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Light interacts with materials in a variety of ways; this article focuses on determination of
refraction and absorption characterized by a material’s refractive index. We discuss some of the
useful models for the frequency dependence of the refractive index, and practical approaches
to calculating refractive indices of thin films and thick substrates.

The efficiency of manufacturing of existing and successful creation of new devices of solid-state
micro- and nanoelectronics largely depends on the level of development of the technology for
manufacturing layers of various materials with a thickness of several nanometers to tens of
micrometers. A high degree of perfection of layered structures and particularly structures
based on dielectric and/or metallic films with nanometer thickness is needed for their successful
application in micro-, nano-, acousto-, microwave and optoelectronics. It is impossible to achieve
high degree of perfection without the use of high-precision methods of measuring electrophysical
parameters of dielectric and semiconductor materials and structures, metallic films.

We have developed the program “Multilayer”, which serves both to simulate the propagation
of light through multilayer thin-film layered media, and to determine the dielectric (permittivity
tensor of anisotropic films) and geometric (physical and optical thicknesses of the film) parameters
of various thin-film coatings. The base mathematical models applied for the description of the
light wave propagation through a homogeneous optical medium and for the determination of the
optical characteristics of thin layers of optical materials based on the results of light intensity
measurements are described. The main mathematical formalism employed in the program is
based on solving the Maxwell’s equations for propagation of light through anisotropic stratified
media. The algorithm uses the Berreman matrices of order 4 x 4.

Key words and phrases: transmittance, reflectance, refractive indices determination,
thin films

1. Introduction

Methods for the theoretical design of optical coatings, based on modeling the interaction
of light with thin-film structures, provide, among other things, reliable production
monitoring of thin-film multilayer structures with specified properties [1].

We describe some approaches to the solution of the main problems related to simulation
of the optics of multilayer stacks and optical characterization of the used materials. The
base mathematical models applied for the description of the light wave propagation through
a homogeneous optical medium and for the determination of the optical characteristics
of thin and thick layers of optical materials based on the results of light intensity
measurements are described. The main mathematical formalism employed in the software
is based on solving the Maxwell’s equations for propagation of light through anisotropic
stratified media. The algorithm uses the Berreman approach and his matrices formalism.

We will consider solutions of the two principal problems in optics. The first problem
consists in determining the properties of various optical systems for the given optical
parameters of components. The second problem, inverse to the first one, is to determine
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the optical parameters — refractive indices and absorption coefficients — from the
measured intensities of transmitted and reflected polarized light waves.

Practical mathematical models techniques for determining the optical parameters of
thin films are outlined.

— Direct problem consists in simulation of the optical properties of various multilayer
systems for preset characteristics of the whole stacks for a given configuration of the
light wave field.

— Inverse problem means evaluation of refractive indices of transparent homogeneous
layers (and their thicknesses) incorporated into multilayer stack using the results of
optical measurements.

The solutions of both problems have to be found in a certain spectral range, that
is, over a certain interval of wavelengths. The main elements of mathematical models
used for the formulation and solution of these problems are the wave theory of light,
Maxwell’s equations, and the properties of the permittivity tensor of a material. Solution
of the inverse problem is based on the main property of dielectric constant: its real and
imaginary parts are connected to each other by the Kramers—Kronig relation.

Let us discuss some available approaches of mathematical modeling of light interaction
with isotropic or anisotropic layered materials.

2. Muller Calculus

Mueller calculus is a matrix method for manipulating Stokes vectors, which represent the
polarization of incoherent light. It was developed in 1943 by Hans Mueller, then a professor
of physics at the Massachusetts Institute of Technology. Light which is unpolarized or
partially polarized must be treated using Mueller calculus, while fully polarized light can
be treated with either Mueller calculus or the simpler Jones calculus. Coherent light
generally must be treated with Jones calculus because the latter works with amplitude
rather than intensity of light. The effect of a particular optical element is represented by
a Mueller matrix; which is a 4 x 4 matrix and a generalization of the Jones matrix.

Any fully polarized, partially polarized, or unpolarized state of light can be represented
by a Stokes vector (S). Any optical element can be represented by a Mueller matrix (M).

If a beam of light is initially in the state S; and then passes through an optical element
M and comes out in a state Sy, then it is written Sy = M S;.

The Muller matrix is used for analytical description of the action of optical elements on
polarized light beams. This square matrix (linear operator) with real coefficients describes
a change in the Stokes vector upon the passage through a given optical element. In contrast
to the method employing the Jones matrix, which is applicable only to description of the
light transmission via nondepolarizing optical elements, the Muller method can be used
to describe the depolarizing systems as well. This is possible because the Muller matrix
establishes a relation between time-averages intensities of various polarization components
of the incident and transformed light beams, rather than between the amplitudes and
phases of oscillations.

The transmission of light via optical components leads to a change in the state of
the four-component Stokes vector:

before after
S — S

This change can be analytically described using the Muller matrix as

Sbefore
Moo M™o1 M2 M3 0

Mip M11 M12 M13
M2o Ma1 Moz Mag| | Shefore

Sbefore
Safter — Msbefore — 1

ms3g MM31 MM32 1M33 S:lg)efore
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In the case of an optical system comprising several elements, the Muller matrix of
the total system is a product of the matrices of individual components in the order
of light transmission. The matrices of elements successively passed by the light beam
are written left to right:

Saft’,er — MKMK—I o MQMlsbefore‘

The elements of the Muller matrix can be calculated using the results of measurements
of the Stokes vector components. The problem of reconstruction of the Muller matrix
(operator) proceeding from the Stokes vector components measured at the input and
output of an optical system belongs to the class of so-called ill-posed problems. For
correctly solving this problem it is necessary not only to perform thorough measurements,
but also to use numerical methods of solving ill-posed problems — a special mathematical
apparatus developed for the processing of such data [2].

3. Berreman Matrix Method and Calculation Techniques
for Thin Layers

There are several approaches to the description of light waves propagating through a
layered, in the general case anisotropic medium. These approaches are based on the use
of classical models [3,4], the classical method of Jones’ matrix [4,5], the extended Jones’
matrix method [5], and the Berreman’s matrix method [6]. The choice of a particular
method is determined by the conditions of application. The extended (4 x 4 matrix)
Jones method and the Berreman method are considered universal.

The main criteria for selecting a method to be used in our case are the possibility to
deal with arbitrary parameters (polarization, angle of incidence) of the input light wave
and to take into account multiple reflections at interfaces between layers of an optical
system. Both the extended (4 x 4 matrix) Jones method and the Berreman method meet
these conditions, but isotropic systems are more conveniently described in terms of the
classical methods [4], which is especially important in solving the inverse problems. For
these reasons, the mathematical apparatus and software program are formulated, where
possible, so as to use any of the three methods:

— the Berreman’s matrix method (below, merely the matrix method), which is applicable

to materials of any type and optical system of arbitrary configuration;

— the classical method, to be used in the case of isotropic materials and optical systems

with no more than two layers;

— a combined method, which is convenient for use in the case of two-layer structures

on thick isotropic substrates.

The main mathematical relationships for an arbitrary incident light wave in the classical
description taking into account multiple reflections in one- or two-layer system have been
presented above. Below we will concentrate on the matrix method.

It should be noted that calculations involved in solution of the direct problems related to
the simulation of multilayer structures and devices are more conveniently performed using
the matrix method even for simple isotropic materials. This is explained by the fact that
the matrix method allows a greater number of parameters of the transmitted and reflected
light to be calculated as compared to that involved in simple classical calculations.

4. Matrix Calculation Method

Let us consider the method of calculation of the transmitted and reflected light waves,
which is based on the matrix approach and developed in [6,7]. The main idea of this
algorithm, which is frequently called the Berreman 4 x 4 matrix method, consists in using
the exact transformations of Maxwell’s equations in the matrix form under the condition
that the optical medium (layer) is isotropic in the Z axis direction.
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Using the Berreman matrix, which is the matrix of transformation of a linear differential
equation, it is possible to take into account the interference effects accompanying multiple
reflections between layers in a system studied. Eventually, this matrix determines a linear
transformation converting tangential components of the electric and magnetic fields in
the light wave at the input of the given optical system into the corresponding components
of reflected and transmitted waves at the output.

The algorithm under consideration deals with the general case of a refractive index
ellipsoid (Fresnel ellipsoid) of arbitrary size and orientation. Let a light beam be incident
in the OXZ plane at an angle « relative to the Z axis.

Under these conditions, the tangential components of the electric and magnetic fields
of the light wave obey the following matrix relation [6,7]:

E, E,

0 H, W H

il =—ZA Y 1
—H, —H,

where E, H are the complex components of the electromagnetic wave, w is the wave
frequency, and c is the speed of light. The elements of matrix A are complex quantities
and can be expressed using well-known formulas [6] via components of the permittivity
tensor and parameters of the incident wave. If the elements of matrix A are independent
of z, a solution of this linear system can be written in terms of the matrix exponent as

K =exp (“24) (0 = Pl )

where x(z) = (E,, Hy, E, —H,)" and P(z) is the Berreman 4 x 4 matrix for the given
homogeneous optical medium.

As can be seen from equation (2), the Berreman matrix of this system has the form
of exponent of the matrix. In the general case, calculation of the matrix exponent is
a nontrivial task. Berreman suggested to use an approximate formula for the matrix
exponent, but this approach is not always convenient and requires great care in selecting
the discretization step. However, in the case under consideration, it is possible to develop
an effective algorithm for determining the Berreman matrix.

Determination of the matrix exponent is based on the calculation of eigenvalues and
eigenvectors of matrix A, which is achieved using a highly effective algorithm. If all
the eigenvalues of A are different, the matrix exponent can be constructed using the
Silvester formula

4 H(A—)\J)

P(h) = exp iwhdfe) = 3 | exp (iwhde/e) T —5y |

ik

(3)

where A\p are the eigenvalues of A.

If the eigenvalues of A coincide, formula (3) is inapplicable. However, in such cases, it
is possible to use the Jordan canonical form [8] that provides for a sufficiently effective
solution of the system of differential equations in that case and leads to a required result.

The reflection and transmission of light are described using the relations

xr = P(2)(x1 + Xr), (4)

where T
X1 = (Ez,rxEz, Ey,ryEy) (incident wave vector),
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Xr = (Ry, =712 Rq, Ry, —ryRy)T (reflected wave vector),

T
_ * * .
xr = (Tw, 7315, Ty, ryTy) (transmitted wave vector),
ny . x U»)
Ty =M1COSQq, Th= , T
COs (g

*_

Yy

Ty = , T9 COS (g,
cos aq

n1 and no are the refractive indices of homogeneous entrance and exit media, and a; and

ag are the beam angles in the entrance and exit media, respectively. The parameters

n; and «; obey Snell’s law

ni sin v = N9 sin as.

It should be noted that the above representation of vectors xjy, xr, Xr is valid only
for isotropic media, featuring single-valued relations between the components of electric
and magnetic fields. Here and in what follows, the entrance and exit media are assumed
to be homogeneous.

Solution of the system of equations (4) reduces to solution of a linear algebraic system
of two equations with two variables (unfortunately, this system can be degenerate). A
solution can be obtained using a regularized stable method, which effectively works for
any input parameters.

The obtained values of components T, T, R,, R, are used as a basis for calculations
of the main parameters of the reflected and transmitted light beams, including reflection
and transmission coefficients, Stokes vectors, and degrees of depolarization. In particular,
the reflection and transmission coefficients are given by the formulas

Mg cos oy T,/ cos as|” + |T,|? _|R./ cosa |’ + |Ry|?

~ nicosay |E,/ cosay | + |Ey|* |Ey/ cosan | + By *

5. Calculations for Thick Layers

Unfortunately, the above method encounters difficulties in application to thick layers.
Propagation of a wave in a thick layer is accompanied by multiple reflections that result
in a phase shift, which is greater than the phase shift corresponding to the coherency of
light. However, no such oscillations take place in real systems, where the interference
pattern is usually smeared. It is also possible to assume that the accuracy of a measuring
instrument (e.g., spectrophotometer) is lower than the period of these oscillations, which
results in their averaging in the course of measurements.

The transition matrix of a thick (or arbitrary) layer can be calculated using equation (4).
For a large layer thickness (relative to the light wavelength), the imaginary component of
the argument, exp (iwhAy/c) acquires large values, which leads to significant oscillations
in the calculated spectra of both reflection and transmission coefficients. In order to bring
the measured data into correspondence with the results of calculations using equation (4),
it is necessary to average the latter results. This averaging is performed on a random
lattice with respect to the wavelength interval A\, as determined by the light coherence
length Al determined for spectrophotometers using the relation

Al = N?/AN.

6. Combined Calculation Method

In solving the inverse problem for determining the parameters of an anisotropic layer
on a thick isotropic substrate, it is convenient to use a combined method, whereby the
transmission of the anisotropic layer is described using the matrix technique and the
substrate properties are calculated in terms of the classical method. It should be noted
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that this approach can be used only for the calculation of transmitted and reflected light
intensities. However, these very variables are measured by spectrophotometry and serve
as the input data for the inverse problem in the case under consideration.

Figure 1 illustrates the scheme of calculations according to the combined method.
Here, Tpo is the total energy of the primary wave transmitted from the entrance medium
(medium #0) to substrate (medium #2), Ry, is the total energy of the primary wave
reflected from the first (between layers #0 and #1) interface, Ty is the energy of the
wave reflected from the second (between layers #2 and #3) interface and transmitted
back to the entrance medium, and Ro; is the total energy of the wave reflected from the
2/1 interface, with allowance for the multiple reflection of light in the thin film layer.

> /77 R, /77en};nce medium (air) 71,
/\/\/ TCF
WA

+

E,

Q

T:)z 21
R.
thick substrate
N2=n2_ik2
T, exit medium (air) 71,

Figure 1. Propagation of an electromagnetic wave through a two-layer system

By using the proposed combined method, it is possible to significantly reduce the time
required for solving the inverse problem.

Methods described above serve a basis for calculations of the light transmission and
reflection in the direct and inverse optical problems.

7. Conclusion

The main input parameters of a light wave are the intensity, the polarization, and the
angle of incidence. The main optical characteristics of materials in both direct and inverse
problems are the permittivity tensor € and the thickness d of a given material.

The main output optical properties of a system in the direct (simulation of optical
behavior of multilayer stack) problem are the transmission and reflection of light intensity
for the light of different wave lengths and incident at various angles. In the inverse
problem, these characteristics are usually considered as the initial data. In the direct
problem, additional output characteristics (calculated from the values of transmission
and reflection) can be the Stokes vectors of the transmitted and reflected light, the
degree of polarization, phase shifts, contrast ratio, efficiency, color coordinates, color
rendering, and some others.

It should be noted that the process of determination of the material parameters from
measured data (inverse problem solution) involves multiply repeated solution of the
direct problem, which is necessary for selecting the unknown values of permittivities.
For this reason, effective solution of the direct problem plays a key role in the entire
mathematical formalism and software.
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Another important circumstance is that the thicknesses of films are frequently known
only approximately. However, even very small variations of the film thickness (within
2-10 nm) may lead to significant changes in the interference pattern for both transmission
and reflection of light. Therefore exact determination of the film thickness is very
important (and also is an unknown parameter) in solving the inverse problem.
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CBeT B3aMMOJIEMICTBYET C MATEpHAJIAMY PA3JIMIHBIMU CIIOCOOAMU; JTAHHAS CTATbsI MOCBSIIEHA,
OITpe/IeJIEHNIO ITPEJIOMJIEHUST U TIOTVIOIIEHWSI, XapaKTePU3yeMbIM II0Ka3aTeseM IIPEeJIOMJIEHUS
marepuasia. O6CyKIAIOTCS HEKOTOPBIE MOJE3HbIE MOJEIN JACTOTHOM 3aBUCHMOCTH TTOKA3ATE ST
MIPEJIOMJIEHHSI, & TaKXKe MPaKTUIECKUe CIIOCOOBbI pacydéTa IoKa3aTeseil MPeIOMJIEHUsST TOHKUX
MJIEHOK W TOJICTBIX ITOJIJIOXKEK.

DdPEKTUBHOCTD MTPOU3BOJICTBA CYIIECTBYIONIUX W YCIIENTHOE CO3/IAHNE HOBBIX TPUOOPOB TBEP-
JOTeIbHOT MUKPO- ¥ HAHOYJIEKTPOHUKN BO MHOTOM 3aBUCHUT OT YPOBHSI PA3BUTHUSA TEXHOJIOTUN
U3TOTOBJIEHUS CJIOEB PA3JIMYHBIX MaTEPHUAJIOB TOJIIUHON OT HECKOJILKHX HAHOMETPOB MO Je-
CSATKOB MHUKPOMeTPOB. /locTH>KeHne BBICOKOM CTEIIEHU COBEPIIEHCTBA CJIOUCTBHIX CTPYKTYD H, B
YACTHOCTH, CTPYKTYP HA OCHOBE HAHOMETPOBBIX JUJIEKTPUIECKUX ¥ /UM METAIMIeCKUX TLIE-
HOK, KOTOPO€e U OIIpefesisieT BO3MOYKHOCTb UX YCIIENTHOTO IPUMEHEHNsT B MUKPO-, HAHO-, aKyCTO-,
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CBY- 1 onTo371eKTPOHUKE, HEBO3MOXKHO G€3 MCIOIb30BaHUsI BHICOKOTOYHBIX METOJIOB U3Mepe-
HUH 9/71eKTPODUNIECKUX TAPAMETPOB JIMIJIEKTPUIECKAX U MOTYITPOBOIHUKOBBIX MATEPUATIOB
U CTPYKTYD, METAJIMYECKUX IIJIEHOK.

Paszpaborana nmporpamMma «MHOTOCTOMHOCTBY, KOTOpas CIAYXKHUT KaK JJIg MOJEJIMPOBAHUS
pacIpoCTpaHEHUsI CBETa Uepe3 MHOI'OCJIOHHBIE TOHKOIIJIEHOUYHBIE CJIOUCTBIE CPeAbl, TaK U JJIsI
OTIPEJIESIEHNST JIMITIEKTPUIECKUX (TEH30D JUJIEKTPAIECKOH IIPOHUIIAEMOCTH AHU30TPOITHBIX TIJT6-
HOK) M reoMeTpudecKux (busmdyeckas U ONTUYECKAs TOJINUHA IUIEHKA) [IapaMeTPOB PA3JINIHBIX
TOHKOIIJIEHOYHBIX IMOKPBITHi. /[aHO ommcanHne OCHOBHBIX MaTEMAaTHIECKUX MOJIesIell, TpUMeHsie-
MBIX [IJIsI OIIMCAHUsS PACIPOCTPAaHEHUsI CBETOBOM BOJIHBI B OJHOPOJHOM OIITUYIECKOI cpefie U JJIs
OIIpeJIeJIEHUS ONTHYECKUX XaPAKTEPUCTUK TOHKHMX CJIOEB ONTUYECKUX MAaTEPHAJIOB Ha OCHOBE pe-
3yJIbTATOB U3MEDPEHU MHTEHCUBHOCTHU CBeTa. Maremarndeckuil (popmMaansmM, UCIOIB3YEMbBIN B
IIporpaMme, OCHOBaH Ha PeIIeHuU ypaBHeHUH MakcBessia IIpu paclpOCTPAHEHUH CBETA YEPE3
aHU30TPOITHYIO CJIOUCTYIO Cpely. AJropuTM HCHOJb3yeT MaTpuiibl beppemana nopsigka 4 X 4.

KuaoueBsbie ciioBa: KO3MOUIMEHT MPOITYCKaHUs, KOIDMUIIMEHT OTpaKeHUsl, OIpe/ieJIeHue
roKazarejieil [peJIOMJIEHUs, TOHKUE I[LJIEHKH
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