (see Figure 4(a)). A decrease of its coordinate is considerably retarded and
tends to 1. At the same time, the initial attenuation occurs more sharply.
Initially, the function sharply decreases to zero and then slowly goes to the
first minimum. Oscillations of the autocorrelation function in this regime
occur about the abscissa axis rather than about the low-frequency envelope.
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Figure 4. (a) Velocity autocorrelation functions and (b) generalized frequency spectrum of

the charge propagation along Poly A dsDNA in the range of high and ultrahigh

temperatures; A, 𝜃 = 4.4; B, 𝜃 = 10; C, 𝜃 = 40; D, 𝜃 = 160; E, 𝜃 = 640

The spectrum demonstrates only a high-frequency peak, which decreases
with growing 𝜃 (see Figure 4(b)). The spectrum smoothly widens.
Obviously, in the limit of high temperatures, the spectrum widens and

becomes monotone. The charge propagation ceases.
As is seen from Figures 2–4, for rather high 𝜔, at any temperatures, except

for extra-low and superhigh ones, 𝐷 (𝜔) increases with growing temperature.
This effect is known for static disorder [17].

4. Conclusion

We considered the frequency spectra of the diffusion coefficient (mobility)
of an excess charge in a Holstein molecular chain for different temperatures.
We revealed the character of motions contributing to the charge diffusion

in the Holstein model. The presence of temperature causes a dynamical
disorder even in an ideal chain. Let us call the main differences between
the frequency dependencies of chains with static disorder and those with
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the dynamic disorder caused by temperature fluctuations. In the static case,
the diffusion coefficient increases with growing frequency [17], while in the
dynamic case, more complicated behavior is observed (see Figures 2–4). We
demonstrated the existence of asymptotics at low and high temperatures.
For finite temperatures, we identified four temperature ranges in which
autocorrelation functions and their spectra have similar peculiarities/features.
Accordingly, the charge diffusion inside these ranges demonstrates the same
character. The character is changing in passing to a different temperature
range. Low temperatures cause weak scattering without reflections, as a result
of which the ballistic motion changes for the diffusion one. As the temperature
increases, at first, a reflection at long distances emerges, then it is added
with reflections from neighboring sites. Both these motions slow down the
charge diffusion. In the limit of high temperatures, the motion degenerates
into hopping between neighboring sites, and the charge diffusion ceases.
We revealed the character of motions contributing to the charge diffusion

in the Holstein model.
All the results are presented in dimensionless values, which enabled us to

identify the main parameters and recognize the different regimes.
The autocorrelation functions in themselves, as well as their spectra, are

also a significant result. Their calculation was made possible only with the use
of special unique methods of numerical integration of differential equations.
Presently, DNA is considered to be a promising material for constructing

molecular wires. However, even homogeneous synthetic nucleotide chains
at room temperatures demonstrate deficient mobility in the case of direct
current [19], [20]. A possible solution to this problem, according to the
results obtained, is the use of not direct but alternating current of rather high
frequency.
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О диффузии заряда в однородных молекулярных
цепочках на основе анализа обобщенных частотных

спектров в рамках модели Холстейна
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В статье проведён анализ автокорреляционных функций скорости
и обобщённых частотных спектров распространения заряда в однородных после-
довательностях ДНК при конечной температуре. Функции рассчитаны численно
в рамках квазиклассической модели Холстейна. Показано, что в системе только
один параметр главным образом определяет кинетику заряда для всех после-
довательностей. Анализ позволил определить характер отдельных движений,
вносящих вклад в подвижность заряда, и выделить различные режимы распро-
странения заряда в зависимости от температуры.

Ключевые слова: перенос заряда, автокорреляционная функция скорости,
обобщённый частотный спектр, ДНК, модель Холстейна




