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In this article we present a parallel algorithm for simulation of the heat conduction
process inside the so-called pulse cryogenic cell. This simulation is important for
designing the device for portion injection of working gases into ionization chamber of
ion source. The simulation is based on the numerical solving of the quasilinear heat
equation with periodic source in a multilayered cylindrical domain. For numerical
solution the Alternating Direction Implicit (ADI) method is used. Due to the non-
linearity of the heat equation the simple-iteration method has been applied. In
order to ensure convergence of the iteration process, the adaptive time-step has been
implemented. The parallelization of the calculation has been realized with shared
memory application programming interface OpenMP and the performance of the
parallel algorithm is in agreement with the case studies in literature.

Key words and phrases: quasilinear heat equation, multilayer cylindrical geomet-
rical structure, pulse periodic source, parallel algorithm, thermal gates

1. Introduction

The purpose of this work is to develop algorithms for simulation of the
heat conduction process inside the so-called pulse cryogenic cell [1, 2]. Such
simulations are important for designing the cell that implements “the thermal
gates” of a portion injection of working gases into the ionization chamber
of a multiply charged ion source [3]. While reliable operation of mechanical
valves for pulsed injection of gaseous mixtures in the millisecond range at
cryogenic temperatures is practically impossible, the use of gas temperature
properties at cryogenic temperatures can be a real alternative. Indeed, the
vapor pressures of various gases have strong dependency on the temperature [4]
in the interval between temperatures of liquid helium 4.2K and liquid nitrogen
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78K [5], typical temperature terminals in the cryogenic technique used as
thermostats with large capacity.
The cryogenic cell is a multilayer cylinder (see Fig. 1) placed inside a vacuum

chamber. The thermal process in the cylinder starts by passing an electrical
current through its conductive layer. It allows heating the outer layer of
the cylinder to upper desired temperature (maximal critical temperature).
After switching the current off, the cylinder is let to cool down to lower
desired temperature (minimal critical temperature). This process periodically
repeats for a given period of time based on the requirements of the experiment.
A copper core of the cylinder serves as a cooler for outer layers during and
after the heating process. It is connected to a liquid helium temperature
terminal. The core is separated by the electrical insulator from the conductive
layer. It is made to avoid the flow of the electrical current into the core. The
last layer is a thin coating which prevents molecules of working gases from
binding to the conductive layer made of graphite.
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Figure 1. A schematic view of the quarter of the cell slice through the axis. The bottom line

is the cylinder axis (the symmetry axis, r = 0). The cooler (the copper core rod) cools the
cell by contact with the temperature terminal – 4 (liquid helium). The heater – 2 (the

conductive layer) heats the cell up by the way of passing of the electrical current. The inner

insulator – 1 – is needed to prevent the electrical current outflow from the heater to the

cooler. The outer insulator – 3 – prevents molecules of working gases from binding to the

conductive layer

2. Initial-boundary value problem

Let us consider the heat equation describing thermal evolution in the closed

cylindrical domain Ω = {(r, z) | r ∈ [0, rmax(z)], z ∈ [0, zmax(r)]}:

ρ(r)cV (T, r)
∂T

∂t
=

1

r

∂

∂r

(
rλ(T, r)

∂T

∂r

)
+

∂

∂z

(
λ(T, r)

∂T

∂z

)
+

+X(T, t, r; tper, tsrc), (1)

where the thermal coefficients are the non-linear function of the temperature
and they have discontinuities of the first kind along the radial direction at
r∗m (m = 0, 1, 2, 3, see Fig. 1). The source function producing the periodic
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process of heating can be expressed in the form

X(T, t, r; tper, tsrc) = χ(T )
I2(r)

SC

p(t; tper, tsrc), (2)

where p(t; tper, tsrc) is the periodic normalized function with parameters tper
(time of period) and tsrc (time of heating less than or equal to tper); n ∈ N0 is
the index of a period; χ(T, r) is temperature depended specific resistivity with
discontinuities at the given values of r; I(r) is the electrical current amplitude
which has a finite value I0 only in the source layer (see Fig. 1), everywhere else
it is zero; SC is the cross-section of the source layer. The periodic normalized
function p(t; tper, tsrc) is given as a rectangular pulse one [6]:

u(t; tper, tsrc) =
∞∑
n=0

[θ (t− n tper)− θ (t− n tper − tsrc)] , (3)

where θ(t) is Heaviside step function [7, 8], however, in order to make the
processes of “turn on” and “turn off” more realistic, the model of the transient
process (4) (see Fig. 2) has been implemented:

v(t; tper, tsrc, ttrs, ξ, ζ) =

=
1

2

∞∑
n=0

[
erf

(
ξ

(
ζ
t− ntper

ttrs
− 1

))
− erf

(
ξ

(
ζ
t− n tper − tsrc

ttrs
− 1

))]
. (4)

Here erf(t) is the error function [7, 8].
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Figure 2. Dashed line: the periodic step function u(t) as a combination of the Heaviside

ones. Solid line: the “realistic” source function for ξ = 4 and ζ = 2 representing the
transient model. The dot-dashed lines show the ends of the transient process at “turn on”

and “turn off”

Such smoothing of the processes of “turn on” and “turn off” of the source
also helps to stabilize numerical simulations.
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The initial condition can be set by the assumption that at t = 0 the
cryogenic cell has been already cooled down by the temperature terminal:

T (r, z, t = 0) = T0, (5)

where T0 ≡ 4.2K is the temperature of liquid helium.
The boundary conditions can be expressed after the assumption that

the temperature flow across the boundary of the domain is zero except
for the right side where a connection to the temperature terminal exists
(see Fig. 1): 

∂T

∂n
= 0 ∀ (r, z) ∈ δΩ \ {(r, z) : z = zmax},

T = T0 ∀ (r, z) ∈ {(r, z) : z = zmax},
(6)

where δΩ is the boundary of the domain Ω, n is the normal vector of the
boundary δΩ. This assumption is motivated by the following statements:

— the cryonics cell is installed in the vacuum chamber, therefore, there is
no convective heat transfer;

— the working temperature is too low for the appearance of thermal radia-
tion;

— we neglect the energy for evaporation of gas molecules;
— there is no temperature flow through the axis r = 0 due to the axial

symmetry.

3. Discretization and numerical method

Numerical solution of Eq. (1) can be obtained by using a shifted non-uniform
grid (see Fig. 3):

ω = {(t, r, z) | 0 6 t < ∞, tk+1 = tk + τk+1, k ∈ N0;

0.5h1 6 r 6 rmax − 0.5hNj−1, ri+1 = ri + hi+1, i = 0, . . . , Nj − 1;

0.5η1 6 z 6 zmax − 0.5ηMi−1, zj+1 = zj + ηj+1, j = 0, . . . ,Mi − 1}. (7)

z

r

Figure 3. The discretization of the 2D domain. The non-uniform grid is shifted in order to

have points at the centers of boxes. Different layers (materials) have different step size (they

are differently colored)
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It seems usual to make uniform steps in the subdomain corresponding one
layer. The shifted grid has no points at the boundary of discontinuity. One
can also use a special grid – the grid with points at the boundary of materials,
in this case one has to take care of approximation of the thermal coefficients
and the source function at the boundary.
The initial boundary value problem Eqs. (1)–(6) has been approximated

on the grid (7) by the alternating direction implicit (ADI) schemes [9–12]:

ρi,j cV i,j

T i,j − Ti,j

0.5τ
= Λr [ T i,j ] +Λz [ Ti,j ] +X i,j, (8)

ρi,j cV i,j

T̂i,j − T i,j

0.5τ
= Λr [ T i,j ] +Λz [ T̂i,j ] +X i,j, (9)

where T̂i,j is the temperature distribution on the next time layer, T i,j is the
temperature distribution on the half layer (in between the next and current
time layers), Ti,j is the value on the current time layer and τ is the time step,

ρi,j = ρ(T i,j), cV i,j = cV (T i,j), X i,j = X(T i,j).

The spatial finite difference operators in Eqs. (8) and (9) are:

Λr [Ti,j] =
1

ri

1

h̄i

[
ri+ 1

2
λi+ 1

2
,j

Ti+1,j − Ti,j

hi+1

− ri− 1
2
λi− 1

2
,j

Ti,j − Ti−1,j

hi

]
, (10)

Λz [ Ti,j ] =
1

ηj

[
λi,j+ 1

2

Ti,j+1 − Ti,j

ηj+1

− λi,j− 1
2

Ti,j − Ti,j−1

ηj

]
, (11)

where i = 1, . . . , Nj − 1, j = 1, . . . ,Mi − 1, hi = ri − ri−1, ηj = zj − zj−1,
h̄i = (hi+1 + hi) /2, ηj = (ηj+1 + ηj) /2, λi,j = λm(Ti,j), cV i,j = cV m(Ti,j),
Xi,j = Xm(Ti,j), ri±1/2 = (ri+ ri±1)/2, λi±1/2,j = λm(Ti,j +Ti±1,j)/2, λi,j±1/2 =
λm(Ti,j + Ti,j±1)/2.
Due to the non-linearity of Eqs. (8)–(9) (when the thermal coefficients and

the source function depend on temperature) the simple-iteration method has
been applied for calculation of the sought-for function on the half and next
time layers. The recursive forms for (8)–(9) are expressed as follows [11–13]:

ρsi,j cV
s
i,j

T s+1
i,j − Ti,j

0.5τ
=

=
1

ri

1

h̄i

[
ri+ 1

2
λs
i+ 1

2
,j

T s+1
i+1,j − T s+1

i,j

hi+1

− ri− 1
2
λs
i− 1

2
,j

T s+1
i,j − T s+1

i−1,j

hi

]
+

+Λz [ Ti,j ] +Xs
i,j, (12)

here it is assumed that when s → ∞, then T s → T , ρs → ρ, cV
s → cV , λ

s → λ,
and Xs → X.
The iteration process starts with the initial condition that T s=0

i,j = Ti,j, and

stops after fulfilling the following criteria
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||T s+1 − T s||C = max
ω

‖T s+1 − T s‖ < ε. (13)

The values of the sought-for function on next time-layer are obtained as this

ρi,j cV i,j

T s+1
i,j − T i,j

0.5τ
=

= Λr [ T i,j ] +
1

ηj

[
λs
i,j+ 1

2

T s+1
i,j+1 − T s+1

i,j

ηj+1

− λs
i,j− 1

2

T s+1
i,j − T s+1

i,j−1

ηj

]
+X i,j, (14)

with the initial condition T s=0
i,j = T i,j. Same as before T s→∞ → T̂ and

λs→∞ → λ̂. This iteration process stops after fulfilling the same criteria (13).
The systems of linear algebraic equations (12) and (14) are solved by the
Thomas method [13–15].
In order to ensure convergence of the iteration process (12)–(14), the

adaptive time-step has been implemented. If the counter of iterations s
exceeds some maximal value, meaning that the process does not converge fast
enough, the time-step τ is divided by 2 and the iteration process is restarted
(back to the Eq. (12)).

4. Parallel algorithm

Main computational complexity comes from repetitive calculation of
Eqs. (12) and (14) across each time layer. A solution of the first of them is
needed as a start for solving the second one and it is again used as a start for
calculation of the sought-for function on the next time layer. Due to rather
low complexity of solving of one system of linear equations ((12) or (14)) it is
better to use parallelization based on shared memory since for distributed
memory parallelization the cost of data transfer would be too high. Therefore,
we opted for OpenMP [16,17].
In Fig. 4 one can see the flowchart of the algorithm. After initializing the

solution – setting tprd, tsrc, I, and t0 = 0, the program repeats iterations until
the requested time is reached. In one step of evolution it first initializes the
estimate of the time step τ as being equal ttrs/1000 if we are in the transition
process or tsrc/100 elsewhere. After this it starts the iteration process in order

to obtain the solution T i,j at the time tk + τ/2 using (12). If the obtained
solution is precise enough, it alternates direction and continues by the way of

(14) to the solution T̂i,j at the time tk + τ . If this solution is again precise
enough, the algorithm sets the total time to tk = tk−1 + τ and the actual

solution Ti,j = T̂i,j. If in any of the previous tests the number of iterations
exceeds the number of maximum iterations (iter – see Fig. 4), then the time-
step τ is divided by 2 and the calculation returns to the beginning of the
evolution step.
The whole algorithm terminates when the total time t reaches the desired

value or when we realize that we have entered into the periodic process
(temperature changes periodically depending on switching the current in
conductive layer on and off).
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5. Numerical results

The calculations have been performed on the HybriLIT computational
platform [18, 19] using the Skylake processor Intel Xeon Gold 6154 [20]
containing 18 CPU cores providing two threads per core (36 threads in total)
under OS Scientific Linux 7.5 (Nitrogen) [21].

As an example we have studied the case when tper = 10−1, tsrc = 10−2,
ttrs = 10−4, and I0 = 0.5742. These values of parameters were chosen to
realize the “thermal gates” for maximal and minimal critical temperatures
42K and 37K, respectively [22]. The cell size was selected as follows: z0 = 4,
zmax = 5, r∗0 = 0.24, r∗1 = 0.245, r∗2 = 0.25, rmax = 0.2501. The whole domain
was split into 100 parts along the z axis at the first layer (core) and to 80 in the
other layers. Along the r axis, individual layers were divided (starting from
the core) into 800, 200, 200, and 10 parts respectively. This discretization
of the domain was chosen in order not to split the domain into too many
parts and at the same time have enough information about the solution. It
is noteworthy that we have much more steps in the radial direction. It is so
because we expect the flow in-between the layers to be more active than the
relaxation towards the terminal. Nevertheless, in our experiments we have
also densified the grid to see the impact of the grid on both the precision of
the solution and the calculation time. The results are given in Fig. 5, it shows
the temperature fields at different moments of evolution inside the required
steady periodic temperature regime.
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Figure 5. Temperature fields when the periodic temperature regime is achieved. Left panel:

the temperature field at the moment before turning on the source. Right panel: the

temperature field at the moment when the source was just turned off

The field is shown in the whole cylindrical domain right before turning on the
source (at the left panel). The field is in a state of maximum relaxation in that
moment. At the right side the temperature filed is shown in the moment when
source is turning off. The results demonstrate that temperature significantly
changes only in outer layers, the core rode is practically not heated, it works as
thermostat. The evolution of the temperature at the surface of the cryogenic
cell at the z = 0 is given in Fig. 6, it is evident that is takes time to achieve
the required steady periodic temperature regime.
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6. Summary and conclusions

We have developed the algorithm for numerical simulations of heat evolution
inside the multilayered cylindrical domain with the periodic source. One can
see from Fig. 6 that the required periodical temperature regime cannot be
obtained immediately, it has a setup mode which is much longer than one
period, thus it has to be taken into account when designing the pulse cryogenic
cell. The simulations show the possibility of the realization of “thermal gates”
for a particular set of parameters. The algorithm has been integrated to the
hybrid algorithm MPI+OpenMP for solving the optimization problem of the
heat source characteristics (tper, tsrc, and I0) of the pulse cryogenic cell [22].
The performance of the parallel algorithm (see Fig. 7) is in agreement with

the case studies in literature, e.g., [23, 24]. As it is shown in the picture that
the saturation calculation time been achieved at 18 threads, after acting the
hyper-threading the speedup stops. Thus there is no reason to involve in
calculations more than this number of threads for the considered problem
with the given grid size (1210× 100).
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