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In this paper, we consider a single server queueing model M |M |1|N with two
types of calls: incoming calls and outgoing calls, where incoming calls arrive at the
server according to a Poisson process. Upon arrival, an incoming call immediately
occupies the server if it is idle or joins an orbit if the server is busy. From the
orbit, an incoming call retries to occupy the server and behaves the same as a fresh
incoming call. The server makes an outgoing calls after an exponentially distributed
idle time. It can be interpreted as that outgoing calls arrive at the server according
to a Poisson process. There are N types of outgoing calls whose durations follow
N distinct exponential distributions. Our contribution is to derive the asymptotics
of the number of incoming calls in retrial queue under the conditions of high rates
of making outgoing calls and low rates of service time of each type of outgoing
calls. Based on the obtained asymptotics, we have built the approximations of the
probability distribution of the number of incoming calls in the system.

Key words and phrases: retrial queueing system, incoming calls, outgoing calls,
asymptotic analysis method, Gaussian approximation

1. Introduction

Retrial queueing systems are characterized by the following distinctive fea-
ture: a customer who cannot receive service remains in the system and tries to
occupy the server after some random delay. The pool of unsatisfied customers
is called the orbit. Retrial queues have applications in telecommunication,
computer networks and in daily life [1, 2].
In retrial queues idle time of the server is the downtime and it should be

reduced to increase the efficiency of the system. We consider systems where
operator not only receives calls from outside but also makes outgoing calls
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in the idle time. In queueing theory a model with this feature have been
considered previously [3]. However, the retrial behaviour of customers is not
taken into account. In call centers operators could receive arriving calls but as
soon as they have free time and are standby mode they could make outgoing
calls [4–7]. Systems with this server behaviour are called retrial queues with
two way communication. Retrial Queues with two way communication have
been studied recently [8–11]. In these papers Markovian models with two
way communication were considered. Model of retrial queue with two way
communication and multiple types of outgoing calls was considered by Sakurai
and Phung-Duc [12]. For this model numerical algorithm of calculating joint
stationary distribution of system state was obtained. Multiserver retrial
queue with two way communication was studied in [13]. Recently the two
way communication retrial queues with finite source [14], with server-orbit
interaction [15, 16], with finite orbit [17], with breakdowns [18] and with
a constant retrial rate [19] were considered.
Asymptotic analysis methods have applications in queueing theory. Nazarov,

Paul and Gudkova propose an asymptotic analysis method to research
M |M |1|1 retrial queue with two way communication under low rate of retri-
als condition [20]. Nazarov, Paul and Phung-Duc extended this model to
MMPP|M |1|1 retrial queues and derived asymptotics in heavy outgoing call
conditions [21].
In this paper, we consider retrial queue with two way communication and

multiple types of outgoing calls. We assume that each type of outgoing calls
has different rate and service times follow distinct exponential distributions.
The main aim of this paper is to derive asymptotics for the model in two limit
conditions: i) high rate of outgoing calls and ii) low service rate of outgoing
calls. In both cases, the number of incoming calls in the system increases.
The rest of the current paper is organized as follows. In Section 2 and 3, we

describe the model in detail and preliminaries for later asymptotic analysis.
In Section 4 and 5, we present our main contribution to the model. In Section
6 we show the ranges of parameters under which our approximations are
usable. Section 7 is devoted to concluding remarks.

2. Model and preliminaries

2.1. Model description

Figure 1 shows the structure of the model.

We consider a single server retrial queue with two way communication
and multiple types of outgoing calls. Incoming calls arrive at the system
according to a Poisson process with rate λ and try to occupy the server
for an exponentially distributed time with rate µ1. Incoming calls that find
the server busy join the orbit and repeat their request for service after an
exponentially distributed time with rate σ. When the server is idle it makes
an outgoing call of type n in an exponentially distributed time with rate
αn. There are N types of outgoing calls whose durations follow N distinct
exponential distributions. We assume that the durations of outgoing calls of
type n follow the exponential distribution with rate µn.
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Figure 1. Markovian retrial queue with two way communication and multiple types

of outgoing calls

2.2. Problem definition

Let k(t) denote the state of the server at the time t > 0,

k(t) =


0, if the server is idle,

1, if an incoming call is in service,

n, if an outgoing call of type n is in service, n = 2, N + 1.

Let i(t) denote the number of incoming calls in the system at the time t. It
is easy to see that process {k(t), i(t)} forms a continuous time Markov chain.
We assume that the Markov chain is ergodic and the stationary distribution
of {k(t), i(t)} exists.
Let P{k(t) = k, i(t) = i} = Pk(i) denote the stationary probability distri-

bution of the system state which is the unique solution of Kolmogorov system
of equations:

−

[
λ+ iσ +

N+1∑
n=2

αn

]
P0(i) + µ1P1(i+ 1) +

N+1∑
n=2

µnPn(i) = 0,

− (λ+ µ1)P1(i) + λP1(i− 1) + λP0(i− 1) + iσP0(i) = 0,

− (λ+ µn)Pn(i) + λPn(i− 1) + αnP0(i) = 0, n = 2, N + 1.

(1)

Let Hk(u) denote the partial characteristic functions Hk(u) =
∞∑
i=0

ejuiPk(i),

k = 0, N + 1, where j =
√
−1. Multiplying equations of system (1) by ejui

and taking the sum over i yields
−

[
λ+

N+1∑
n=2

αn

]
H0(u) + jσH ′

0(u) + µ1e
−juH1(u) +

N+1∑
n=2

µnHn(u) = 0,

− (λ+ µ1)H1(u) + λejuH1(u) + λejuH0(u)− jσH ′
0(u) = 0,

− (λ+ µn)Hn(u) + λejuHn(u) + αnH0(u) = 0, n = 2, N + 1.

(2)
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The characteristic function H(u) of the number of incoming calls in the
retrial queue is expressed through partial characteristic functions Hk(u) by

H(u) =
N+1∑
k=0

Hk(u). The main content of this paper is the solution of system

(2) by using an asymptotic analysis methods in two limit conditions: of the
high rate of making outgoing calls and the low rate of service time of outgoing
calls.

3. Prelimit analysis

In this section, we obtain expressions for the stationary distribution using
the characteristic functions. First, we derive explicit expression for the
characteristic function H(u) of the number of incoming calls in the system.

Theorem 1. Explicit expression for the characteristic function H(u) of the
number of incoming calls in M |M |1|N retrial queue is given as follows:

H(u) =
1

1 + ν1

(
1 +

N+1∑
n=2

αn

µn + λ(1− eju)

)
×

×
[

1− ρ

1− ρeju

]λ
σ
(1+ν2)+1 N+1∏

n=2

[
1− pn

1− pneju

]αn(θn−λ)
σθn

,

where

ρ =
λ

µ1

, ν1 =
N+1∑
k=2

αk

µk

, ν2 =
N+1∑
k=2

αk

θk
,

pn =
λ

µn + λ
, θn = λ+ µn − µ1, n = 2, N + 1.

Proof. From equations 2 and 3 of the system (2) we obtain expressions for
partial characteristic functions:

H1(u) =
λeju

µ1 + λ(1− eju)
H0(u)−

jσ

µ1 + λ(1− eju)
H ′

0(u), (3)

Hn(u) =
αn

µn + λ(1− eju)
H0(u), n = 2, N + 1. (4)

Substituting this equations into the first equation of the system (2), we
find that

H ′
0(u) = j

λ

σ

[
λeju

µ1 − λeju
+

µ1 + λ(1− eju)

µ1 − λeju

N+1∑
n=2

αne
ju

µn + λ(1− eju)

]
H0(u). (5)
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The solution of this differential equation is given by

H0(u) = r0

[
1− ρ

1− ρeju

]λ
σ
(1+ν2) N+1∏

n=2

[
1− pn

1− pneju

]αn(θn−λ)
σ(θn)

, (6)

where ρ =
λ

µ1

, r0 = H0(0) = P{k(t) = 0}, ν2 =
N+1∑
k=2

αk

θk
, pn =

λ

µn + λ
,

θn = λ+ µn − µ1, n = 2, N + 1.

Substituting u = 0 into the system (2) yields:
−

(
λ+

N+1∑
n=2

αn

)
r0 + jσ H ′

0(u)|u=0 +
N+1∑
k=1

µkrk = 0,

− µ1r1 + λr0 − jσ H ′
0(u)|u=0 = 0,

− µnrn + αnr0 = 0, n = 2, N + 1,

(7)

where expression for H ′
0(u)|u=0 can be obtained substituting u = 0 into (5).

It follows from equations 2 and 3 of the system (7) that

r1 =

[
λ

µ1

+
λ

µ1 − λ

(
λ

µ1

+
N+1∑
n=2

αn

µn

)]
r0,

rn =
αn

µn

r0, n = 2, N + 1.

Furthermore, from the normalization condition:
N+1∑
k=0

rk = 1, we obtain

r0 =
µ1 − λ

µ1 (1 + ν1)
, r1 =

λ

µ1

, rn =
αn(µ1 − λ)

µ1µn (1 + ν1)
, n = 2, N + 1,

where ν1 =
N+1∑
k=2

αk

µk

. Substituting (6) into (3) and (4) and summing up results,

we obtain

H(u) =
1

1 + ν1

(
1 +

N+1∑
n=2

αn

µn + λ(1− eju)

)
×

×
[

1− ρ

1− ρeju

]λ
σ
(1+ν2)+1 N+1∏

n=2

[
1− pn

1− pneju

]αn(θn−λ)
σθn

.
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4. Asymptotic analysis of the model under
the high rate of making outgoing calls

In this section, we will investigate system (2) by asymptotic analysis method
under the high rate of making outgoing calls condition. In particular, we
prove that asymptotic characteristic function of the number of incoming calls
in the system corresponds to Gaussian distribution.
Denoting αn = αγn, we obtain


−

[
λ+ α

N+1∑
n=2

γn

]
H0(u)+jσH ′

0(u) + µ1e
−juH1(u)+

N+1∑
n=2

µnHn(u) = 0,

− (λ+ µ1)H1(u) + λejuH1(u) + λejuH0(u)− jσH ′
0(u) = 0,

− (λ+ µn)Hn(u) + λejuHn(u) + αγnHn(u) = 0, n = 2, N + 1.

(8)

4.1. First order asymptotic

Theorem 2. Suppose i(t) is the number of incoming calls in the system of
the stationary M |M |1|N retrial queue with outgoing calls, then the (9) holds

lim
α→∞

Eejw
i(t)
α = ejwκ1 , (9)

where

κ1 =
λν1µ1

σ(µ1 − λ)
, ν1 =

N+1∑
n=2

γn
µn

. (10)

Proof. We denote α = 1/ε in the system (8), and introduce the following
notations

u = εw, H0(u) = εF0(w, ε), Hk(u) = Fk(w, ε), k = 1, N + 1,

in order to get the following system

− (λε+
N+1∑
n=2

γn)F0(w, ε) + jσ
∂F0(w, ε)

∂w
+ µ1e

−jwεF1(w, ε)+

+
N+1∑
n=2

µnFn(w, ε) = 0,

− (λ+ µ1)F1(w, ε) + λejwεF1(w, ε) + λejwεεF0(w, ε)−

− jσ
∂F0(w, ε)

∂w
= 0,

− (λ+ µn)Fn(w, ε) + λejwεFn(w, ε)+

+ γnF0(w, ε) = 0, n = 2, N + 1.

(11)
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Summing up equations of system (11), we obtain

λεF0(w, ε) + (λ− µ1e
−jwε)F1(w, ε) + λ

N+1∑
n=2

Fn(w, ε) = 0. (12)

Considering the limit as ε → 0 in the system (11) and equation (12), then
we will get 

−
N+1∑
n=2

γnF0(w) + jσF ′
0(w) +

N+1∑
k=1

µkFk(w) = 0,

− µ1F1(w)− jσF ′
0(w) = 0,

− µnFn(w) + γnF0(w) = 0, n = 2, N + 1,

− (µ1 − λ)F1(w) + λ
N+1∑
n=2

Fn(w) = 0.

(13)

We propose to get the solution of the system (13) in the form of

Fk(w) = Φ(w)rk, k = 0, N + 1. (14)

Here rk, k = 1, N + 1 is the probability of the server state k; r0 has no
sense of probability, since the probability that the server will be in the zero
state as α → ∞ is zero:

−
N+1∑
n=2

γnr0 + jσ
Φ′(w)

Φ(w)
r0 +

N+1∑
k=1

µkrk = 0,

− µ1r1 − jσ
Φ′(w)

Φ(w)
r0 = 0,

− µnrn + γnr0 = 0, n = 2, N + 1,

− (µ1 − λ)r1 + λ

N+1∑
n=2

rn = 0.

(15)

As the relation j
Φ′(w)

Φ(w)
does not depend on w, the function is obtained in

the following form Φ(w) = exp{jwκ1}, which coincides with (9). The value
of the parameter κ1 will be defined below. We rewrite the system (15) in the
form
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

−
N+1∑
n=2

γnr0 − κ1r0σ +
N+1∑
k=1

µkrk = 0,

− µ1r1 + κ1r0σ = 0,

− µnrn + γnr0 = 0, n = 2, N + 1,

− (µ1 − λ)r1 + λ
N+1∑
n=2

rn = 0.

(16)

The normalization condition for stationary server state probability distri-

bution is
N+1∑
k=1

rk = 1. We have



− µnrn + γnr0 = 0, n = 2, N + 1,

− (µ1 − λ)r1 + λ
N+1∑
n=2

rn = 0,

N+1∑
k=1

rk = 1.

(17)

The solution of the system (17) is given by

r0 =
µ1 − λ

µ1ν
, r1 =

λ

µ1

, rn =
γn(µ1 − λ)

µnµ1ν1
, n = 2, N + 1, (18)

where ν1 =
N+1∑
n=2

γn
µn

. Substituting (18) into system (16), we obtain an equation

for κ1, which coincides with (10).
The first order asymptotic i.e. Theorem 2, only defines the mean asymptotic

value κ1α of a number of incoming calls in the system in prelimit situation of
α → ∞. For more detailed research of number i(t) of incoming calls in the
system let’s consider the second order asymptotic. �

4.2. Second order asymptotic

Theorem 3. In the context of Theorem 2 the following equation is true

lim
α→∞

E exp

{
jw

i(t)
α

− κ1√
α

}
= e

(jw)2

2
κ2 , (19)

where

κ2 =
λ

σ
· µ1(µ1 − λ)(λν2 + ν1) + λ2ν1

(µ1 − λ)2
, ν1 =

N+1∑
n=2

γn
µn

, ν2 =
N+1∑
n=2

γn
µ2
n

. (20)
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Proof. We introduce the following notations in the system (8)

Hk(u) = exp{juακ1}H(2)
k (u), k = 0, N + 1, (21)

and we get

−

(
λ+ α

N+1∑
n=2

γn + ασκ1

)
H

(2)
0 (u) + jσ

dH
(2)
0 (u)

du
+

+ µ1e
−juH

(2)
1 (u) +

N+1∑
n=2

µnH
(2)
n (u) = 0,

− (λ+ µ1)H
(2)
1 (u) + λejuH

(2)
1 (u) + (λeju + ασκ1)H

(2)
0 (u)−

− jσ
dH

(2)
0 (u)

du
= 0,

− (λ+ µn)H
(2)
n (u) + λejuH(2)

n (u)+

+ αγnH
(2)
0 (u) = 0, n = 2, N + 1.

(22)

Denoting α = 1/ε2, and introducing the following notations

u = wε, H
(2)
0 (u) = ε2F

(2)
0 (w, ε),

H
(2)
k (u) = F

(2)
k (w, ε), k = 1, N + 1,

(23)

we obtain 

jσε
∂F

(2)
0 (w, ε)

∂w
−

(
σκ1 + λε2 +

N+1∑
n=2

γn

)
F

(2)
0 (w, ε)+

+ µ1e
−jwεF

(2)
1 (w, ε) +

N+1∑
n=2

µnF
(2)
n (w, ε) = 0,

− (λ+ µ1)F
(2)
1 (w, ε) + λejwεF

(2)
1 (w, ε)+

+ (λejwεε2 + σκ1)F
(2)
0 (w, ε)− jσε

∂F
(2)
0 (w, ε)

∂w
= 0,

− (λ+ µn)F
(2)
n (w, ε) + λejwεF (2)

n (w, ε)+

+ γnF
(2)
0 (w, ε) = 0, n = 2, N + 1.

(24)

Summing up equations of the system (24), we obtain

λε2F
(2)
0 (w, ε) + (λ− µ1e

−jwε)F
(2)
1 (w, ε) + λ

N+1∑
n=2

F (2)
n (w, ε) = 0. (25)
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Our idea is to seek for a solution of the system (24) and equation (25) in
the form

F
(2)
k (w, ε) = Φ2(w){rk + jwεfk}+ o(ε2), k = 0, N + 1. (26)

Substituting (26) to (24) and (25), laying out the exhibitors in tailor series
and taking (16) into account, dividing these equations by ε and taking the
limit as ε → 0, we have

−

(
σκ1 +

N+1∑
n=2

γn

)
f0 +

N+1∑
k=1

µkfk − µ1r1 + σ
Φ′

2(w)

wΦ(w)
r0 = 0,

σκ1f0 − µ1f1 + λr1 − σ
Φ′

2(w)

wΦ(w)
r0 = 0,

−µnfn + λrn + γnf0 = 0, n = 2, N + 1,

−(µ1 − λ)f1 + λ
N+1∑
n=2

fn + µ1r1 = 0.

This equations imply that
Φ′

2(w)

wΦ2(w)
doesn’t depend on w and thus the

function Φ2(w) is given in the following form

Φ2(w) = exp

{
(jw)2

2
κ2

}
,

which coincides with (19). We have

Φ′
2(w)

wΦ2(w)
= −κ2

and then we obtain the system

−

(
σκ1 +

N+1∑
n=2

γn

)
f0 +

N+1∑
k=1

µkfk = µ1r1 + σκ2r0,

σκ1f0 − µ1f1 = −λr1 − σκ2r0,

− µnfn + γnf0 = −λrn, n = 2, N + 1,

− (µ1 − λ)f1 + λ

N+1∑
n=2

fn = −µ1r1.

(27)

Substituting values (18) into the system (27), we have

fn =
γn
µn

f0 +
λ(µ1 − λ)γn

µ1µ2
nν1

, n = 2, N + 1,
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f1 =
λν1

µ1 − λ
f0 +

λ2ν2
µ1ν1

+
λ

µ1 − λ
,

where

ν1 =
N+1∑
k=2

γk
µk

, ν2 =
N+1∑
k=2

γk
µ2
k

.

Substituting this expressions into equation 2 of the system (27), we obtain
an equation for κ1, which coincides with (20).

Second order asymptotic i.e. Theorem 3, shows that the asymptotic prob-
ability distribution of the number i(t) of incoming calls in the system is
Gaussian with mean asymptotic κ1α and variance κ2α. �

5. Asymptotic analysis of the model under the low rate
of service time of outgoing calls

In this section, we will investigate system (2) by asymptotic analysis method
under the low rate of service time of outgoing calls condition.

Denoting µn = µγn, we obtain
−

[
λ+

N+1∑
n=2

αn

]
H0(u)+jσH ′

0(u)+µ1e
−juH1(u)+µ

N+1∑
n=2

γnHn(u) = 0,

− (λ+ µ1)H1(u) + λejuH1(u) + λejuH0(u)− jσH ′
0(u) = 0,

− (λ+ µγn)Hn(u) + λejuHn(u) + αnHn(u) = 0, n = 2, N + 1.

(28)

Theorem 4. Suppose i(t) is a number of incoming calls in a system of
stationary M |M |1|N retrial queue with two way communication, then the
following equation is true

H(u) = lim
µ→0

Eejwµi(t) =
1

ν1

N+1∑
n=2

αn

γn − jwλ

N+1∏
n=2

(
1− jw

λ

γn

)− µ1αn
σ(µ1−λ)

, (29)

where ν1 =
N+1∑
n=2

αn

γn
.

Proof. We denote µ = ε, let’s substitute the following in the system (28)

u = wε, H0(u) = εF0(w, ε), Hk(u) = Fk(w, ε), k = 1, N + 1.
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We will get the system

−

(
λ+

N+1∑
n=2

αn

)
εF0(w, ε) + jσ

∂F0(w, ε)

∂w
+

+ µ1e
−jwεF1(w, ε) + ε

N+1∑
n=2

γnFn(w, ε) = 0,

− (λ+ µ1)F1(w, ε)− jσ
∂F0(w, ε)

∂w
+ λejwεF1(w, ε)+

+ λεejwεF0(w, ε) = 0,

− (λ+ εγn)Fn(w, ε) + λejwεFn(w, ε)+

+ αnεF0(w, ε) = 0, n = 2, N + 1.

(30)

Considering the limit as ε → 0 in the system (30) then we will get

−jσF ′
0(w)− µ1F1(w) = 0, jσF ′

0(w) + µ1F1(w) = 0. (31)

Summing up equations of the system (30) we have

λεF0(w, ε) + (λ− µ1e
−jwε)F1(w, ε) + λ

N+1∑
n=2

γnFn(w, ε) = 0. (32)

Laying out the exhibitors in tailor series, dividing equations by ε and taking
the limit as ε → 0, taking (31) into account, we obtain

−

(
λ+

N+1∑
n=2

αn

)
F0(w)− jwµ1F1(w) +

N+1∑
n=2

γnFn(w) = 0,

−jσF ′
0(w)− µ1F1(w) = 0,

(λjw − γn)Fn(w) + αnF0(w) = 0, n = 2, N + 1

−(µ1 − λ)F1(w) + λ
N+1∑
n=2

Fn(w) = 0.

From the last system of equations we have

Fn(w) =
αn

γn − jwλ
F0(w), (33)

F1(w) =
λ

µ1 − λ

N+1∑
n=2

Fn(w). (34)
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Then

F1(w) =
λ

µ1 − λ
F0(w)

N+1∑
n=2

αn

γn − jwλ
. (35)

Substituting (35) into (31), we obtain

F ′
0(w) = j

λµ1

σ(µ1 − λ)
F0(w)

N+1∑
n=2

αn

γn − jwλ
.

The solution of differential equation is given by

F0(w) = C
N+1∏
n=2

(
1− jw

λ

γn

)− µ1αn
σ(µ1−λ)

, (36)

where C is an integration constant and its value will be obtained later. We

denote asymptotic characteristic function
N+1∑
k=1

Fk(w) = Φ(w). Substituting

(36) into (33) and (34), we obtain

F1(w) =
λ

µ1 − λ

N+1∑
k=2

αk

γk − jwλ
C

N+1∏
k=2

(
1− jw

λ

γk

)− µ1αk
σ(µ1−λ)

,

Fn(w) =
αn

γn − jwλ
C

N+1∏
k=2

(
1− jw

λ

γk

)− µ1αk
σ(µ1−λ)

, n = 2, N + 1.

Summing up equations, we have

Φ(w) =
µ1

µ1 − λ
C

N+1∏
n=2

(
1− jw

λ

γn

)− µ1αn
σ(µ1−λ)

N+1∑
n=2

αn

γn − jwλ
.

Using condition Φ(0) = 1, we obtain

C =
µ1 − λ

µ1ν1
, where ν1 =

N+1∑
n=2

αn

γn
.

We obtain the characteristic function (29). �

6. Approximation accuracy

The accuracy of the approximation P (2)(i) is defined by using Kolmogorov

range ∆2 = max
06i6N

∣∣∣∣ i∑
ν=0

(P (ν)− P (2)(ν))

∣∣∣∣ , which represents the difference be-

tween distributions P (i) and P (2)(i), where P (i) is obtained by using inverse
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Fourier transform for the characteristic function of the M |M |1|N retrial queue

and the approximation P (2)(i) is given by obtained asymptotics. We consider
N = 3, λ = 0.2, µ1 = 1 and σ = 1 for Tables 1 and 2.

Table 1

Kolmogorov range, µ2 = 2, µ3 = 3, µ4 = 4, γ2 = 1, γ3 = 2, γ4 = 3

α = 3 α = 5 α = 10 α = 50 α = 100

∆2 0.066 0.043 0.023 0.01 0.007

Table 2

Kolmogorov range, γ2 = 2, γ3 = 3, γ4 = 4, α2 = 1, α3 = 2, α4 = 3

µ = 0.05 µ = 0.035 µ = 0.02 µ = 0.01

∆2 0.059 0.044 0.026 0.014

7. Conclusions

In this paper, we have considered retrial queue with two way communication
with multiple types of outgoing calls. We have found characteristic function
of the number of incoming calls in the system. We have found the first and
the second order asymptotics of the number of calls in the system under the
condition of the high rate of making outgoing calls. Based on the obtained
asymptotics we have built the Gaussian approximation of the probability
distribution of the number of incoming calls in the system. We have found
asymptotic characteristic function of the number of incoming calls in retrial
queue under the condition of the low service rate of outgoing calls. In future
we plan to consider this retrial queueing system under other asymptotic
conditions.
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