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We considered models of three identical atoms in a line with molecular pair interactions and
diatomic molecule scattered by an atom or tunneling through potential barriers. The models are
formulated as 2D elliptic boundary-value problems (BVPs) in the Jacobi and polar coordinates.
The BVP in Jacobi coordinates solved by finite element method of high-order accuracy for
discrete spectrums of models under consideration. To solve the scattering problems the BVP
in polar coordinates are reduced by means of Kantorovich method to a system of second-order
ordinary differential equations with respect to the radial variable using the expansion of the
desired solutions in the set of angular basis functions that depend on the radial variable as a
parameter. The efficiency of the elaborated method, algorithms and programs is demonstrated
by benchmark calculations of the resonance scattering, metastable and bound states of the
considered models and also by a comparison of results for bound states of the three atomic
system in the framework of direct solving the BVP by FEM and Kantorovich reduction.
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1. Introduction

With the development of modern computing power, there are more possibilities for
setting and numerically solving multidimensional boundary-value problems with high
accuracy. For this, new numerical methods of high accuracy order are being developed.
When reducing the boundary value problem to an algebraic one in the finite element
method (FEM) of order 𝑝, one of the problems is the calculation of integrals on a finite
element (we consider only simplicial finite elements) containing the products of two basis
functions of Lagrange or Hermite interpolation polynomials of order 𝑝 by the coefficients
for the unknown functions [1–3]. The FEM schemes and algorithms for solving the
d-dimensional BVP are presented in [4–6]. The algorithms for constructing 2-dimensional
fully symmetric Gaussian quadratures are presented in [7] while d-dimensional ones will
be published elsewhere.

The aim of this paper is to demonstrate the efficiency of the elaborated algorithms
and program complexes KANTBP 4M, KANTBP 3, ODPEVP [8–10] by benchmark
calculations of the resonance scattering below the dissociation threshold, metastable and
bound states of the considered models and also by a comparison of results for bound
states of the three atomic system in the framework of direct solving BVP by 2D FEM [3,7]
and Kantorovich method (KM).

We elaborated also algorithms for calculating the asymptotic parametric angular
functions, the effective potentials and the fundamental solutions of the SODEs in the form
of expansions by inverse powers of radial variable [11] and apply them to the construction
of the asymptotic states of the triatomic scattering problem, because in three-atomic
systems at large values of the hyperradial variable the effective potentials of SODEs have
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the form of expansions in inverse powers of hyperradius even for short-range potentials
of pair interactions.

The paper is organized as follows. In Section 2 we formulate the 2D BVP for the dimer
and trimer models. In Section 3 the 2D BVP in polar coordinates is reduced to the
SODEs. In Sections 4, 5 and 6 we demonstrate the efficiency of the elaborated technique
by test calculations of the resonance scattering of a diatomic molecule on an atom, the
metastable and bound states of three atomic system, and the resonance tunneling of a
diatomic molecule through a Gaussian barrier and the metastable states, respectively.
In Conclusion the results and perspectives are discussed.

2. Setting of the Problem

Consider a model of three identical particles (trimer) on a straight line with the masses
𝑀𝑖 = 𝑀 and the coordinates �̄�𝑖 ∈ R1, 𝑖 = 1, 2, 3, of one-dimensional Euclidian space
R1 coupled via the pair short-range potential 𝑉 (|�̄�𝑖 − �̄�𝑗 |), 𝑖, 𝑗 = 1, 2, 3. Performing
the change of variables corresponding to the cyclic permutation (𝛼, 𝛽, 𝛾) = (1, 2, 3) of
the permutation group 𝑆3 [12]:

𝑥𝛾 ≡ 𝑥(𝛼𝛽) = �̄�𝛽 − �̄�𝛼, 𝑦𝛾 ≡ 𝑦(𝛼𝛽)𝛾 =
�̄�𝛼 + �̄�𝛽 − 2�̄�𝛾√

3
, 𝑥0 =

√
2√
3

(�̄�1 + �̄�2 + �̄�3),

we get three pairs
(︀
𝑥(𝛼𝛽), 𝑦(𝛼𝛽)𝛾

)︀𝑇
of the scaled Jacobi variables. In the center-of-mass

reference frame of the configuration space x̄ = (�̄�1, �̄�2, �̄�3) ∈ ℛ3, i.e., on the hyperplane
Ω = {x̄ = (�̄�1, �̄�2, �̄�3) |�̄�1 + �̄�2 + �̄�3 = 0} ⊂ ℛ3 these Jacobi maps (𝑥, 𝑦)𝑇 ∈ Ω𝑥𝑦 ∼ ℛ2

are connected by the relations:(︂
𝑥𝛾
𝑦𝛾

)︂
≡
(︂
𝑥(𝛼𝛽)
𝑦(𝛼𝛽)𝛾

)︂
= T𝑥𝑦(𝜙𝛾𝛼)

(︂
𝑥𝛼
𝑦𝛼

)︂
,

T𝑥𝑦(𝜙𝛾𝛼) =

(︂
cos𝜙𝛾𝛼 sin𝜙𝛾𝛼

− sin𝜙𝛾𝛼 cos𝜙𝛾𝛼

)︂
,

(1)

where the angles 𝜙𝛾𝛼 = 𝜙𝛼𝛽 = 𝜙𝛽𝛾 = −𝜙𝛼𝛾 = −𝜙𝛽𝛼 = −𝜙𝛾𝛽 = (2𝜋)/3, i.e. cos𝜙𝛾𝛼 =

cos𝜙𝛼𝛽 = cos𝜙𝛽𝛾 = −1/2, sin𝜙𝛾𝛼 = sin𝜙𝛼𝛽 = sin𝜙𝛽𝛾 =
√

3/2, are such that 𝜙𝛾𝛼 +
𝜙𝛼𝛽 + 𝜙𝛽𝛾 = 2𝜋, 𝜙𝛼𝛾 + 𝜙𝛽𝛼 + 𝜙𝛾𝛽 = −2𝜋. With the variable parameter 𝜙 in T𝑥𝑦(𝜙)
they and simply change the sign of pairs of Jacobi coordinates in Eq. (1),(︂−𝑥(𝛼𝛽)

−𝑦(𝛼𝛽)𝛾

)︂
= T𝑥𝑦 (𝜙𝛾𝛼 ± 𝜋)

(︂
𝑥(𝛽𝛾)
𝑦(𝛽𝛾)𝛼

)︂
. (2)

In Fig. 1 (a) the hyperplane (𝑥, 𝑦)𝑇 ∈ Ω𝑥𝑦 is separated by three axes 𝑦(12)3, 𝑦(31)2 and
𝑦(23)1 into six sectors that together with three orthogonal axes 𝑥12, 𝑥31, 𝑥23 describe six
channels of the scattering problem for three identical particles. Our choice is determined by
the parameterization of the pairs (𝑦, 𝑥)𝑇 = (𝜌 cos𝜙, 𝜌 sin𝜙)𝑇 , where the angle 𝜙 ∈ [0, 2𝜋)
is counted counterclockwise from the axis 𝑦(12)3, for which 𝜙 = 0.

As a result, we arrive at the Schrödinger equation for the wave function Ψ(𝑦, 𝑥)
corresponding to the total energy 𝐸 of the triatomic system in Jacobi coordinates
(𝑥, 𝑦)𝑇 = (𝑥𝛾 , 𝑦𝛾)𝑇 ∈ Ω𝑥𝑦:(︂

− 𝜕2

𝜕𝑦2
− 𝜕2

𝜕𝑥2
+
𝑀

~2
(𝑉 (𝑥, 𝑦)− �̃�)

)︂
Ψ(𝑦, 𝑥) = 0. (3)



228 RUDN Journal of MIPh. Vol. 26, No 3, 2018. Pp. 226–243

✭❛✮ ✭❜✮

Figure 1. (a) The profiles of 2D potential functions of Be3 in Jacobi coordinates
(1) in the center-of-mass plane and the relative arrangement of particles in

accordance with the region of the center-of-mass plane. The numbers of sectors
are given in boxes. (b) The profiles of 2D potential functions of Be2 with barrier

and the relative arrangement of particles and barrier. Here coordinates and
potential functions are given in Å and Å−2, respectively

In the case of a diatomic molecule (dimer) with identical nuclei coupled via the pair

potential, 𝑉 (|�̄�1 − �̄�2|), moving in the external potential field 𝑉 𝑏(|�̄�𝑖 − �̄�3|), 𝑖 = 2, 1, of
the third atom having the infinite mass, the same equation (3) is valid for the variables

𝑥 ≡ 𝑥3 = �̄�2 − �̄�1, 𝑦 ≡ 𝑦3 = �̄�1 + �̄�2,

with respect to the origin of the coordinate frame placed at the infinite-mass atom, �̄�3 = 0.
Here the potential function for the trimer with the pair potentials (below this case

is referred to as Task 2, for example, see Fig. 1 (a)),

𝑉 (𝑥, 𝑦) = 𝑉 (|𝑥|) + 𝑉

(︃⃒⃒⃒⃒
⃒𝑥−

√
3𝑦

2

⃒⃒⃒⃒
⃒
)︃

+ 𝑉

(︃⃒⃒⃒⃒
⃒𝑥+

√
3𝑦

2

⃒⃒⃒⃒
⃒
)︃
, (4)

or the potential function for a dimer in the field of a barrier potential (below this case
is referred to as Task 3, see Fig. 1 (b))

𝑉 (𝑥, 𝑦) = 𝑉 (|𝑥|) + 𝑉 𝑏

(︂⃒⃒⃒⃒
𝑥− 𝑦

2

⃒⃒⃒⃒)︂
+ 𝑉 𝑏

(︂⃒⃒⃒⃒
𝑥+ 𝑦

2

⃒⃒⃒⃒)︂
, (5)

is an even function with respect to the straight line 𝑥 = 0 (i.e., �̄�1 = �̄�2), which allows one
to consider the solutions of the problem in the half-plane 𝑥 > 0. The use of the Dirichlet
or Neumann boundary condition at 𝑥 = 0 allows one to obtain the solutions, symmetric
and antisymmetric with respect to the permutation of two particles. If the pair potential
possesses a high peak at the pair collision point, then the solution of the problem in the
vicinity of 𝑥 = 0 is exponentially small and can be considered in the half-plane 𝑥 > 𝑥min.
In this case the Neumann or Dirichlet boundary condition imposed at 𝑥min yields only
a minor contribution to the solution. The equation, describing the diatomic molecular
subsystem (dimer) (below this case is referred to as Task 1 ), has the form(︂

− d2

d𝑥2
+
𝑀

~2
(𝑉 (|𝑥|)− 𝜀)

)︂
𝜑(𝑥) = 0. (6)
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We assume the energy spectrum of the dimer to consist of the discrete part with a finite
number 𝑛0> 1 of bound states with the eigenfunctions 𝜑𝑗(𝑥), 𝑗 = 1, 𝑛0 and the eigenvalues
𝜀𝑗 = −|𝜀𝑗 |< 0, and the continuous part with the eigenvalues 𝜀 > 0 and the corresponding
eigenfunctions 𝜑𝜀(𝑥). In certain cases the eigenfunctions of the continuous spectrum
are approximated by the eigenfunctions of pseudostates of the discrete spectrum 𝜀𝑗 > 0,
𝑗 = 1 + 𝑛0, . . . calculated in the sufficiently large but finite interval 𝑥 ∈ [𝑥min, 𝑥max].

The approach proposed below is illustrated by the example of Be2 with the reduced
mass 𝑀/2 = 4.506 Da of the nuclei [13] and the molecular interaction approximated
by the Morse potential

𝑉 (𝑥) =
𝑀

~2
𝑉 (𝑥), 𝑉 (𝑥) = �̃�{exp[−2(𝑥− �̂�𝑒𝑞)𝛼]− 2 exp[−(𝑥− �̂�𝑒𝑞)𝛼]}. (7)

Here 𝛼 = 2.96812 Å−1 is the potential well width, �̂�𝑒𝑞 = 2.47 Å is the aver-

age distance between the nuclei, and �̃� = 1280 K, 𝐷 = (𝑀/~2)�̃� = 236.51 Å−2

(1 K=0.184766 Å−2, 1 Å−2=5.412262 K) is the potential well depth. This poten-
tial supports only five bound states corresponding to the covalent bounding of the
Be2 dimer [14] having the energies 𝜀𝑖 =

(︀
𝑀/~2

)︀
𝜀𝑖, 𝑖 = 1, . . . , 𝑛0 = 5. The pa-

rameter values are determined from the condition (𝜀2 − 𝜀1) / (2𝜋~𝑐) = 277.124 cm−1,
1 K/(2𝜋~ c)=0.69503476 cm−1. To solve the discrete spectrum problem we applied the
seventh-order FEM using the Hermitian interpolation polynomials with double nodes [8]:
𝜀𝑖 = {−193.066,−119.392,−63.338,−24.904,−4.089}Å−2, 𝑖 = 1, . . . , 𝑛0 = 5. As an exam-
ple, following [13], we use below the Gaussian barrier potentials 𝑉 𝑏(𝑥𝑖) = 𝐷 exp

(︀
−𝑥2𝑖 /𝜎

)︀
with 𝐷 = 236.51 Å−2 and 𝜎 = 0.0523 Å2. The values of parameters of the repulsive
Gaussian barrier potential were estimated following the experimental observation of the
quantum diffusion of hydrogen atoms on the copper surface [15].

3. Boundary-Value Problems

Using the change of variables 𝑥 = 𝜌 sin𝜙, 𝑦 = 𝜌 cos𝜙, we rewrite Eq. (3) in polar
coordinates (𝜌, 𝜙), Ω𝜌,𝜙 = (𝜌 ∈ (0,∞), 𝜙 ∈ (0, 2𝜋))(︂

−1

𝜌

𝜕

𝜕𝜌
𝜌
𝜕

𝜕𝜌
+

1

𝜌2
Λ(𝜙, 𝜌)− 𝐸

)︂
Ψ(𝜙, 𝜌) = 0, Λ(𝜙, 𝜌) = − d2

d𝜙2
+ 𝜌2𝑉 (𝜙, 𝜌), (8)

where for a trimer with pair potentials

𝑉 (𝜙, 𝜌) = 𝑉 (𝜌| sin𝜙|) + 𝑉 (𝜌| sin(𝜙− 2𝜋/3)|) + 𝑉 (𝜌| sin(𝜙− 4𝜋/3)|), (9)

and for a dimer with pair potential in the external field of barrier potential:

𝑉 (𝜙, 𝜌) = 𝑉 (𝜌| sin𝜙|) + 𝑉 𝑏(𝜌| sin(𝜙− 𝜋/4)|) + 𝑉 𝑏(𝜌| sin(𝜙+ 𝜋/4)|). (10)

where 𝑉 𝑏(𝜌| sin(𝜙± 𝜋/4)|) = 𝐷 exp
(︀
−𝜌2 sin2(𝜙± 𝜋/4)/𝜎

)︀
.

The solution of Eq. (8) is sought in the form of the Kantorovich expansion [16]

Ψ𝑖𝑜(𝜙, 𝜌) =

𝑗max∑︁
𝑗=1

𝜑𝑗(𝜙; 𝜌)𝜒𝑗𝑖𝑜(𝜌). (11)

Here 𝜒𝑗𝑖𝑜(𝜌) are unknown matrix functions, 𝑗 = 1, . . . , 𝑗max = 2𝑁 . The angular basis
functions 𝜑𝑗(𝜙; 𝜌) ∈ ℱ𝜌 ∼ 𝐿2(Ω) in the interval Ω = 𝜙 ∈ [0, 2𝜋), which is divided into 𝑠max
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subintervals Ω𝑠 = 𝜙 ∈ (2𝜋(𝑠− 1)/𝑠max, 2𝜋𝑠/𝑠max): Ω𝜌;𝜙 =
⋃︀𝑠max

𝑠=1 Ω𝑠, are determined at
each value of the parameter 𝜌 ∈ (0,+∞) as the eigenfunctions corresponding to the real
discrete eigenvalues 𝜀1(𝜌) < 𝜀2(𝜌) < . . . < 𝜀𝑗(𝜌) < . . . of the Sturm–Liouville problem
for the equation (︀

Λ(𝜙, 𝜌)− 𝜀𝑗(𝜌)
)︀
𝜑𝑗(𝜙; 𝜌) = 0. (12)

The functions 𝜑
(𝑝)
𝑗 (𝜙; 𝜌) ≡ 𝜑𝑗(𝜙; 𝜌) have the parity (−1)𝑝, 𝑝 = 0, 1 with respect to the

inversion of Jacobi coordinates (2), i.e., 𝜑
(𝑝)
𝑗 (𝜙; 𝜌) = (−1)𝑝𝜑

(𝑝)
𝑗 (𝜙± 𝜋; 𝜌); here and below

𝑝 = 0. These functions satisfy the orthogonality and completeness conditions

⟨𝜑𝑖|𝜑𝑗⟩ =

𝑠max∑︁
𝑠=1

2𝜋𝑠/𝑠max∫︁
2𝜋(𝑠−1)/𝑠max

d𝜙𝜑𝑖(𝜙; 𝜌)𝜑𝑗(𝜙; 𝜌) = 𝛿𝑖𝑗 , (13)

∑︁
𝑖

|𝜑𝑖⟩⟨𝜑𝑖| =
∑︁
𝑖

𝜑𝑖(𝜙; 𝜌)𝜑𝑖(𝜙0; 𝜌) = 𝛿(𝜙− 𝜙0). (14)

For the three problems under consideration the potential function 𝑉 (𝜙, 𝜌) depending
on the parameter 𝜌 can be defined as follows.

Task 1. The case of one pair potential in the intervals 𝜙 ∈ (0, 2𝜙𝛼) (𝜙𝛼 = 𝜋/6, 𝜋/4
or 𝜋/2) 𝑉 (𝜙, 𝜌) = 𝑉 (𝜌 sin𝜙).

Task 2. The case of three pair potentials, Eq. (9), in the interval 𝜙 ∈ (0, 2𝜙𝛼 = 𝜋/3);
the potential has the symmetry of the 𝐷3ℎ dihedral point group [12].

Task 3. The case of one pair potential and two penetrable or almost impenetrable
barriers, Eq. (10), in the interval 𝜙 ∈ (0, 𝜙𝛼 = 𝜋/2) or in the intervals 𝜙 ∈ (0, 𝜙𝛼 = 𝜋/4−𝜖)
and 𝜙 ∈ (𝜙𝛼 = 𝜋/4 − 𝜖, 𝜋/2), 0 < 𝜖 ≪ 𝜋/4.

The solutions symmetric with respect to the permutation of two particles satisfy the
Neumann boundary condition at 𝜙 = 0 and 𝜙 = 2𝜙𝛼, while the antisymmetric ones
satisfy the Dirichlet boundary condition at these points, i.e., at the aforementioned
points 𝑥 = 𝑥𝛼𝛽 = 0. If the pair potential possesses a high peak in the vicinity of
the pair collision point, then the solution of the problem (8) will be considered in the
half-plane Ω𝜙,𝜌 = (𝜌 ∈ (𝜌min,∞), 𝜙 ∈ [𝜙min(𝜌), 2𝜙𝛼 − 𝜙min(𝜌)]) with the Neumann or
Dirichlet boundary condition.

The potential function 𝑉 (𝜙, 𝜌) of the boundary-value problem (12) is symmetric un-

der the reflection 𝐼𝛼: 𝜙 → (4𝑠 − 2)𝜙𝛼 − 𝜙 with respect to the lines 𝜙 = (2𝑠 − 1)𝜙𝛼 in

each sector of the cycle, numbered by 𝑠 = 1, . . . , 𝑠max: 𝐼𝛼𝑉 (𝜙, 𝜌) = 𝑉 (𝜙, 𝜌). There-
fore, the set of eigenfunctions 𝜑𝑗(𝜙; 𝜌) is separated into two subsets, namely, the

even and odd 𝜑𝜎=±1𝑗 (𝜙; 𝜌) ones: 𝐼𝛼𝜑
𝜎
𝑗 (𝜙; 𝜌) = 𝜑𝜎𝑗 ((4𝑠− 2)𝜙𝛼 − 𝜙; 𝜌) = ±𝜑𝜎=±1𝑗 (𝜙; 𝜌).

This fact allows separate calculation of gerade 𝜑𝑔𝑗 (𝜙; 𝜌) = 𝜑𝑔𝑗 ((4𝑠− 2)𝜙𝛼 − 𝜙; 𝜌) or

ungerade 𝜑𝑢𝑗 (𝜙; 𝜌) = −𝜑𝑢𝑗 ((4𝑠− 2)𝜙𝛼 − 𝜙; 𝜌) eigenfunctions in the reduced interval
𝜙 ∈ [𝜙min(𝜌), 𝜙𝛼], subjecting them to Neumann or Dirichlet boundary condition at
the boundary point 𝜙 = 𝜙𝛼 of the interval, respectively. Below the parametric angular ba-
sis functions 𝜑𝜎=±1𝑗 (𝜙; 𝜌) with the numbers 𝑗 = 1, . . . , 𝑛0 are referred to as cluster states

with 𝜀𝑗(𝜌) < 0, and those with 𝑗 > 𝑛0 + 1 as pseudostates with 𝜀𝑗(𝜌) > 0, corresponding
to the discrete and continuous spectrum of BVP for Eq. (6) at large values of the param-
eter 𝜌, respectively. To reveal the above structurization property, we introduce the linear
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combinations of these functions 𝜑𝛾,𝛽𝑗 (𝜙; 𝜌) for the trimer and 𝜑←,→
𝑗 (𝜙; 𝜌) for the dimer:

𝜑𝛾,𝛽𝑗 (𝜙; 𝜌) =
(︀
±𝜑𝜎=−1𝑗 (𝜙; 𝜌) + 𝜑𝜎=1

𝑗 (𝜙; 𝜌)
)︀
/
√

2,

𝜑←,→
𝑗 (𝜙; 𝜌) =

(︀
±𝜑𝜎=−1𝑗 (𝜙; 𝜌) + 𝜑𝜎=1

𝑗 (𝜙; 𝜌)
)︀
/
√

2.
(15)

The action of the parity operator 𝐼𝛼 on these functions

𝐼𝛼𝜑
𝛾
𝑗 (𝜙; 𝜌) = 𝜑𝛽𝑗 (𝜙; 𝜌), 𝐼𝛼𝜑

𝛽
𝑗 (𝜙; 𝜌) = 𝜑𝛾𝑗 (𝜙; 𝜌),

𝐼𝛼𝜑
←
𝑗 (𝜙; 𝜌) = 𝜑→𝑗 (𝜙; 𝜌), 𝐼𝛼𝜑

→
𝑗 (𝜙; 𝜌) = 𝜑←𝑗 (𝜙; 𝜌),

(16)

consists in the permutation of states |𝛾⟩ ↔ |𝛽⟩ or | ←⟩ ↔ | →⟩ with respect to the
lines 𝜙 = (2𝑠 − 1)𝜙𝛼. Indeed, the parametric cluster functions at 𝑗 = 1, . . . , 𝑛0 and at
large 𝜌 have maximal in the vicinity of 𝜙 = (2𝑠− 2)𝜙𝛼 and 𝜙 = 2𝑠𝜙𝛼, respectively, that
correspond to the eigenfunctions of cluster states of the BVP for Eq. (6). In the particular
case of sector 1, the dimer functions 𝜑←,→

𝑗 (𝜙; 𝜌) have maximal in the vicinity of 𝜙 = 0
and 𝜙 = 𝜋, i.e. for 𝑦 > 0, 𝑣 =←, or for 𝑦 < 0, 𝑣 =→ at large 𝜌, respectively while the

trimer functions 𝜑𝛾,𝛽𝑗 (𝜙; 𝜌) have maximal in the vicinity of 𝜙 = 0 and 𝜙 = 𝜋/3, i.e. for

𝑥12/𝑦(12)3 > 0, 𝑣 = 𝛾, or for 𝑥31/𝑦(31)2 < 0 𝑣 = 𝛽 at large 𝜌, respectively.

Using the above pairs of the basis functions (15), we rewrite the expansion (11) in
the 𝜎-representation

Ψ𝑖𝑜(𝜙, 𝜌) =

𝑁∑︁
𝑗=1

∑︁
𝜎

𝜑𝜎𝑗 (𝜙; 𝜌)𝜒𝜎
𝑗𝑖𝑜(𝜌), (17)

where 𝜎 = 𝑢, 𝑔 or 𝜎 = 𝛾, 𝛽 for the unknown functions 𝜒𝛾
𝑗𝑖𝑜

(𝜌) and 𝜒𝛽
𝑗𝑖𝑜

(𝜌) in the (𝛾𝛽)-

representation, related to the functions 𝜒𝑔
𝑗𝑖𝑜

(𝜌) and 𝜒𝑢
𝑗𝑖𝑜

(𝜌) in the (𝑔𝑢)-representation as

𝜒𝑗𝑖𝑜(𝜌) =

(︃
𝜒𝛾
𝑗𝑖𝑜

(𝜌)

𝜒𝛽
𝑗𝑖𝑜

(𝜌)

)︃
= 𝐴

(︂
𝜒𝑢
𝑗𝑖𝑜

(𝜌)

𝜒𝑔
𝑗𝑖𝑜

(𝜌)

)︂
, 𝐴 =

1√
2

(︂
1 1

−1 1

)︂
. (18)

The averaging of Eq. (8) with the basis functions in 𝜎-representation (17) yields the
system of coupled ODEs with determined by the hyperspherical parameterization of the
two-dimensional configuration space[︂

−1

𝜌

d

d𝜌
𝜌

d

d𝜌
+
𝜀𝑖(𝜌)

𝜌2
− 𝐸

]︂
𝜒𝑖𝑖𝑜(𝜌) +

𝑗max∑︁
𝑗=1

𝑊𝑖𝑗(𝜌)𝜒𝑗𝑖𝑜(𝜌) = 0, (19)

𝑊𝑖𝑗(𝜌) = 𝐻𝑗𝑖(𝜌) +
1

𝜌

d

d𝜌
𝜌𝑄𝑗𝑖(𝜌) +𝑄𝑗𝑖(𝜌)

d

d𝜌
. (20)

Here the potential curves (terms) 𝜀𝑗(𝜌) are eigenvalues of the BVP (12) and the effective
potentials (EPs) 𝑄𝑖𝑗(𝜌) = −𝑄𝑗𝑖(𝜌), 𝐻𝑖𝑗(𝜌) = 𝐻𝑗𝑖(𝜌) are expressed as integrals calculated
in the reduced intervals 𝜙 ∈ [0, 2𝜙𝛼] using the above 𝑔, 𝑢 symmetry:

𝑄𝑖𝑗(𝜌) = −⟨𝜑𝑖|𝜕𝜌𝜑𝑗⟩, 𝐻𝑖𝑗(𝜌) = ⟨𝜕𝜌𝜑𝑖|𝜕𝜌𝜑𝑗⟩. (21)

For Task 3 the effective potentials �̂�𝑖𝑗(𝜌) = 𝑊𝑖𝑗(𝜌) + 𝑉 𝑏
𝑖𝑗(𝜌) are sums of 𝑊𝑖𝑗(𝜌),

calculated using the potential curves and the parametric basis functions of Task 1, and
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the matrix elements 𝑉 𝑏
𝑖𝑗(𝜌) of the barrier potentials

𝑉 𝑏
𝑖𝑗(𝜌) = ⟨𝜑𝑖|𝑉 𝑏(𝜌| sin(𝜙− 𝜋/4)|) + 𝑉 𝑏(𝜌| sin(𝜙+ 𝜋/4)|)|𝜑𝑗⟩. (22)

As an example, we calculated with the required accuracy the parametric basis functions
of BVP (12) and the effective potentials (21) for the models of Be2 dimer and Be3 trimer
in collinear configuration using the FEM implemented in the program ODPEVP [10]. The
results of calculation on the grid Ω𝜙[1.8/𝜌, 𝜙𝛼] = {1.8/𝜌(24)3/𝜌(10)4/𝜌(5)5/𝜌(10)𝜙𝛼}
for 𝜙𝛼 = 𝜋/2 for Be2 dimer and 𝜙𝛼 = 𝜋/6 for Be3 trimer. Using the obtained result in
the uncoupled (𝑔𝑢)-representation and the transformation matrix 𝐴 from Eq. (18), we
can rewrite the system of ODEs in the coupled (𝛼𝛽)-representation with the effective
potentials.

𝑈𝑖𝑗(𝜌) =

(︂
𝑈𝑖𝛾𝑗𝛾(𝜌) 𝑈𝑖𝛾𝑗𝛽(𝜌)

𝑈𝑖𝛽𝑗𝛾(𝜌) 𝑈𝑖𝛽𝑗𝛽(𝜌)

)︂
= 𝐴

(︂
𝑈𝑖𝑢𝑗𝑢(𝜌) 0

0 𝑈𝑖𝑔𝑗𝑔(𝜌)

)︂
𝐴−1. (23)

In Section 4 one can see that the (𝛾𝛽)-representation provides the required compatibility
of the solutions of Eqs. (19) with the asymptotic boundary conditions of the scattering
problem on the full axis and its half-axis.

4. Asymptotic Expressions of Scattering, Metastable
and Bound States

The general solution 𝐹𝑗 of the system of ODEs in the open channels 𝑖𝑜 = 1, . . . , 𝑁𝑜 is
determined by a linear combination of the fundamental solutions 𝜒−𝑗𝑖′𝑜(𝑝𝑖𝑜𝜌) and 𝜒+

𝑗𝑖′𝑜
(𝑝𝑖𝑜𝜌)

calculated using Eqs. (19)–(21) following from [11] with the leading terms of the Hankel

functions of the first and the second kind [17] 𝐻
(2)
1/2(𝑝𝑖𝑜𝜌) and 𝐻

(1)
1/2(𝑝𝑖𝑜𝜌) below the

dissociation threshold at 𝐸 < 0 in the form of incoming and outgoing waves

𝐹 𝑎𝑠
𝑗 (𝜌) =

𝑁𝑜∑︁
𝑖′𝑜=1

[︁
𝜒−𝑗𝑖′𝑜(𝑝𝑖𝑜𝜌)𝑎−𝑖′𝑜 + 𝜒+

𝑗𝑖′𝑜
(𝑝𝑖𝑜𝜌)𝑎+𝑖′𝑜

]︁
,

at 𝑝𝑖𝑜 =
√︀
𝐸 − 𝜀𝜎𝑖𝑜 > 0 in the open channels 𝑁𝑜 = max

𝐸>𝜀𝑗
𝑗 6 𝑁 . The scattering matrix

𝑆𝜎
𝑖𝑜𝑖′𝑜

(𝐸) or 𝑆𝜎
𝑖𝑜𝑖′𝑜

(𝑝), where 𝑝 = diag{𝑝𝑖𝑜}𝑁𝑜
𝑖𝑜=1, is a diagonal matrix. In open channels

it is defined as the matrix transforming the amplitudes of the incoming waves 𝑎−𝑖′𝑜 into

those of the outgoing waves 𝑎+𝑖′𝑜 [18]

𝑎+𝑖′𝑜 =

𝑁𝑜∑︁
𝑖′𝑜=1

𝑆𝜎
𝑖𝑜′ 𝑖𝑜

(𝑝)𝑎−𝑖𝑜 . (24)

The components of the radial asymptotic solutions 𝐹 𝑎𝑠
𝑗𝑖𝑜

(𝜌) of the scattering problem
in the open channels 𝑖𝑜 = 1, . . . , 𝑁𝑜 have the form

𝐹 𝑎𝑠
𝑗𝑖𝑜(𝜌) =

𝑁𝑜∑︁
𝑖′𝑜=1

[︁
𝜒−𝑗𝑖′𝑜(𝑝𝑖𝑜𝜌)𝛿𝑗𝑖′𝑜 + 𝜒+

𝑗𝑖′𝑜
(𝑝𝑖𝑜𝜌)𝑆𝜎

𝑖′𝑜𝑖𝑜
(𝑝)
]︁
, (25)
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while in the closed channel 𝑖𝑜 = 𝑁𝑜 + 1, . . . , 𝑁 the asymptotic solutions 𝐹𝑗𝑖𝑜(𝜌) are
determined by the fundamental solutions 𝜒+

𝑗𝑖′𝑜
(𝚤𝑝𝑖𝜌) with the leading term of Kelvin

functions [17] 𝐾1/2(𝑞𝑖𝑜𝜌) for the decaying waves

𝐹 𝑎𝑠
𝑗𝑖𝑜(𝜌) = 𝑎+𝑖′𝑜𝜒

+
𝑗𝑖′𝑜

(𝚤𝑝𝑖𝑜𝜌). (26)

These asymptotic solutions 𝐹 (𝜌) = {𝐹 𝑖𝑜(𝜌)}𝑁𝑖𝑜=1 = {{𝐹𝑗𝑖𝑜(𝜌)}𝑁𝑗=1}𝑁𝑖𝑜=1 are used to have
the conventional asymptotic boundary conditions for the components of the numerical
solution 𝐹𝑗𝑖𝑜(𝜌) of the system of ODEs (19) at large 𝜌 = 𝜌max

𝐹𝑗𝑖𝑜(𝜌) = 𝐹 𝑎𝑠
𝑗𝑖𝑜(𝜌),

d

d𝜌
𝐹𝑗𝑖𝑜(𝜌) =

d

d𝜌
𝐹 𝑎𝑠
𝑗𝑖𝑜(𝜌). (27)

The scattering problem (3)–(6) with the asymptotic boundary conditions (25) and (26)
is reduced to a boundary-value problem for the set of close-coupled equations (19) with
the boundary conditions at 𝜌 = 𝜌min and 𝜌 = 𝜌max:

𝐹 (𝜌min) = 0,
d𝐹 (𝜌)

d𝜌

⃒⃒⃒⃒
𝜌=𝜌max

= ℛ(𝜌max)𝐹 (𝜌max), (28)

where ℛ(𝜌max) is a 𝑁 × 𝑁 symmetric matrix function of 𝐸, 𝐹 (𝜌) = {𝜒𝑖𝑜(𝜌)}𝑁𝑖𝑜=1 =

{{𝜒𝑗𝑖𝑜(𝜌)}𝑁𝑗=1}𝑁𝑖𝑜=1 is the required 𝑁 × 𝑁 numerical matrix solution.

These matrices and the 𝑁𝑜 × 𝑁𝑜 matrices S±1 = {𝑆𝑔,𝑢
𝑖′𝑜𝑖𝑜

(𝐸)}𝑁𝑜

𝑖′𝑜,𝑖𝑜=1 sought for in the

open channels 𝑁𝑜 = max
𝐸>𝜀𝑗

𝑗 6 𝑁 are calculated directly from (27) using the program

KANTBP 4M [8].

For metastable states the even and odd eigenfunctions obey the boundary conditions
of the third kind (28), where the matrices ℛ(𝜌max) = diag(ℛ(𝜌max)) depend on the
complex energy eigenvalue 𝐸 ≡ 𝐸𝑚 = Re𝐸𝑚 + 𝚤 Im𝐸𝑚, Im𝐸𝑚 < 0 sought for, and
are expressed as [19]

ℛ𝑖𝑜𝑖𝑜(𝜌max) =

{︂
𝚤𝑝𝑚, Re𝐸𝑚 > 𝜀𝜎𝑗
𝚤𝑞𝑚, Re𝐸𝑚 < 𝜀𝜎𝑗

}︂
, 𝑝𝑚 =

√︁
𝐸𝑚 − 𝜀𝜎𝑖𝑜 , 𝑞𝑚 = 𝚤

√︁
𝜀𝜎𝑖𝑜 − 𝐸𝑚, (29)

since the asymptotic solutions of this problem contain only outgoing waves in the open
channels 𝑖𝑜 = 1, . . . , 𝑁𝑜 and closed ones 𝑖𝑜 = 𝑁𝑜+1, . . . , 𝑁 . In this case the eigenfunctions
obey the orthogonality and normalization conditions

(F𝑚|F𝑚′) = (𝚤𝑝𝑚 + 𝚤𝑝𝑚′)

⎡⎣ 𝜌max∫︁
𝜌min

F𝑇
𝑚(𝜌)F𝑚′(𝜌)d𝜌− 𝛿𝑚𝑚′

⎤⎦+ 𝐶𝑚𝑚′ = 0,

𝐶𝑚𝑚′ = −F𝑇
𝑚(𝜌max)F𝑚′(𝜌max).

(30)

For bound states the even (𝑔) and odd (𝑢) eigenfunctions obey the boundary conditions
(28), with the matrices ℛ(𝜌max) = diag(ℛ(𝜌max)) = 0. In this case the eigenfunctions
obey the orthogonality and normalization conditions

⟨F𝑚|F𝑚′⟩ =

𝜌max∫︁
𝜌min

F𝑇
𝑚(𝜌)F𝑚′(𝜌)d𝜌 = 𝛿𝑚𝑚′ . (31)



234 RUDN Journal of MIPh. Vol. 26, No 3, 2018. Pp. 226–243

Taking the property (15) and (16) of the quasiangular parametric basis functions and the
effective potentials (23) into account, we express the S-matrix in the (𝛾𝛽) representation
on the full axis ℛ1 via the matrix 𝑆𝜎 (24), (25) calculated on the half-axis ℛ1

+. The
matrix S is a unitary and symmetric scattering matrix

S =

(︂
S𝛾𝛾 S𝛾𝛽

S𝛽𝛾 S𝛽𝛽

)︂
, S†S = SS† = I, (32)

consisting of the matrices S𝛾𝛾 , S𝛽𝛽 and S𝛾𝛽 = S𝑇
𝛾𝛽 of the dimension 𝑁𝑜 ×𝑁𝑜 determined

by the relations S𝛾𝛾 = S𝛽𝛽 = (S+1 + S−1)/2, S𝛾𝛽 = S𝑇
𝛽𝛾 = (S+1 − S−1)/2, where

S+1 ≡ S𝑔 and S−1 ≡ S𝑢 are the matrices from (25). Here I is the unit matrix with the
dimension 2𝑁𝑜× 2𝑁𝑜, S𝛾𝛾 and S𝛽𝛽 corresponds to the elastic scattering processes (in the
considered case of 1D scattering it means reflection) of the dimer (𝛼𝛽)(or (𝛾𝛼)) on the
atom 𝛾 (or 𝛽): 𝛾 + (𝛼𝛽)→ 𝛾 + (𝛼𝛽), or (𝛾𝛼) + 𝛽 → (𝛾𝛼) + 𝛽, and S𝛽𝛾 and the matrices
S𝛾𝛽 correspond to the inelastic rearrangement scattering processes (in the case of 1D
scattering it means transmission) 𝛾+ (𝛼𝛽)→ (𝛾𝛼) +𝛽 or (𝛾𝛼) +𝛽 → 𝛾+ (𝛼𝛽), for which
the conventional relations between inelastic and elastic scattering below breakup threshold
at 𝐸 < 0 follow from (32) that provide conservation of the Wronskian, |S𝛽𝛾 |2 = I− |S𝛾𝛾 |2
and S𝛽𝛾 = S𝑇

𝛾𝛽, where I is the unit 𝑁𝑜 × 𝑁𝑜 matrix.

For the scattering of the dimer (𝛾𝛽) by the potential barriers, considered on the full
axis, the matrix S is the 2𝑁𝑜 × 2𝑁𝑜 scattering matrix (32) read as similar to [19]

S =

(︂
R← T→
T← R→

)︂
, S†S = SS† = I, (33)

where I is the unit matrix with the dimension 2𝑁𝑜×2𝑁𝑜 consisting of the amplitudes of the
reflected and transmitted waves R𝑣 = R𝑣(𝐸) and T𝑣 = T𝑣(𝐸), where 𝑣 =←,→ indicates
the direction of the incident wave propagation with respect to the 𝑦-axis, i.e., 𝑣 =← and
𝑣 =→ for 𝑦 > 0 and 𝑦 < 0, respectively, and the 𝑁𝑜 × 𝑁𝑜 matrices R𝑣 = R𝑣(𝐸) and
T𝑣 = T𝑣(𝐸) are expressed as R← = R→ = (S+1 + S−1)/2, T← = T𝑇

→ = (S+1 − S−1)/2.
For the scattering of the dimer (𝛼𝛽) on potential barriers similar relations determine

the reflection R← = S𝛾𝛾 and R→ = S𝛽𝛽, and transmission T← = S𝛽𝛾 and T→ = S𝛾𝛽

amplitudes. For the reflection coefficient |R𝑣|2 = R†𝑣R𝑣 and the transmission coefficient
|T𝑣|2 = T†𝑣T𝑣 the conventional relation below breakup threshold at 𝐸 < 0 following from
(32) and constant Wronskian, |T𝑣|2 = I−|R𝑣|2 is valid, where I is the unit 𝑁𝑜×𝑁𝑜 matrix.

5. Bound, Metastable and Scattering States of the trimer

For the considered models, the eigenvalues and the hyperradial components of 2D
eigenfunctions of the BVP for the set of ODEs (19) with Dirichlet boundary conditions
were calculated with the predetermined accuracy using the FEM implemented in the
KANTBP 4M program [8].

The set of even (g) and odd (u) bound states of the trimer Be3 (Task 2 ) were cal-
culated on the grid Ωℎ = {𝜌min = 4.24(1)4.33(10)6.13(1)6.33(23)𝜌max = 11.39}, where
in parentheses the number of fifth-order Hermitian elements [20] is indicated, for the
number of equations 𝑁 = 15 in the system (19).

The comparison of sets of total and binding energies of g and u bound states of the
trimer Be3 calculated by KM and 2D FEM is presented in Table 1 and the corresponding
eigenfunctions (11) are shown in Fig. 2. One can see that results obtained by KM and
2D FEM [3, 7] are in agreement with an accuracy of the order 0.1Å−2.
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Table 1
The total 𝐸𝑖(*) and binding energies −𝐸𝑏

𝑖 (*)=𝐸𝑖(*)−𝐸trsh of g and u bound states of
the trimer 𝐵𝑒3 relative to the exact threshold 𝐸trsh=− 193.06 (in Å−2): 𝐸𝑖(𝐾) and
−𝐸𝑏

𝑖 (𝐾) calculated by KM in polar coordinates using 𝑁=12 basis functions (g or
u); 𝐸𝑖(𝐹 ) and −𝐸𝑏

𝑖 (𝐹 ) calculated by the 2D FEM using fifth order interpolation
Lagrange polynomials on triangular finite elements in sector 1 of Jacobi

coordinates

𝑖 1g 2g 3u 4g 5u 6g

−𝐸𝑖(𝐾) 389.08 335.43 300.58 287.02 260.47 245.84
−𝐸𝑏

𝑖 (𝐾) 196.02 142.37 107.52 93.96 67.41 52.78
−𝐸𝑖(𝐹 ) 389.09 335.45 300.60 287.05 260.50 245.88
−𝐸𝑏

𝑖 (𝐹 ) 196.03 142.39 107.54 93.99 67.44 52.82

𝑖 7u 8g 9u 10g 11u 12g

−𝐸𝑖(𝐾) 227.66 225.39 215.37 204.85 198.21 193.86
−𝐸𝑏

𝑖 (𝐾) 34.60 32.33 22.31 11.79 5.15 0.80
−𝐸𝑖(𝐹 ) 227.70 225.42 215.41 204.89 198.24 193.91
−𝐸𝑏

𝑖 (𝐹 ) 34.64 32.36 22.35 11.83 5.18 0.85

Figure 2. The density plots of the eigenfunctions Ψ𝑔,𝑢
𝜈 (𝜙, 𝜌) displayed in sector 1 of

(𝑦, 𝑥)-plane (in Å) of the gerade (𝑔) and ungerade (𝑢) bound states with energies
𝐸𝑔,𝑢

𝜈 of the Be3 trimer presented in Table 1. The negative, positive and near-zero
values of the eigenfunctions are displayed by black, white and gray, respectively
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These solutions, i.e. the real eigenvalues and the corresponding eigenfunctions, were
used as an initial approximation in the continuous analogue of Newton’s method [21]
with additional condition (F𝑚|F𝑚′) = 0 to calculate the metastable states of the trimer
Be3 on the same finite-element grid. The corresponding problem of the dimer scattering
on an atom was solved on the same grid and 𝑁 = 15.

The calculated complex energies of the metastable states 𝐸𝑀
𝑚 ≡ 𝐸𝑚 = Re𝐸𝑚 + 𝚤 Im𝐸𝑚

for the trimer are presented in Table 2.

Table 2
The sets of the first resonance energy values 𝐸 at which the minimum of the

transmission coefficient |𝑆𝑎𝑏|2𝑖𝑖 is achieved, the number 𝑖 of the threshold 𝜀𝑖, the
real and imaginary part of the complex energy eigenvalues 𝐸𝜈 = Re𝐸𝑀

𝜈 + 𝚤 Im𝐸𝑀
𝜈 in

Å−2 of the even 𝑔 and odd 𝑢 metastable states of Be3 numbered by the index 𝜈
calculated with 𝑁 = 15 equations (19)

𝐸 𝑖 |𝑆𝑎𝑏|2𝑖𝑖 Re𝐸𝑀
𝜈 Im𝐸𝑀

𝜈 𝜈type

−193.066 1 thr

−189.676 1 1 · 10−7 −188.94 −4 · 10−2 1g
−164.654 1 4 · 10−6 −164.72 −1 · 10−2 1u
−156.882 1 3 · 10−6 −157.04 −2 · 10−2 2g
−140.545 1 1 · 10−4 −140.57 −5 · 10−3 2u
−132.485 1 1 · 10−6 −132.47 −4 · 10−3 3g
−124.256 1 1 · 10−3 −124.16 −6 · 10−3 3u
−120.638 1 1 · 10−6 −120.75 −8 · 10−2 4g

−119.392 2 thr

−113.248 2 0.10 −113.24 −2 · 10−2 5g
−89.319 2 9 · 10−4 −89.16 −3 · 10−2 6g
−77.271 2 0.77 −76.51 −4 · 10−6 4u
−70.309 2 0.35 −70.30 −2 · 10−3 7g
−63.385 2 0.41 −65.14 −3 · 10−4 5u

−63.338 3 thr

−42.858 3 0.06 −42.87 −6 · 10−3 8g
−29.396 3 0.13 −29.19 −4 · 10−2 9g
−24.899 3 0.19 −25.82 −1 · 10−3 6u

−24.904 4 thr

−6.799 4 0.40 −7.12 −1 · 10−3 10g

−4.089 5 thr

0 thr

These metastable states are responsible for resonance energies, corresponding to the
minimal probability of inelastic scattering of the dimer by the atom, i.e., to the resonance
quantum reflection from the potential well (Feshbach resonances, see Figs. 1 (a) and 3 (a).

As an example, in Fig. 4 we display the eigenfunctions of the scattering problem for
gerade and ungerade states corresponding to the minimum of the transmission coefficient
|𝑆𝛾𝛽|2 = |𝑆𝛽𝛾 |2 = ·10−7 at 𝐸 = −189.676, as well as the metastable state 1g from Table 2.

The isolines of the absolute values |Ψ𝛾,𝛽(𝑦, 𝑥)| of the linear combinations Ψ𝛾,𝛽(𝑦, 𝑥) =

(Ψ𝑔(𝑦, 𝑥)±Ψ𝑢(𝑦, 𝑥))/
√

2 demonstrates the effect of resonance reflection from the effective
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Figure 3. The effective diagonal potentials 𝑊𝑗𝑗(𝜌) = 𝜀𝑗(𝜌)𝜌
−2 +𝐻𝑗𝑗(𝜌) for the Be3

trimer (a) and effective diagonal potentials 𝑊𝑗𝑗(𝜌) = 𝜀𝑗(𝜌)𝜌
−2 +𝐻𝑗𝑗(𝜌) + 𝑉 𝑏

𝑗𝑗(𝜌) for
the tunneling problem of the dimer Be2 through the Gaussian barrier (b)

❋✐❣✉$❡ ✽ ❢$♦♠ ❆✳❆✳ ●✉-❡✈ ❡/ ❛❧✳✱ ✏❆❞✐❛❜❛/✐❝ ❘❡♣$❡-❡♥/❛/✐♦♥ ❢♦$ ✳✳✳✑Figure 4. Upper panel: the isolines of the absolute values |Ψ𝑔,𝑢(𝜙, 𝜌)| of
corresponding gerade (left-hand panel) and ungerade (right-hand panel) solutions

in sector 1 of (𝑦, 𝑥)-plane (in Å) for the scattering of Be atom with the energy
−𝐸 = 189.676 Å−2 (relative to the three-body threshold) on the dimer Be2,

corresponding to the 1g metastable state from Table 2. Lower panel: isolines of
the absolute values |Ψ𝛾,𝛽(𝜙, 𝜌)| of the linear combinations

Ψ𝛾,𝛽(𝜙, 𝜌) = (±Ψ𝑢(𝜙, 𝜌) + Ψ𝑔(𝜙, 𝜌))/
√
2
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potential well. It can be seen from the figures that the shape of the wave functions of
the gerade scattering states (Fig. 4 (a)) and metastable states (Fig. 5) are similar and
they are localized in the vicinity of the potential well (Fig. 3 (a)). At the same time,
for the same energy value 𝐸 = −189.6 Å−2, the wave function of ungerade scattering
states (Fig. 4 b) is a typical nonresonant wave function.

❋✐❣✉$❡ ✾ ❢$♦♠ ❆✳❆✳ ●✉-❡✈ ❡/ ❛❧✳✱ ✏❆❞✐❛❜❛/✐❝ ❘❡♣$❡-❡♥/❛/✐♦♥ ❢♦$ ✳✳✳✑

Figure 5. The components 𝜒𝑗 and isolines of the absolute values |Ψ(𝜙, 𝜌)| of the
solution Ψ(𝜙, 𝜌) for the trimer Be3 in 1g metastable state with the real part of
energy eigenvalues Re𝐸 = −188.94 Å−2, localized near the minimal of the trimer

potential

6. Metastable and Scattering States of the Dimer Tunneling

The metastable states of the dimer Be2 tunneling through Gaussian barriers of
Task 3 were calculated for BVP calculated with 𝑁 = 15 equations in the sys-
tem (19) with matrix elements of potential barrier on the finite element grid Ω𝜌 =
{𝜌min =1.81(12)4.21(15)𝜌max = 7.51} with the fifth-order Hermitian elements (𝑝 = 5).
The corresponding problem of a dimer tunneling through the barriers was solved on
the same grid.

The corresponding algebraic eigenvalue problem for metastable states was solved
using the above mentioned continuous analogue of Newton’s method. As the initial
approximation the real eigenvalues and the corresponding orthonormalized eigenfunctions
(31) were used. They were found as a result of solving the bound state problem with
ℛ(𝑦𝑡) = 0 on the grid Ω𝜌 = {𝜌min =1.81(12)𝜌max = 4.21}. The complex values of energy
of the metastable states 𝐸𝑀

𝑚 ≡ 𝐸𝑚 = Re𝐸𝑚 + 𝚤 Im𝐸𝑚 for the dimer Be2 tunneling
through the Gaussian barriers, are presented in Fig. 6.

These metastable states are responsible for the resonance values of energy, corresponding
to the maximal transmission coefficient, i.e., the quantum transparency of the potential
barriers (see Figs. 1 (b) and 3 (b)), i.e., the shape resonances. The position of peaks
presented in Fig. 6. is seen to be in quantitative agreement with the real part Re(𝐸), and
the geometric halfwidth of the |𝑇 |211(𝐸) peaks agrees by the order of magnitude with the
imaginary part Γ = −2 Im(𝐸) of the complex energy eigenvalues 𝐸 = Re(𝐸) + 𝚤 Im(𝐸)
of the metastable states. The obtained complex energy values corresponding to the
resonance values of energy in the first open channel are in good agreement with the ones
calculated analytically in the model of a rigid diatomic molecule with Morse potential
tunneling trough the Gaussian barrier at the same values of parameters [13]. From Fig. 6
one can see that as the energy of the initial excited state increases, the transmission
peaks demonstrate a shift towards higher energies, the set of peak positions keeping
approximately the same as for the transitions from the ground state and the peaks just
replace each other. For example, the left epure shows that the positions of the 13th and
14th peaks for transitions from the first state coincide with the positions of the 1st and
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2nd peaks for the transitions from the second state, while the right epure shows that the
positions of the 25th and 26th peaks for transitions from the first state coincide with the
positions of the 13th and 14th peaks for transitions from the second state and with the
positions of the 1st and 2nd peaks for the transitions from the third state.

❋✐❣✉$❡ ✶✵ ❢$♦♠ ❆✳❆✳ ●✉.❡✈ ❡0 ❛❧✳✱ ✏❆❞✐❛❜❛0✐❝ ❘❡♣$❡.❡♥0❛0✐♦♥ ❢♦$ ✳✳✳✑

Figure 6. The total probability |T|2𝑖𝑖(𝐸) =
∑︀𝑁𝑜

𝑗=1 𝑇
*
𝑖𝑗𝑇𝑗𝑖 (lines) of penetration of the

dimer for the initial states 𝑖 through the repulsive Gaussian potential barriers
versus the total energy 𝐸 = Re𝐸 counted from the main threshold 𝐸 = 0. The

values of the threshold energies 𝐸 = 𝜀𝑖, 𝑖 = 1, . . . , 5 corresponding to the energies of
ground and excited initial states are shown by arrows. The real Re𝐸 and

imaginary (−1) Im𝐸 part (with negative sign) of the metastable states energy
(circles)

7. Conclusion

The model for three atomic beryllium system in a straight line was formulated as a 2D
boundary-value problem for the Schrödinger equation in Jacobi and polar coordinates.
Using the Kantorovich expansions this problem has been reduced to the boundary-value
problem for a set of second-order ordinary differential equations.

The efficiency of the elaborated method, algorithms and programs has been demon-
strated by benchmark calculations of the resonance scattering, metastable and bound
states of the considered models and also by a comparison of results for bound states of the
three atomic system in the framework of direct solving BVP by FEM and Kantorovich
reduction.

The effects of resonant quantum transmission of diatomic molecule through the potential
barrier and reflection from the effective potential well of a three atomic system (see Figs.
3 (b) and 3 (a)), arising in the scattering process were revealed, that are generated by
metastable states of the composite system (cluster + barrier or well) with complex energy
eigenvalues below the dissociation threshold of dimer, corresponding to the shape and
Feshbach resonances, respectively.

The elaborated method, algorithms and programs [8–10] for solving the three-atomic
scattering problem as well as diatomic molecule tunneling through potential barrier can
be applied to the further analysis of quantum transparency and reflection effects [13],
quantum diffusion [22] and the resonance scattering in triatomic systems using modern
theoretical and experimental results [23, 24].
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P. M. Krassovitskiy, Metastable States of a Composite System Tunneling through
Repulsive Barriers, Theoretical and Mathematical Physics 186 (2016) 21–40.
doi:10.1134/S0040577916010037.

20. A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky, V. L. Derbov, A. Góźdź, L. L. Hai,
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Метод конечных элементов высокого порядка точности для
решения двухмерных эллиптических краевых задач двух

и трёх тождественных атомов на прямой
А. А. Гусев

Лаборатория информационных технологий
Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, г. Дубна, Московской обл., 141980, Россия

Рассмотрены модели трёх одинаковых атомов на прямой с парным молекулярным взаи-
модействием и рассеяние двухатомной молекулы на атоме или её туннелирования через
потенциальные барьеры. Модели сформулированы в виде двумерных эллиптических крае-
вых задач (КЗ) в координатах Якоби и полярных координатах. КЗ в координатах Якоби
решаются методом конечных элементов высокого порядка точности для дискретного спек-
тра рассматриваемых моделей. Для решения задач рассеяния КЗ в полярных координатах с
помощью метода Канторовича сводится к системе обыкновенных дифференциальных урав-
нений второго порядка по радиальной переменной с использованием разложения искомых
решений по набору угловых базисных функций, параметрически зависящих от радиальной
переменной. Эффективность разработанного метода, алгоритмов и программ демонстри-
руется путём эталонных расчётов резонансного рассеяния, метастабильных и связанных
состояний рассматриваемых моделей, а также путём сравнения результатов для связан-
ных состояний трёх атомных систем в рамках прямого решения КЗ методом конечных
элементов и редукции Канторовича.

Ключевые слова: эллиптические краевые задачи, задача рассеяния, метастабильные
и связанные состояния, метода Канторовича
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