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The program is proposed for a realization of the symbolic algorithm based on the quantum
mechanics with non-negative probability distribution function (QDF) and for calculations of
energy levels for hydrogen-like atoms. The program is written up in the language MAPLE.
In the framework of the algorithm an original Maple package for calculations of necessary
functions, such as hydrogen wave functions, Sturmian functions and their Fourier-transforms,
Clebsch—Gordan coefficients, etc. is proposed. Operators of observables are calculated on the
basis of the QDF quantization rule. According to the Ritz method, eigenvalues of Ritz matrices
represent spectral values of the quantity under investigation, i.e. energy. As an example, energy
levels of hydrogen-like atoms are calculated and compared with experimental data retrieved
from the NIST Atomic Spectra Database Levels Data. It turns out that this theory seems to be
equivalent to the traditional quantum mechanics in regard to predictions of experimental values.
However, the existence of a phase-space probabilistic quantum theory may be an important
advance towards the explanation and interpretation of quantum mechanics.

Key words and phrases: quantum mechanics, transition probability, computer algebra,
non-negative quantum distribution function

1. Introduction

In [1] several computational techniques for investigation of characteristics of atomic
structures were proposed. This method goes far beyond the techniques described in [2].
A deficiency of the single-configurational approximation was noted in [3]. D.Layzer [4]
suggested the use of multy-configurational approximation restricting to the case of
configurations belonging to the same complex (i.e. with the same parities and the
same principal quantum numbers). By contrast, Eissner and Nussbaumer [1] consider
interactions of configurations belonging to different complexes. Nussbaumer [5] introduced
some refinement of the technique for calculation of radial functions as compared with
variational approaches (for instance, Thomas—Fermi method). In particular, the procedure
includes an effective charge z (as compared with the real one Z):

J—-—Ni<z<Z

which had been introduced in [4]. Calculations of radial functions were used in calcula-
tions of oscillators strengths and transitional probabilities. It is worth noting that the
convergence of calculational results to experimental data while more and more complexes
are taken into account was strictly demonstrated in [5].

The electron correlation effects on the oscillator strengths for resonance transitions in
alkaline earth atoms have been studied by many authors. The conventional approach
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consists in improving Hartree—Fock-like wavefunctions by introducing configuration in-
teraction (CI) while using the usual dipole operator for the oscillator strength. This
approach was used by Burke et al. [6] for Be, Zare [7] and Weis [8] for Mg, and Friedrich
and Trefftz [9] for Ca and Ba.

An alternative approach was adopted in [10], which uses an effective operator in
addition to the common dipole operator and in so doing keeps a rather simple structure
of corresponding wave functions. This method had been previously proposed by Hameed
[11,12] and it works well with alkaline metals and provides slightly worse results when
applied to alkaline earth elements. However, the modification of the method proposed
in [10], works very well for alkaline earths as well. Relativistic corrections introduced
in [13,14] were included in the extension [15] of the package [5].

It is worth noting that the whole cycle of the above-mentioned investigations has
been elaborated in detail by Russian authors as well. The books [16-18] present a good
introduction and an excellent review of the problem. Among other things they suggest
that radial one-particle functions obtained using semi-empirical potentials, are best suited
for calculations of transitional probabilities.

Quantum mechanics with non-negative distribution function (QDF) is an alternative
physical theory with a developed theoretical formalism [19-28]. However, the weak point
in this theory lays in the fact that until the present time no truly extensive investigations
of properties of real quantum systems have been conducted. This is due to the much
more complex structure of the QDF theory as compared with traditional quantum
mechanics. Generations of operators of observables include calculations of complex multi-
dimensional integrals. Furthermore, this leads to rather cumbersome expressions for
operators, resulting in the absence of analytical approaches to calculations of spectra.
For purposes of effective computer calculations, it is necessary to combine analytical and
numerical methods, i.e. creation of a package of programs mating with each other. The
evidence for the capacity of the QDF theory to obtain the same results as conventional
quantum mechanics would mean an important advance in the interpretation of quantum
mechanics as a statistical theory.

The present work solves the analytical part of the above-mentioned problem. The
MAPLE package is used to generate necessary functions, their Fourier-transforms, to
calculate integrals, operators and matrices according to formulae of QDF. Besides, nu-
merical potentialities of MAPLE are exploited as well in calculations of eigenvalues
of Ritz matrices. This program has been being developed for several years by us and
co-authors, starting with [27].

The computation time raises as the dimension of Ritz matrices does. On the other
hand, for small dimensions of matrices, the accuracy of the computations is insufficient.
The hardware (processor and memory, for example) available for the computation may
restrict either the degree of accuracy or the computation time. As a result of comparisons
and tests of various program variants, we came to the conclusion that the dimension of
the matrices 91 x 91 is optimal. Thus, this article sums up the many years of work on
the creation of a package of programs and poses challenges for future research.

2. Quantum Mechanics with Non-Negative Distribution
Function

Operators in quantum mechanics with non-negative QDF are defined up to an arbitrary
set of integrable functions of configuration space and time ¢(q,t), normalized by the

condition:
> [lona0Pag=1. 1)
k
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By virtue of square integrability the functions ¢, allow the Fourier transformation

O(A)U(q,t) = (2rh) ™~ / d(g— & p—n)er =P AE 0, OU(¢ 1) dEdndpdg’,  (2)

where h is an arbitrary action-dimensioned constant. In what follows it is convenient
to introduce a new function of phase space and time, constructed on the basic set (1)
in the following manner:

(g p.t) = (27h) ™% e D" 91 (q, 1) 5 (p, 1). (3)
k

Then the rule for construction of quantum-mechanical operators with non-negative QDF
may be formulated as follows: a classical function A(q, p,t) corresponds to a linear operator
O(A), which acts on a generic Fourier-transformable function u(g,t) in the following way:

O(A)U(q,t) = (2rh) ™ / d(q — &, p— et TDPAE n tyu(d, 1) dedndpdg’.  (4)

It follows that the formulae for calculation of means are in fact equivalent:

(A) = / (. )0(A)b(g, 1) dg (5)

and
(A)p = /A(q,p,t)Fp(q,p,t) dg dp, (6)
where the expression

2

Folap,t) = @n)~™" 3 ] / Gila — (¢, e HEP

defines the relation between wave functions and phase space probability densities.

In this work we use the so called sturmian functions as auxiliary functions 1. The
sturmian functions satisfy the equation [29]

< d? +l(l+1)

dr2 r2

+anV(r) — EO) Sni(r) =0, (8)

with the Coulomb potential V(r) = —2/r and with boundary conditions S,;(0) =
0, Sni(0) = 0. Here n =1,2,3,..;1=0,1,...,n—1; Ey < 0; an; = kn; k = v/—Ep.
The solution of the equation (8) may be expressed in terms of the associated Laguerre

polynomials:
Spi(r) = Npe™*r (Qk’r)l“Lilj:ll (2kr),

where k£ = /—FEy and the normalization constant are:

In our package SourceFunction we use sturmian functions devided by r and normalized
to 1. In the case of n = 1, [ = 0, sturmian and usual Coulomb wave functions coincide
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exactly, but as n grows, the amplitude and number of harmonics of sturmian functions
differ from the Coulomb ones.

In the course of calculations some formulae are very useful, such as products of
spherical harmonics

v (2l +1)(2ly + 1)

3/21m1 (Qaqb))/bmz(@?qb) 477(2L + 1)

CllolQOCllmllngYLM(e’ gb)’ (9)
LM

as well as the formula for the integral of the triple product of spherical functions

2T

/d¢/ day’h"h (rb)YlQmQ(H ) l3m3<0 ¢) =

0

20+ )2 +1) -
= \/ 1471'(2l3 +21) Clll(())IQOCllfmllngYLM(97¢) (10)

and the expansion:

[ee]

1 1 rt
M :47TZ 2[+1Tl+1 Z YVlm qad)q) ( sad)s) (11)
=

where r_ = min(|ql, |3]), 4 = max(|q), |31)-

The main goal of the program is a numerical calculation of the spectrum of hydrogen
and some alkali metals, using the Ritz method with 91 x 91 matrices. This corresponds
to the use of the basis of functions with the values of the principal quantum number
n=1,2,3,4,5,6. The obtained values are then compared with experimental data to find
the optimal parameters that provide the best fit for the data. In addition, an algorithm
was developed for the numerical calculation of transition probabilities for hydrogen-like
atoms and a procedure for comparing these data with those obtained experimentally.

According to the second theorem of Kato, if V(r) — 0 for || — oo, then the essential

spectrum of the operator H coincides with the essential spectrum of the operator H,,
namely, it is half-line Rt = [0, c0).

The essential spectrum of an operator consists of all points of the spectrum, with the
exception of isolated eigenvalues of finite multiplicity. Thus, the spectrum consists of two
disjoint sets: eigenvalues of finite multiplicity and the essential spectrum.

The Hamilton operator of a hydrogen-like atom in a quantum mechanics with non-
negative distribution function is H = Hy + ¢l + V(7). The function V() satisfies the
conditions of the second Kato theorem. Therefore, the discrete spectrum of finite multi-
plicity lies below the essential spectrum and belongs to the interval [c—1, ¢). Consequently,
for the Hamilton operator O(H ), we apply the minimax Rayleigh-Ritz method, and the
eigenvalues A7 for N-dimensional Ritz matrices converge to the eigenvalues A7° = A;
of this operator.

The Hamiltonian operator O(H) of a hydrogen-like atom in quantum mechanics with
nonnegative quantum distribution function is defined by the relations

Otpy(H) = H + Cg 31 + Vig,y (F)

for a set of valid functions {¢; € La(R?)}. The operator O(H) is self-adjoint and bounded
below by a constant (C'—1). The constant C' depends on the choice of auxiliary functions.
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In view of the nonorthogonality of the used system of coordinate functions, to find the
spectrum, it is necessary to solve a generalized eigenvalue problem

MZ = ABZ, (12)

where M is the Ritz matrix O(H), and B is the matrix of scalar products of coordinate
functions. The elements of the Ritz matrix are calculated by the formula:

M, = /w [ ( 2>+0 < Z‘fiez)}@u{%df. (13)

The result is a matrix that depends on the parameters Ey,b;,a; and Z.g. These
parameters were used to find the spectrum that best fits the experimental data. The
calculations were carried out using the Ritz matrices of dimensions 55 and 91, which
correspond to the first five or six principal quantum numbers n. Nevertheless, even for
such limited dimensions, it was possible to obtain a spectrum of hydrogen and some
alkali metals with high accuracy. To assess the quality of the model, we used the function
of the quadratic discrepancy

Fo=3 (O — BJP) / (BP7) (14)

keQ

As shown in our works [22,24,25,27,28], for a hydrogen atom, the first 30 spectral values
may be obtained with high accuracy. Moreover, the only sensitive parameter was the
value Ey. For parameters b; in the case of a hydrogen atom, the optimal value regardless
of the number of spectral values in the residual is the value b; = 0. As to the coefficients
aj, only a; = 1, and the remaining coefficients in the optimization turned to zero.

In contrast to the hydrogen atom, in the case of alkali metals it is impossible to build
a single effective potential capable of describing the energy levels for different quantum
numbers n,l. This occurs due to the interaction of the external electron with internal
electrons, and the nature of this interaction is fundamentally different for different values
of the orbital number .

To verify the quality of the model and the correctness of the choice of auxiliary
functions, transition probabilities may be calculated. In the described program, the
transition probabilities are calculated by the Galerkin method with the Sturm functions
of the hydrogen atom as coordinate functions, which allows us to reduce the calculations
to algebraic operations with matrix elements that are calculated analytically.

3. The Program

The program is written up in the language MAPLE according to the algorithm described
above. Figure 1 presents the general scheme of the program.

It consists of nine stages. The first stage represents the original package for calculations
of necessary functions. The second stage is devoted to calculations of potential energy
operators. The third stage is devoted to calculations of kinetic energy operators. The
fourth stage is devoted to calculations of Ritz matrices. The fifth stage is devoted to
generation of codes for Ritz matrices for later use in other programs. The sixth stage is
devoted to calculation of spectra of the Hamilton operator for an electron in hydrogen-like
atoms. The seventh stage is devoted to optimization of parameters of the model for
hydrogen. The final stage is devoted to optimization of parameters of the model for
alkaline metals. Finally, the ninth part is the calculation of transition probabilities for
model verification. The structures of the parts of the software package are shown in more
detail: for calculating auxiliary functions (Figure 2), for calculating matrices and energy
levels (Figure 3), and for calculating transition probabilities (Figure 4).
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Figure 2. The structure of the part of the program for calculating auxiliary
functions
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Figure 4. The structure of the part of the program for calculating transition
probabilities

The subpackage “SourceFunctions” consists of the following parts. Calculation of
spherical harmonics according to well-known formulae. The Legendre polynomials are
generated using the Rodrigues formula. Calculations of sturmian functions, further
these functions are normalized. Then follow calculations of auxiliary QDF functions
(as products of sturmian functions and spherical harmonics) and calculations of fourier
transforms of auxiliary functions. Let us note that all integrals are calculated analitically.

Then follow calculation of Clebsh-Gordan SO(3) coefficients according to common well-
known formulae. We do not intend to carry out extensive calculations and investigations in
this field, since there exist excellent Racah and Bethe packages and their extensions [30-33].
Calculations of products of spherical harmonics according to (9) etc.

Matrix elements of Ritz matrices (13) are computed and written to external files.
According to the Ritz method, eigenvalues of Ritz matrices represent spectral values of
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the quantity under investigation, i.e. energy. As stated above, the algorithm consists
in solving the generalized eigenvalues problem M ¥ = AB X where M is a Ritz matrix
and B is the matrix of pair-to-pair scalar products of coordinate functions. The program
allows calculating of Ritz matrices of arbitrary dimension. However, there exist apparatus
restrictions due to the degree of the dimension. Currently, calculations with dimensions
55 and 91 are available.

The parameter Fy is adjustable. For example, Figure 5 shows the dependence of the
residual on Fy for the lithium atom and n + [ = 5.

I o o
= o ®

quadratic discrepancy

e
)

o
=}

30 40 50 60 70 80
iteraction number

o
=
o
[
(=)

Figure 5. Graph of the quadratic discrepancy on the parameter Ej, in the case of
the group of atomic levels of the lithium atom with N + L = 5. The minimum is
equal to 0.088 and corresponds to Ey = —0.01414. Other options are
b1 = 3.33;b2 = 0.001 = b3 = bs = 0.001; Zegg = 1;me = 1

Residuals for smaller numbers of levels have similar deep minimax. But for alkali metal
atoms, unlike a hydrogen atom, it is impossible to construct a unique effective potential
capable of describing energy levels for different quantum numbers n,! [27]. One of the
ways for describing energy levels in atoms of alkali metals is the so-called quantum defect
model [16]. In this model, in a hydrogen-like spectrum, either the effective principal
quantum number or, which is equivalent, the effective nucleus charge Z.g (which differs
from the true charge because of the screening by the inner electrons) is used.

Figure 6 shows the dependence of the residual on the effective charge Z.g for the lithium
atom and NV + L = 5. It is also possible to vary the effective electron mass. Figure 7 shows
the dependence of the residual on the effective mass m, for the lithium atom and n+1 = 5.

0 20 40 60 80 100
iteraction number

Figure 6. Graph of the quadratic discrepancy on the parameter Z.g in the case of
the group of atomic levels of the lithium atom with N + L = 5. The minimum is
equal to 0.085 and corresponds to Zeg = —1.242. Other options are
b1 =3.33;b2 = 0.001 = b3 = by = 0.001; Ep = —0.1414;m. =1
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Figure 7. Graph of the quadratic discrepancy on the parameter m. in the case of
the group of atomic levels of the lithium atom with N + L =5. The minimum is
equal to 0.085 and corresponds to m. = 0.99. Other options are
b1 = 3.33;b2 = 0.001 = b3 = by = 0.001; Eg = —0.1414; Zeg = 1.242

4. Conclusion

Quantum mechanics with a non-negative distribution function ceases to be an exotic
theory and becomes a real design scheme that has its advantages. This happened after
formulating it as a theory of quantum measurements. The used fitting parameters have a
clear physical meaning and allow one to take into account and describe real phenomena,
for example, the screening of the nuclear field by internal electrons and the interaction of
an external electron with them. The proposed program allows one to effectively carry out
such calculations, and also permits generalization to other quantum systems.
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IIpennoxkena nporpaMma JJjis peajn3alii aJrOPUTMa aHAJIUTHIECKUX BBLIUNCIEHUN, OCHOBAH-
HOI'O HAa KBAHTOBOU MEXaHWKE C HEOTPHUIATEIbHON (hyHKIMENR pacipeaesieHusi BEPOATHOCTEN U
JIJIsT PACIETOB YPOBHE 9HEPTrUU ISl BOJOPOIOIOA00HBIX aTOMOB. IIporpaMma HammcaHa Ha SI3bI-
ke MAPLE. B paMkax ajropurMa OCYyIIECTBIISIIOTCSA BLIYUCIEHUST HEOOXOIUMBIX (DYHKIUI, TaKUX
KaK BOJTHOBBIE (DYHKIIMK ATOMa BOJOPO/IA, IMITYPMOBCKHE (DYHKIUHU U UX (ypbe-Ipeodpa3oBaHusI,
ko3 bunmenter Knebma-Topaana u 1. 1. OnepaTopsbl HAOIIOJAEMBIX BBIUUCIAIOTCS Ha OCHO-
Be IIpaBMJIa KBAHTOBAHUS KBAHTOBON MEXaHUKHU C HEOTPULATEIbHON (PyHKIHMEN paclpeiesIeHns.
Cormtacuo Metonay Putiia, cobcTBeHHBIE 3HAYEHUST MATPUIL PUTIIA TIPEACTABIISAIOT CODOM CIeK-
TpaJibHbIe 3HAYCHUS UCCIEAYEeMOM BeJIMUMHBI, T. €. S9HEPruu. B KatuecTBe IpuMepa BBIMUCIIAIOTCS
SHEPreTUYECKUE YPOBHU BOJIOPOJIOMOIOOHBIX ATOMOB M CPABHUBAIOTCS C IKCIIEPUMEHTATLHBIMU
3HAYEHUSMU, TTOJIYI€HHBIMA U3 JAHHBIX ypoBHeit 6a3nl manabx NIST Atomic Spectra. Vcmonn3y-
eMasi TeOpHsI, IIO-BUIMMOMY, SKBUBAJIEHTHA TPAAUIIMOHHON KBAHTOBOUW MEXAHHUKE B OTHOIICHUU
MIpeICKA3aHNN SKCIIEPUMEHTAIBHBIX 3HaUYeHul. OJHAKO CYIECTBOBAHNE BEPOSITHOCTHON KBaH-
TOBOM Teopur (Has30BOTO MPOCTPAHCTBA MOXKET OBbITh BayKHBIM ITArOM BIEPEN K 00bICHEHUIO
U WHTEPIIPETAINN KBAHTOBON MEXaHUKU.

KuroueBrbie cioBa: KBaHTOBas MEXaHHKA, BEPOITHOCTH IIepeXo/ia, KOMIbIOTEpHAs ajarebpa,
HEOTPUIATE/IbHAS KBAHTOBas (DYHKITUS PACIPEIETCHIIS
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