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We considered models of three identical atoms in a line with molecular pair interactions and
diatomic molecule scattered by an atom or tunneling through potential barriers. The models are
formulated as 2D elliptic boundary-value problems (BVPs) in the Jacobi and polar coordinates.
The BVP in Jacobi coordinates solved by finite element method of high-order accuracy for
discrete spectrums of models under consideration. To solve the scattering problems the BVP
in polar coordinates are reduced by means of Kantorovich method to a system of second-order
ordinary differential equations with respect to the radial variable using the expansion of the
desired solutions in the set of angular basis functions that depend on the radial variable as a
parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated
by benchmark calculations of the resonance scattering, metastable and bound states of the
considered models and also by a comparison of results for bound states of the three atomic
system in the framework of direct solving the BVP by FEM and Kantorovich reduction.
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metastable and bound states, Kantorovich method

1. Introduction

With the development of modern computing power, there are more possibilities for
setting and numerically solving multidimensional boundary-value problems with high
accuracy. For this, new numerical methods of high accuracy order are being developed.
When reducing the boundary value problem to an algebraic one in the finite element
method (FEM) of order p, one of the problems is the calculation of integrals on a finite
element (we consider only simplicial finite elements) containing the products of two basis
functions of Lagrange or Hermite interpolation polynomials of order p by the coefficients
for the unknown functions [1-3]. The FEM schemes and algorithms for solving the
d-dimensional BVP are presented in [4-6]. The algorithms for constructing 2-dimensional
fully symmetric Gaussian quadratures are presented in [7] while d-dimensional ones will
be published elsewhere.

The aim of this paper is to demonstrate the efficiency of the elaborated algorithms
and program complexes KANTBP 4M, KANTBP 3, ODPEVP [8-10] by benchmark
calculations of the resonance scattering below the dissociation threshold, metastable and
bound states of the considered models and also by a comparison of results for bound
states of the three atomic system in the framework of direct solving BVP by 2D FEM [3,7]
and Kantorovich method (KM).

We elaborated also algorithms for calculating the asymptotic parametric angular
functions, the effective potentials and the fundamental solutions of the SODEs in the form
of expansions by inverse powers of radial variable [11] and apply them to the construction
of the asymptotic states of the triatomic scattering problem, because in three-atomic
systems at large values of the hyperradial variable the effective potentials of SODEs have
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the form of expansions in inverse powers of hyperradius even for short-range potentials
of pair interactions.

The paper is organized as follows. In Section 2 we formulate the 2D BVP for the dimer
and trimer models. In Section 3 the 2D BVP in polar coordinates is reduced to the
SODEs. In Sections 4, 5 and 6 we demonstrate the efficiency of the elaborated technique
by test calculations of the resonance scattering of a diatomic molecule on an atom, the
metastable and bound states of three atomic system, and the resonance tunneling of a
diatomic molecule through a Gaussian barrier and the metastable states, respectively.
In Conclusion the results and perspectives are discussed.

2. Setting of the Problem

Consider a model of three identical particles (trimer) on a straight line with the masses
M; = M and the coordinates z; € R', i = 1, 2,3, of one-dimensional Euclidian space
R! coupled via the pair short-range potential V(|z; — z,|), i,j = 1,2,3. Performing
the change of variables corresponding to the cyclic permutation (a, 8,7) = (1,2,3) of
the permutation group S [12]:

L To+ T — 27, V2,
Ty = T(ap) = T — Ta, = Yah)y = ———F T g = ~=(F + Ty + T3),
vy (aB) B Yv = Y(ap)y \/g 0 \/g( 1 2 3)

we get three pairs (m(aﬁ),y(aﬁ)v)T of the scaled Jacobi variables. In the center-of-mass
reference frame of the configuration space X = (Z1, T2, Z3) € R?, i.e., on the hyperplane
Q = {X = (Z1,%2,%3) |T1 + T2 + T3 = 0} C R3 these Jacobi maps (z,y)T € Qy ~ R?
are connected by the relations:

x’Y — $(a5) e
= - T B
(yv> (y(a/iM) wv(#70) (ya>

[ coSpya SN,
Tay(Pra) = <_ Sin gy, COS @m) 7

(1)

where the angles ©yq = Yap = P8y = —Pay = —PBa = —Pyp = (2m)/3, i.e. COSPya =
COS Pap = COSPp, = —1/2, sinp,, = sing,s = sinpg, = V/3/2, are such that ., +
Pap + ©py = 2T, Yoy + a + ¢4 = —2m. With the variable parameter ¢ in Ty, ()
they and simply change the sign of pairs of Jacobi coordinates in Eq. (1),

“T(ap) | _ Z(B)
(‘y(aﬁ)v> = Toy (fre 27) <y(5”r)a) ‘ ?
In Fig. 1 (a) the hyperplane (z,y)T € Q, is separated by three axes Y(12)3, Y(31)2 and
Y(23)1 into six sectors that together with three orthogonal axes x12, w31, 223 describe six
channels of the scattering problem for three identical particles. Our choice is determined by
the parameterization of the pairs (y,z)T = (pcos ¢, psing)?, where the angle ¢ € [0, 27)
is counted counterclockwise from the axis y(12)3, for which ¢ = 0.
As a result, we arrive at the Schrodinger equation for the wave function W(y,x)
corresponding to the total energy E of the triatomic system in Jacobi coordinates
(@,9)7 = (29,57)" € Quy:

<82 0?2 M

S M - ) v = 3)
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Figure 1. (a) The profiles of 2D potential functions of Bes in Jacobi coordinates
(1) in the center-of-mass plane and the relative arrangement of particles in
accordance with the region of the center-of-mass plane. The numbers of sectors
are given in boxes. (b) The profiles of 2D potential functions of Be; with barrier
and the relative arrangement of particles and barrier. Here coordinates and
potential functions are given in A and A~2, respectively

In the case of a diatomic molecule (dimer) with identical nuclei coupled via the pair
potential, V(|Z; — #3|), moving in the external potential field V°(|z; — #3]), i = 2,1, of
the third atom having the infinite mass, the same equation (3) is valid for the variables

T=2x3=70T2 — X1, Y=Y3=7T1+ Ty,

with respect to the origin of the coordinate frame placed at the infinite-mass atom, z3 = 0.
Here the potential function for the trimer with the pair potentials (below this case

is referred to as Task 2, for example, see Fig. 1 (a)),
L

)

or the potential function for a dimer in the field of a barrier potential (below this case
is referred to as Task 3, see Fig. 1 (b))
T+y
5
) 6

V(z,y) = V(lal) + V" (‘%D + b (

is an even function with respect to the straight line 2 = 0 (i.e., Z; = Z2), which allows one
to consider the solutions of the problem in the half-plane x > 0. The use of the Dirichlet
or Neumann boundary condition at = 0 allows one to obtain the solutions, symmetric
and antisymmetric with respect to the permutation of two particles. If the pair potential
possesses a high peak at the pair collision point, then the solution of the problem in the
vicinity of = 0 is exponentially small and can be considered in the half-plane x > Zpyiy.
In this case the Neumann or Dirichlet boundary condition imposed at x,;, yields only
a minor contribution to the solution. The equation, describing the diatomic molecular
subsystem (dimer) (below this case is referred to as Task 1), has the form

ac—\/gy x+\/§y
2 2

7 (o) = 7 (lal) +V<

(~ 42 + 70l = 2)) o) 0. ©
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We assume the energy spectrum of the dimer to consist of the discrete part with a finite
number ng> 1 of bound states with the eigenfunctions ¢;(z), j = 1, ng and the eigenvalues
£; = —|&;|< 0, and the continuous part with the eigenvalues € > 0 and the corresponding
eigenfunctions ¢z(x). In certain cases the eigenfunctions of the continuous spectrum
are approximated by the eigenfunctions of pseudostates of the discrete spectrum &; > 0,
j =14 mng,... calculated in the sufficiently large but finite interval = € [Zmin, Tmax]-

The approach proposed below is illustrated by the example of Bes with the reduced
mass M/2 = 4.506 Da of the nuclei [13] and the molecular interaction approximated
by the Morse potential

V(z), V()= D{exp[—2(z — Zeq)a] — 2exp[—(z — Feg)a]}. (7)

Here a = 2.96812 A~! is the potential well width, Teq = 247 A is the aver-
age distance between the nuclei, and D = 1280 K, D = (M/h*)D = 236.51 A~
(1 K=0.184766 A—2, 1 A=2=5412262 K) is the potential well depth. This poten-
tial supports only five bound states corresponding to the covalent bounding of the
Bey dimer [14] having the energies ¢; = (M/hQ) €, 1 =1,....,n9 = 5. The pa-
rameter values are determined from the condition (£, — &1) / (2mhc) = 277.124 cm ™1,
1 K/(27h ¢)=0.69503476 cm~!. To solve the discrete spectrum problem we applied the
seventh-order FEM using the Hermitian interpolation polynomials with double nodes [8]:
e; = {—193.066, —119.392, —63.338, —24.904, —4.080YA=2, i = 1,...,n9 = 5. As an exam-
ple, following [13], we use below the Gaussian barrier potentials V°(z;) = Dexp (—2?/0)

with D = 236.51 A=2 and o = 0.0523 A2. The values of parameters of the repulsive
Gaussian barrier potential were estimated following the experimental observation of the
quantum diffusion of hydrogen atoms on the copper surface [15].

3. Boundary-Value Problems

Using the change of variables x = psing, y = pcos g, we rewrite Eq. (3) in polar
coordinates (p,®), Q,, = (p € (0,00),¢ € (0,2m))

(_18/)6 + p12A(907p) - E> \If((p,p) =0, A((p,p) - dd 2 —|—p2V(<,0,p) (8)

where for a trimer with pair potentials

Ve, p) = V(plsing|) + V(p|sin(e — 27/3)]) + V(p| sin(p — 4m/3)]), (9)
and for a dimer with pair potential in the external field of barrier potential:
V(p,p) = V(plsing|) + V°(p| sin(p — w/4)]) + V*(p|sin(p + 7/4)]). (10)

where V?(p|sin(p £ 7/4)|) = Dexp (—p*sin®(¢ £ 7/4)/0).
The solution of Eq. (8) is sought in the form of the Kantorovich expansion [16]

.]max
U, (0,0) = > 65(950)X5i, (0)- (11)
=1
Here x;,(p) are unknown matrix functions, j = 1,..., jmax = 2/N. The angular basis

functions ¢;(p; p) € F, ~ L2(Q) in the interval Q = ¢ € [0, 27), which is divided into syax
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subintervals s = ¢ € (27(5 — 1) /Smax; 278 /Smax): Qpsp = U723 Qs, are determined at
each value of the parameter p € (0,+00) as the eigenfunctions corresponding to the real
discrete eigenvalues €1(p) < €2(p) < ... < ¢ej(p) < ... of the Sturm-Liouville problem
for the equation

(A, p) —€5(p))9;(;p) = 0. (12)

The functions gbg»p) (5 p) = ¢;(; p) have the parity (—1)P, p = 0,1 with respect to the

inversion of Jacobi coordinates (2), i.e., ¢§-p)(g0; p) = (—1)p¢§-p)(g0 =+ m; p); here and below
p = 0. These functions satisfy the orthogonality and completeness conditions

S 278/ Smax
(dils) =) / degi(p; p)d; (05 ) = dij (13)
5=L o (s—1)/5max
Z|¢i><¢z’| ZZ@'(%P)%(%;P) = 0( — ¢o)- (14)

For the three problems under consideration the potential function V (¢, p) depending
on the parameter p can be defined as follows.

Task 1. The case of one pair potential in the intervals ¢ € (0,2¢,) (po = 7/6, 7/4
or m/2) V(g,p) = V(psine).

Task 2. The case of three pair potentials, Eq. (9), in the interval ¢ € (0,2¢, = 7/3);
the potential has the symmetry of the Dsj, dihedral point group [12].

Task 3. The case of one pair potential and two penetrable or almost impenetrable
barriers, Eq. (10), in the interval ¢ € (0, ¢, = 7/2) or in the intervals ¢ € (0, p, = 7/4—¢€)
and ¢ € (po, = 7/4—€,71/2), 0 < € < /4.

The solutions symmetric with respect to the permutation of two particles satisfy the
Neumann boundary condition at ¢ = 0 and ¢ = 2¢,, while the antisymmetric ones

satisfy the Dirichlet boundary condition at these points, i.e., at the aforementioned
points z = z,3 = 0. If the pair potential possesses a high peak in the vicinity of
the pair collision point, then the solution of the problem (8) will be considered in the
half-plane Q, , = (p € (Pmin, 20), ¥ € [@min(p), 200 — Ymin(p)]) with the Neumann or
Dirichlet boundary condition.

The potential function V (¢, p) of the boundary-value problem (12) is symmetric un-
der the reflection I,: ¢ — (4s — 2)po — ¢ with respect to the lines ¢ = (25 — 1), in
each sector of the cycle, numbered by s = 1,...,8max: 1oV (0,p) = V(g,p). There-
fore, the set of eigenfunctions ¢;(y;p) is separated into two subsets, namely, the
even and odd ¢7=""(¢; p) ones: Ia¢7(0:p) = 67 (45 — 2)pa — @i p) = £67~ " (3 p).
This fact allows separate calculation of gerade ¢%(p;p) = ¢F ((4s —2)pa — @;p) or
ungerade ¢%(p;p) = —¢4 ((48 —2)pa — ¢;p) eigenfunctions in the reduced interval
¢ € [Pmin(p), ¥a], subjecting them to Neumann or Dirichlet boundary condition at
the boundary point ¢ = ¢, of the interval, respectively. Below the parametric angular ba-
sis functions qﬁ?:il(go; p) with the numbers j = 1,...,ng are referred to as cluster states
with €;(p) < 0, and those with j > ng + 1 as pseudostates with €;(p) > 0, corresponding
to the discrete and continuous spectrum of BVP for Eq. (6) at large values of the param-
eter p, respectively. To reveal the above structurization property, we introduce the linear



Gusev A.A. Finite Element Method of High-Order Accuracy for Solving. .. 231

combinations of these functions ¢>;7”6 (¢; p) for the trimer and QSE_’_}(QD; p) for the dimer:

817 (01p) = (£67= (@1 p) + 677 (93 0)) /V2,

b - (15)
“(eip) = (2677 H@ip) + 077 (w3 p)) /V2.
The action of the parity operator fa on these functions
La¢](0ip) = 6 (0ip), 1ot (05p) = 0] (3 p), 16)

1,05 (050) = 057 (95p),  Lady (05p) = 65 (5 p),

consists in the permutation of states |y) <> |8) or | <) <> | —) with respect to the
lines ¢ = (25 — 1)¢,. Indeed, the parametric cluster functions at j = 1,...,n and at
large p have maximal in the vicinity of ¢ = (2s — 2)p, and ¢ = 2sp,, respectively, that
correspond to the eigenfunctions of cluster states of the BVP for Eq. (6). In the particular
case of sector 1, the dimer functions (b;-_’_)(go; p) have maximal in the vicinity of ¢ =0
and ¢ = 7, i.e. for y > 0, v =<, or for y < 0, v =— at large p, respectively while the
trimer functions gb}*”g(cp; p) have maximal in the vicinity of ¢ = 0 and ¢ = /3, i.e. for
T12/Ya2)z > 0, v = 7, or for x31/y31)2 < 0 v = B at large p, respectively.

Using the above pairs of the basis functions (15), we rewrite the expansion (11) in
the o-representation

Ui, (o, p ZZ¢ (; x5, (), (17)

where 0 = u, g or o = ~, 8 for the unknown functions X;io (p) and X]B'io (p) in the (v8)-
representation, related to the functions x%; (p) and x¥; (p) in the (gu)-representation as

Y u
Xji, () <x~ (p)) 1 ( 1 1)
. — ° — A Mt , A=— . 18
o) <x:%o <p>> o) A .
The averaging of Eq. (8) with the basis functions in o-representation (17) yields the

system of coupled ODEs with determined by the hyperspherical parameterization of the
two-dimensional configuration space

1d d | &lp) } T W (o
—— P + ’LZO + % X ’lo - 0 19
[ pdp”dp — p? Z i (19)

1d d

3(p) = Hiilp) + 2 320Qsi(p) + Qjilp) (20)
Here the potential curves (terms) 5] (p) are eigenvalues of the BVP (12) and the effective
potentials (EPs) Q;;(p) = —Qji(p), Hij (,0) = Hj;(p) are expressed as integrals calculated

in the reduced intervals ¢ € [0,2¢,] using the above g, u symmetry:
Qij(p) = _<¢i|ap¢j>7 Hij(p) = <8p¢i|8p¢j>- (21)

For Task 3 the effective potentials W;;(p) = Wi;(p) + Vi(p) are sums of Wy;(p),
calculated using the potential curves and the parametric basis functions of Task 1, and



232 RUDN Journal of MIPh. Vol. 26, No 3,2018. Pp. 226-243

“(p) of the barrier potentials

Vii(p) = (@il VO (pl sin(e — w/4)]) + V*(p| sin(p + 7/4)])| ;). (22)

the matrix elements V

As an example, we calculated with the required accuracy the parametric basis functions
of BVP (12) and the effective potentials (21) for the models of Bey dimer and Bes trimer
in collinear configuration using the FEM implemented in the program ODPEVP [10]. The
results of calculation on the grid Q,[1.8/p, po] = {1.8/p(24)3/p(10)4/p(5)5/p(10)pq }
for oo = m/2 for Bey dimer and ¢, = 7/6 for Bes trimer. Using the obtained result in
the uncoupled (gu)-representation and the transformation matrix A from Eq. (18), we
can rewrite the system of ODEs in the coupled (af3)-representation with the effective

potentials.
() — Uivjv(p)  Uivjs(p) _ Usuju(p) 0 .
Visle) = (Uzﬂm(ﬂ) Uiﬂjﬂ(/’)) =4 < 0 Uigjg(p)> AT (23)

In Section 4 one can see that the (yf3)-representation provides the required compatibility
of the solutions of Eqgs. (19) with the asymptotic boundary conditions of the scattering
problem on the full axis and its half-axis.

4. Asymptotic Expressions of Scattering, Metastable
and Bound States

The general solution F; of the system of ODEs in the open channels i, = 1,..., N, is
determined by a linear combination of the fundamental solutions x;/ (pi,p) and X;";" (pi,p)
calculated using Eqgs. (19)—(21) following from [11] with the leading terms of the Hankel

functions of the first and the second kind [17] Hﬁ)g(piop) and H{})Q(piop) below the

dissociation threshold at ' < 0 in the form of incoming and outgoing waves

No
F(p) =) [x}i/o (Pi,p)a; + X5 (Pi,p)as; ] :

’
o
N p—
i, =1

at p;, = \/F —¢&{ > 0 in the open channels N, = max j < N. The scattering matrix

Z€;

7. (F) or qunig (p), where p = diag{p,—o}f\uf‘;l, is a diagonal matrix. In open channels

7,
iotl

it is defined as the matrix transforming the amplitudes of the incoming waves a;, into
those of the outgoing waves a;} [18]

"
%o

2

o

oL+t

S7 i (p)ag. . (24)

1o/ %0 o

i =1

o
|

The components of the radial asymptotic solutions F}3* (p) of the scattering problem
in the open channels i, = 1,..., N, have the form

2

o

F(0) = 3 |Gy (pi )i, + 355, (0,05, (0)] (25)
1

.
IS
Il
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while in the closed channel i, = N, 4+ 1,..., N the asymptotic solutions Fj; (p) are
determined by the fundamental solutions X;ri, (1p;p) with the leading term of Kelvin
functions [17] K4/2(gs,p) for the decaying waves

Fi(p) = ajh X5 (i, p)- (26)

These asymptotic solutions F(p) = {Fi,(p)}1 =1 = {{Fji,(p)} =1 }1 =, are used to have
the conventional asymptotic boundary conditions for the components of the numerical
solution Fj; (p) of the system of ODEs (19) at large p = pmax

d d

Fyi, (p) = F5i2 (p), dprjio(p) = dprﬁi (p)- (27)

The scattering problem (3)—(6) with the asymptotic boundary conditions (25) and (26)
is reduced to a boundary-value problem for the set of close-coupled equations (19) with
the boundary conditions at p = ppin and p = pPmax:

dF(p)
dp

F(pmin) =0, = R(pmax)F(pmax)z (28)

P=Pmax

where R(pmax) is a N x N symmetric matrix function of E, F(p) = {x;, (p)})_; =
{{x5i, ()}, 32y is the required N x N numerical matrix solution.

These matrices and the N, x N, matrices Sy, = {S’gfo(E)}N" sought for in the

i ,io=1
open channels N, = max j < N are calculated directly from (27) using the program
ZE€j5
KANTBP 4M [g].

For metastable states the even and odd eigenfunctions obey the boundary conditions
of the third kind (28), where the matrices R(pmax) = diag(R(pmax)) depend on the
complex energy eigenvalue £ = E,, = Re F,, +1Im F,,,, Im E,, < 0 sought for, and
are expressed as [19]

[ wm, Re By, > €7 B > B -
Rioin(,omax) = { WG, ReE,, < ezjf y Pm = B, — €iyr Am = N/&; — Em7 (29)

since the asymptotic solutions of this problem contain only outgoing waves in the open
channels i, = 1,..., N, and closed ones i, = N,+1,..., N. In this case the eigenfunctions
obey the orthogonality and normalization conditions

prnax
(Fm’Fm,) = (’me + me') / Fﬁ(ﬂ)Fm’ (p)dp — Omm/ | + Crmr = 0,

min

Cmm’ = _Fﬁ(pmaX)Fm' (pmax)~

(30)

For bound states the even (g) and odd (u) eigenfunctions obey the boundary conditions
(28), with the matrices R(pmax) = diag(R(pmax)) = 0. In this case the eigenfunctions
obey the orthogonality and normalization conditions

EnlE) = [ FLOF 0 (0)dp = S (31)

Pmin
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Taking the property (15) and (16) of the quasiangular parametric basis functions and the
effective potentials (23) into account, we express the S-matrix in the (v3) representation
on the full axis R' via the matrix S7 (24), (25) calculated on the half-axis RY. The
matrix S is a unitary and symmetric scattering matrix

S.. S
S= (o ”5> . STs=8st—T1 32
(Sﬁw Spp (32)

consisting of the matrices S,,, Sgg and S5 = S% of the dimension N, x N, determined
by the relations S, = Sgg = (Sy1+S1)/2, S;5 = S, = (S11 — S_1)/2, where
Si1 =S, and S_; =S, are the matrices from (25). Here I is the unit matrix with the
dimension 2N, x 2N,, S, and Sgg corresponds to the elastic scattering processes (in the
considered case of 1D scattering it means reflection) of the dimer (af)(or (ya)) on the
atom vy (or B): v+ (af) = v+ (af), or (ya) + 8 — (ya) + 5, and Sg., and the matrices
S, correspond to the inelastic rearrangement scattering processes (in the case of 1D
scattering it means transmission) v+ (af) — (ya) + 5 or (ya) + 5 — v+ (), for which
the conventional relations between inelastic and elastic scattering below breakup threshold
at E < 0 follow from (32) that provide conservation of the Wronskian, [Sg,|? = I—[S,,|?
and Sg, = S%, where I is the unit N, x N, matrix.

For the scattering of the dimer (yf3) by the potential barriers, considered on the full
axis, the matrix S is the 2N, x 2N, scattering matrix (32) read as similar to [19]

_ (B To g — §St —
s_<TF Ré), Sts =88t =1, (33)

where I is the unit matrix with the dimension 2N, x 2N,, consisting of the amplitudes of the
reflected and transmitted waves R, = R, (E) and T, = T,(FE), where v =<, — indicates
the direction of the incident wave propagation with respect to the y-axis, i.e., v =< and
v =— for y > 0 and y < 0, respectively, and the N, x N, matrices R, = R,(FE) and
T, = T,(E) are expressed as R, = R_, = (S41+S_1)/2, T =TL = (S;1 —S_1)/2.

For the scattering of the dimer («f) on potential barriers similar relations determine
the reflection R = S,, and R_, = Sgg, and transmission T._ = Sz, and T_, = S,
amplitudes. For the reflection coefficient |R,|> = R} R, and the transmission coefficient
|T,|? = T|T, the conventional relation below breakup threshold at E < 0 following from
(32) and constant Wronskian, |T,|? = I—|R,|? is valid, where I is the unit N, x N, matrix.

5. Bound, Metastable and Scattering States of the trimer

For the considered models, the eigenvalues and the hyperradial components of 2D
eigenfunctions of the BVP for the set of ODEs (19) with Dirichlet boundary conditions
were calculated with the predetermined accuracy using the FEM implemented in the
KANTBP 4M program [8].

The set of even (g) and odd (u) bound states of the trimer Bes (Task 2) were cal-
culated on the grid Q;, = {pmin = 4.24(1)4.33(10)6.13(1)6.33(23) pmax = 11.39}, where
in parentheses the number of fifth-order Hermitian elements [20] is indicated, for the
number of equations N = 15 in the system (19).

The comparison of sets of total and binding energies of g and u bound states of the
trimer Bes calculated by KM and 2D FEM is presented in Table 1 and the corresponding
eigenfunctions (11) are shown in Fig. 2. One can see that results obtained by KM and

2D FEM [3,7] are in agreement with an accuracy of the order 0.1A2.
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Table 1
The total E;(x) and binding energies —E? (x)=F;(*)—E"™" of g and u bound states of
the trimer Be; relative to the exact threshold E™*"= —193.06 (in A~?): E;(K) and
—E!(K) calculated by KM in polar coordinates using N=12 basis functions (g or
u); Ei(F) and —E?(F) calculated by the 2D FEM using fifth order interpolation
Lagrange polynomials on triangular finite elements in sector 1 of Jacobi
coordinates

i 1g 2g 3u 4g Su 6g

—E,(K) | 389.08 335.43 300.58 287.02 260.47 245.84
—EY(K) | 196.02 142.37 107.52 93.96 67.41  52.78
—E;(F) | 389.09 335.45 300.60 287.05 260.50 245.88
—EV(F) | 196.03 14239 107.54  93.99 67.44  52.82

1 Tu 8g 9u 10g 11u 12¢g

—EB(K) | 227.66 225.39 215.37 204.85 19821 193.86
~E'(K) | 3460 3233 2231 11.79  5.15  0.80
—E;(F) | 22770 22542 21541 204.89 198.24 193.91
—EV)(F) | 3464 3236 2235 1183 518 085

Figure 2. The density plots of the eigenfunctions ¥J“(p, p) displayed in sector 1 of
(y,z)-plane (in A) of the gerade (g) and ungerade (u) bound states with energies

EJ" of the Bes trimer presented in Table 1. The negative, positive and near-zero
values of the eigenfunctions are displayed by black, white and gray, respectively
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These solutions, i.e. the real eigenvalues and the corresponding eigenfunctions, were
used as an initial approximation in the continuous analogue of Newton’s method [21]
with additional condition (F,,|F,, ) = 0 to calculate the metastable states of the trimer
Bes on the same finite-element grid. The corresponding problem of the dimer scattering
on an atom was solved on the same grid and N = 15.

The calculated complex energies of the metastable states E% =FE,=ReFE,,+:ImFE,,
for the trimer are presented in Table 2.

Table 2
The sets of the first resonance energy values E at which the minimum of the
transmission coefficient |S,;|? is achieved, the number i of the threshold ¢;, the
real and imaginary part of the complex energy eigenvalues E, = Re B} +:Im EJ' in
A~? of the even g and odd u metastable states of Bez numbered by the index v
calculated with N = 15 equations (19)

E | i | |Swl? ReEM | Im EM vtype
—193.066 | 1 thr
—189.676 | 1 | 1-1077 | —188.94 | —4-102 1g
—164.654 | 1 | 4-1076 | —164.72 | —1-1072 1u
—156.882 | 1 | 3-1076 | —157.04 | —2-1072 2g
—140.545 | 1 | 1-107% | —140.57 | —=5-1073 2u
—132.485 | 1 | 1-1076 | —132.47 | —4-1073 3g
—124.256 | 1 | 1-1073 | —124.16 | —6-1073 | 3u
—120.638 | 1 | 1-107% | —120.75 | —8-1072 | 4g
—119.392 | 2 thr
—113.248 | 2 | 0.10 —113.24 | —2-1072 5g

—89.319 | 21 9-107% | —89.16 | —3-1072 6g
—77.271 | 2 | 0.77 —76.51 | —4-1076 | 4u
—70.309 | 2 | 0.35 -70.30 | —2-1073 Tg
—63.385 | 2 | 0.41 —65.14 | =3-10* | bu
—63.338 | 3 thr
—42.858 | 3 | 0.06 —42.87 | —6-1073 8g
—29.396 | 3 | 0.13 —29.19 | —4-1072 9g
—24.899 | 3 | 0.19 —25.82 | —1-1072 | 6u
—24.904 | 4 thr
—6.799 | 4 | 0.40 —-712 | —1-1073 | 1o0g
—4.089 | 5 thr
0 thr

These metastable states are responsible for resonance energies, corresponding to the
minimal probability of inelastic scattering of the dimer by the atom, i.e., to the resonance
quantum reflection from the potential well (Feshbach resonances, see Figs. 1 (a) and 3 (a).

As an example, in Fig. 4 we display the eigenfunctions of the scattering problem for
gerade and ungerade states corresponding to the minimum of the transmission coefficient
|S,5]> = [S5,]? = -1077 at E = —189.676, as well as the metastable state 1g from Table 2.

The isolines of the absolute values |¥7?(y, z)| of the linear combinations ¥7#(y, z) =
(U9(y, ) & U%(y,z))/+/2 demonstrates the effect of resonance reflection from the effective
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Figure 3. The effective diagonal potentials W;;(p) = ¢,(p)p 2 + H;;(p) for the Bes
trimer (a) and effective diagonal potentials W;;(p) = ¢;(p)p 2 + H;;(p) + V}(p) for
the tunneling problem of the dimer Be; through the Gaussian barrier (b)

: Y : Y

Figure 4. Upper panel: the isolines of the absolute values [¥9*(p, p)| of
corresponding gerade (left-hand panel) and ungerade (right-hand panel) solutions
in sector 1 of (y,z)-plane (in A) for the scattering of Be atom with the energy
—FE =189.676 A~? (relative to the three-body threshold) on the dimer Beg,
corresponding to the 1g metastable state from Table 2. Lower panel: isolines of
the absolute values |U7?(y, p)| of the linear combinations

VP (p, p) = (£ (p, p) + ¥ (0, p))/V2
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potential well. It can be seen from the figures that the shape of the wave functions of
the gerade scattering states (Fig. 4 (a)) and metastable states (Fig. 5) are similar and
they are localized in the vicinity of the potential well (Fig. 3 (a)). At the same time,
for the same energy value E = —189.6 A2, the wave function of ungerade scattering
states (Fig. 4 b) is a typical nonresonant wave function.

8 . §
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Figure 5. The components y; and isolines of the absolute values |¥(y, p)| of the

solution ¥(yp, p) for the trimer Bes in 1g metastable state with the real part of

energy eigenvalues Re E = —188.94 A~2, localized near the minimal of the trimer
potential

6. Metastable and Scattering States of the Dimer Tunneling

The metastable states of the dimer Be, tunneling through Gaussian barriers of
Task 8 were calculated for BVP calculated with N = 15 equations in the sys-
tem (19) with matrix elements of potential barrier on the finite element grid 2, =
{pmin =1.81(12)4.21(15) pmax = 7.51} with the fifth-order Hermitian elements (p = 5).
The corresponding problem of a dimer tunneling through the barriers was solved on
the same grid.

The corresponding algebraic eigenvalue problem for metastable states was solved
using the above mentioned continuous analogue of Newton’s method. As the initial
approximation the real eigenvalues and the corresponding orthonormalized eigenfunctions
(31) were used. They were found as a result of solving the bound state problem with
R(y") = 0 on the grid Q, = {pmin =1.81(12)pmax = 4.21}. The complex values of energy

of the metastable states ETA,;[ = FE,, = ReFE,, +1Im FE,, for the dimer Be, tunneling
through the Gaussian barriers, are presented in Fig. 6.

These metastable states are responsible for the resonance values of energy, corresponding
to the maximal transmission coefficient, i.e., the quantum transparency of the potential
barriers (see Figs. 1 (b) and 3 (b)), i.e., the shape resonances. The position of peaks
presented in Fig. 6. is seen to be in quantitative agreement with the real part Re(F), and
the geometric halfwidth of the |T'|?, (E) peaks agrees by the order of magnitude with the
imaginary part I' = —2Im(FE) of the complex energy eigenvalues E = Re(E) + +Im(FE)
of the metastable states. The obtained complex energy values corresponding to the
resonance values of energy in the first open channel are in good agreement with the ones
calculated analytically in the model of a rigid diatomic molecule with Morse potential
tunneling trough the Gaussian barrier at the same values of parameters [13]. From Fig. 6
one can see that as the energy of the initial excited state increases, the transmission
peaks demonstrate a shift towards higher energies, the set of peak positions keeping
approximately the same as for the transitions from the ground state and the peaks just
replace each other. For example, the left epure shows that the positions of the 13th and
14th peaks for transitions from the first state coincide with the positions of the 1st and
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2nd peaks for the transitions from the second state, while the right epure shows that the
positions of the 25th and 26th peaks for transitions from the first state coincide with the
positions of the 13th and 14th peaks for transitions from the second state and with the
positions of the 1st and 2nd peaks for the transitions from the third state.
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Figure 6. The total probability |T|3(E) = Z;.V;’l T7;Tj: (lines) of penetration of the
dimer for the initial states i through the repulsive Gaussian potential barriers
versus the total energy E = Re E counted from the main threshold £ = 0. The

values of the threshold energies £ =¢;, i =1,...,5 corresponding to the energies of
ground and excited initial states are shown by arrows. The real Re F and
imaginary (—1)Im E part (with negative sign) of the metastable states energy
(circles)

7. Conclusion

The model for three atomic beryllium system in a straight line was formulated as a 2D
boundary-value problem for the Schrodinger equation in Jacobi and polar coordinates.
Using the Kantorovich expansions this problem has been reduced to the boundary-value
problem for a set of second-order ordinary differential equations.

The efficiency of the elaborated method, algorithms and programs has been demon-
strated by benchmark calculations of the resonance scattering, metastable and bound
states of the considered models and also by a comparison of results for bound states of the
three atomic system in the framework of direct solving BVP by FEM and Kantorovich
reduction.

The effects of resonant quantum transmission of diatomic molecule through the potential
barrier and reflection from the effective potential well of a three atomic system (see Figs.
3 (b) and 3 (a)), arising in the scattering process were revealed, that are generated by
metastable states of the composite system (cluster + barrier or well) with complex energy
eigenvalues below the dissociation threshold of dimer, corresponding to the shape and
Feshbach resonances, respectively.

The elaborated method, algorithms and programs [8-10] for solving the three-atomic
scattering problem as well as diatomic molecule tunneling through potential barrier can
be applied to the further analysis of quantum transparency and reflection effects [13],
quantum diffusion [22] and the resonance scattering in triatomic systems using modern
theoretical and experimental results [23, 24].
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MeTtoa KOHEYHBIX 3JIEMEHTOB BBICOKOTO MOPSAAKA TOYHOCTHU JIJIs
pellieHus JIByXMEPHBIX JIJIMIITUYECKUX KPaeBbIX 33Jia4 JIBYyX
1 TPEX TOXKJIECTBEHHBIX aTOMOB HA MPAMOIi

A. A. T'yces

Jlabopamopusa uHPBOPMAYUOHHBLT METHON02UT
065edunénroil urncmumym AIEPHLIL UCCALA08AHUL
ya. 2Koauo-Kiropu, 0. 6, 2. ybna, Mockosckoti 0ba., 141980, Poccus

PaccMmorpenbl Mojienin TpEX OJMHAKOBBIX ATOMOB Ha MPSMOI ¢ HAPHBIM MOJIEKYJISIDHBIM B3au-
MOJIEAICTBHEM U pacCessHue JIBYXaTOMHONW MOJIEKYJIbI Ha aTOME WJIM €€ TYHHEJMPOBAHUS Yepe3
moTeHna bHbIe 6apbepbl. Mojean chopMyIUPOBAHBI B BUJE JIBYMEPHBIX SJIITAIMITHIECKUX KPae-
Boix 3ana4 (K3) B koopaunarax fIkobu u nossipubix Koopaunarax. K3 B koopauHarax fkobu
pelIarTCcss METOAOM KOHEYHBIX 3JIEMEHTOB BBICOKOI'O MOPSIKA TOYHOCTHU JJIsT JTUCKPETHOIO CITEK-
Tpa paccMaTpuBaeMbIx Mojesieit. Jljist pemrenust 3a1a4 paccesiiusi K3 B MOJISIPHBIX KOODJIMHATAX C
TOMOIIBI0 MeTosia KaHTOpoBUYa CBOJIUTCA K CUCTEME OOBIKHOBEHHBIX AUMDEPEHIINATBHBIX yPaB-
HEHHUIl BTOPOro MOPsiJIKA 0 PaINaJIbHON EPEMEHHON C MCIOJIB30BAHUEM Pa3JIOXKEHUsT HCKOMBIX
perenuii Mo Habopy YTIOBLIX OA3UCHBIX (DYHKIUH, MapaMeTpPUIeCKN 3aBUCSIIUX OT PaIuabHOMN
rnepeMeHHO’. JPEGHEKTUBHOCTH pa3pabOTaAHHOIO METO/1a, aJrOPUTMOB U IIPOrPaMM JIEMOHCTPH-
pyeTcst IIyTéM 3TAJIOHHBIX PACYETOB PE3OHAHCHOTO PACCESTHUSI, METACTAOUIBHBIX U CBSI3aHHBIX
COCTOSTHU pacCMaTPUBAEMbBIX MOJIE/EH, a TaK»Ke IMyTEM CPpaBHEHUs PE3yJIbTATOB JIJIsl CBI3aH-
HBIX COCTOSTHUM TPEX aTOMHBIX CHCTEM B paMKaxX IMPsiMOro perenns K3 MeTOqoM KOHEYHBIX
3JIEMEHTOB U peaykiun KanTopoBmya.

KuirroueBbie ciioBa: sJLUIMITHYECKUE KpaeBbI€ 3a/Jla4vU, 3a/Ja9a pacCeAaAHnsd, MeTacTabOUIbHbIE
U CBA3aHHBIE COCTOAHUA, METOda KaHTOpOBI/I‘{a
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