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Present work is devoted to the study and development of space-time statistical structures of
extreme type modeling with the use of the max-stable processes. The theory of one-dimensional
extremal values and its extension to the two-dimensional case are considered and for that max-
stable processes are introduced and then the main parametric families of max-stable processes
(Schlather, Smith, Brown—Resnick, and Extremal-t) are presented. By modifying the maximum
likelihood method, namely using the paired likelihood function, parameter estimates were
obtained for each of the models whose efficiency was compared using the Takeuchi information
criterion (TIC).

Resulting models are coherent with classical extreme value theory and allow consistent
treatment of spatial dependence of rainfall. We illustrate the ideas through data, based on
daily cumulative rainfall totals recorded at 14 stations in central European part of Russia for
period 1966—2016 years. We compare fits of different statistical models appropriate for spatial
extremes and select the model that is the best for fitting our data. The method can be used in
other situations to produce simulations needed for hydrological models, and in particular for
the generation of spatially heterogeneous extreme rainfall fields over catchments. It is shown
that the most successful model for the data we studied is the model from the extremal-t family
with the Whittle-Matern correlation function.

Key words and phrases: spatial modeling, extreme rainfall, max-stable processes, ex-
treme value theory, spatial structures of statistical dependence, pairwise likelihood function

1. Introduction

The rapidly growing number of various natural and man-made disasters that previously
were considered extremely rare indicates that the global climate change of the Earth
is becoming obvious. Observable in various regions of the world and in particular in
Russia, hurricanes, rainfalls and other natural disasters bring human casualties and
substantial material damage to states and their economies. Therefore it is necessary
to develop new methods of resisting the impacts of different environmental disasters,
including comprehensive measures for forecasting, preventing and adapting the population
to extreme situations. The study of regional climate change peculiarities that take place
in connection with global warming is a priority area of modern international research
projects. Important place in this area is given to the study of changes in the frequency
and intensity of extreme weather events, including extreme precipitation, as it often leads
to serious economic, environmental and human losses.

According to recent studies significant increase in the frequency of extreme events
including rainfall is expected as a result of global and regional climate change. The
archives of long-term accumulated observations and numerical model calculations of
hydrometeorological parameters make it possible to study general patterns of spatio-
temporal variability of extreme precipitation in Russia, caused by both environmental
and anthropogenic factors over the historical observation period and to calculate the
projections of their possible future changes.

Received 15* December, 2017.



Shchetinin E. Yu., Rassakhan N.D. Modeling of Extreme Precipitation Fields. .. 75

Spatial modeling methods is a popular approach for studying extreme events in en-
vironmental applications. Numerous scientific publications (like [1-3]) on this subject
are engaging extreme value theory (EVT) and extreme processes to the analysis of
environmental problems.

Present work is devoted to the study and development of precipitation models in
European Russia for the period 1966—2016 with the aim of constructing a short-term
precipitation forecast in a given region exceeding the normative indices. The study of
regularities of long-term variability of extreme precipitation on the territory of Russia
is aimed at the development of long-term forecasts. At the same time, such studies are
important for the subsequent solution of many applied problems, including long-term
planning of regional economic development.

2. Extreme Value Theory

Extreme value theory is based on Fisher—Tippett—Gnedenko theorem [2] that states
the existence of normalized maxima’s marginal distribution for sequence of i.i.d. ran-
dom variables. If such distribution H(x) exists and is non-degenerate then it satisfies
requirements of max-stable distributions H"(a,x + (3,) = H(x) for n > 1 and «,, > 0
and 3, € R, z € R!. Such distributions can be written in alternative form

wo-of[ (=)}

where a4 = max(a,0), —00 < u < oo is location parameter, o > 0 is scale parameter
and —oo < & < oo is shape parameter. Last equation represents generalized extreme
value (GEV) distribution [1] because it includes Weibull distribution (§ < 0), Gumbel
distribution (¢ = 0) and Frechet distribution (¢ > 0). Case £ = 0 is interpreted as
limiting & — 0.

Another approach to order statistic modeling known as the threshold approach is
bound to previous one. Following Pickands theory [1] under suitable conditions and for
a sufficiently high threshold u, the upper tail distribution of a wide class of random
variables X can be well approximated by

G(m):l—Pr(X>x):1—§{1+§<f+_g;>}ja

where z > u, 7+ &u > 0, —00 < £ < oo and ((u) = Pr(X > wu). Here ((u) is the
probability that the threshold u is exceeded, and 7 and £ are respectively scale and
shape parameters determining the distribution of exceedances corresponding to those
of the limiting distribution of maxima. The parametrization of the generalized Pareto
distribution (GPD), whose survivor function appears in the braces on the right part of
equation is different from the usual one and has the advantage that the parameters 7
and £ do not depend on the choice of threshold w.

3. Max-Stable Processes

Using of max-stable processes [3] is an extension of extreme value theory applied to
spatio-temporal precipitation fields. Let Y7, Y5, ... be a sequence of non-negative indepen-
dent copies of stochastic process {Y (z) : z € x} with continuous sample paths. If there
are such continuous functions ¢, > 0 and d,, € R that marginal process {Z(z) : z € x}
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defined as

(), zex, n—o0 (1)

is non-degenerate, then {Z(z) : € x} is max-stable process. For the consistency of
this theorem with one-dimensional case it is considered that marginal distribution
{Z(z) : x € x} in its condition must be distributed according to GEV.

Their spectral representation [4] has the following form:

Z(x) = max GYi(x), xe€x,

=

where {¢; : i > 1} ... are points of the Poisson process at ... (0,00) and Y7,Y5,... is a
sequence of non-negative independent copies of stochastic process {Y (z) : € x} such
that E{Y (z)} = 1 for all = € x. Points {¢; : ¢ > 1} in the spectral characterization are
radii while the stochastic processes {Y;(z) : i > 1} are angles. Further, four main families
of max-stable processes will be considered:

1) Smith process [5]:

Z(z) = max Gy (z = Ui 0,%),  z€x; (2)
2) Schlather process [6]:

Z(z) =V2r max G max {0, Wi(z)}, € x; (3)
3) Brown-Resnick process [4]:

2(w) = max G exp{ (Wi(z) ~ 7)1}, w € x (4)
4) Extremal-t process [7]:

Z(z) = ¢, max ¢;max [0, W;(z)]”, =€ x. (5)

=

Here, the Brown—Resnick process is characterized by Gaussian stationary process W;(x)
with variogram ~(z).

It is possible to derive a formula for finite-dimensional distribution {Z(z) : = € x} from
spectral characterization. For each x = (x1,...,2%) € Xk, k>1and z = 2(z1,...,28) €
(0,00)* we obtain next formula:

Pr{Z(z) < z} = Pr [No observation ((,Y) € ®:(Y(z;) > Z; for j € 1,k|] =

= exp —/Pr {C> min —2 }C_ZdC =exp{—Vz(z1,...,2K) },
0

j=1k Y (z;)
where function V,(z1,...,2x) is
Y (2.
Valz1, ..o, 25) :E{max(mj)}.
j=Lk Zj

It fully describes the joint distribution Z(x) and is called exponential function.



Shchetinin E. Yu., Rassakhan N.D. Modeling of Extreme Precipitation Fields. .. T

It is obvious from the formula above that

Valzy.2) = = g(z) = ]E{maxY(mj)} .

j=L1k

Function 6(x) is called k-dimensional extremal coefficient [8] and represents total
dependence measure between elements of random vector Z(z). Due to independence
of radial and angular components of the multidimensional extreme value the extremal

coefficient doesn’t depend on the radius, that is, from z in V. (z, ..., z) and shows relation
we are interested in.

‘We focus on the two-dimensional case and define the function of the extremal coeflicient:
0:h— E[max{Y(z),Y(x+h)}].

Extremal coefficient function takes values in the interval [1,2], where the smallest
value corresponds to complete dependence, and the largest corresponds to complete
independence. For these two cases we obtain

Pr{Z(x+h) < 2|Z(z) < 2} =Pr{Z(x + h) < 2}’ =
1 (complete dependence)
- | Pr{Z(z+h) <z} (complete independence)

It is important to note that the calculation of the exponential function for k£ > 2 can be
difficult [9], therefore the consideration of finite-dimensional distributions of max-stable
processes is mostly reduced to the two-dimensional case.

Example of spatial dependence measurement is shown in Fig. 1; here we plot pairwise
f-madogram and extremal coefficient to show how dependence changes with distance.

Vr(h)
010 012 014

0.08

0.06

Figure 1. Pairwise F-madogram (left panel) and extremal coefficient (right panel)
for the best fitting max-stable process for our data (that will be shown below).
Distance between stations can be calculated as Distance ~ h - 111 km
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4. Modeling of Extreme Precipitation Spatial Fields

In this study precipitation data of the All-Russian Research Institute of Hydrome-
teorological Information — the World Data Center of the Russian Federation is used,
which show monthly precipitation in 14 cities of the European part of Russia. The
data is freely available (on the website http://aisori.meteo.ru/ClimateR) and is rep-
resented by a set of tables (a separate table for each city); each table contains daily
rainfall value for the period 1966-2016 years. Thus, we face not only the problem of
analyzing the statistical properties of one-dimensional time series for each station, but
also the problem of model development that contains spatial structure of the statistical
relationships in various locations [10].

Preliminary analysis of empirical data distribution properties in observed locations
showed significant deviations of their statistical properties from the Gaussian distribution.
It is for this reason that the use of GEV is justified, yet we need to evaluate the quality
of fitting our data with GEV models. Diagnostic plots that are shown in Fig. 2 help
us with that.
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Figure 2. Diagnostic plots for GEV distribution in Ryazan
(density plot and quantile plot)

Then GEV parameters were found for each city, they are shown in Table 1.

Developing trend surfaces for GEV parameters is important next step in our research
because it might help us to estimate GEV parameters at any point of the field under
study. It is important to note that the form parameter £ should be constant since it is the
one that determines the model behaviour; position and scale parameters depend on the
spatial coordinates, therefore they include latitude, longitude and their joint contribution.
Thus, selection is made among models described as

11(8) = Buo + Builon(s) + Bualat(s) + (B3 - lon(s) - lat(s)],

0(s) = Bo,o + [Bolon(s) + By 2lat(s) + B3 - lon(s) - lat(s)],
£(s) = Beo-

Table 2 shows the results of calculations, the choice of the best model is made using
the Takeuchi information criterion (TIC) [11].
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Table 1

GEV parameters in observed locations (location y, scale o, shape &)

Station (City) w o 13

St. Petersburg 39.764 | 22.911 | 0.059
Pskov 40.072 | 22.882 | 0.077
Zheleznodorozhny | 40.891 | 24.541 | 0.037
Smolensk 42.843 | 25.261 | 0.09
Bryansk 40.268 | 24.644 | 0.028
Kostroma 36.57 | 22.254 | 0.073
Pereslavl-Zalessky | 36.252 | 21.984 | 0.092
Nizhny Novgorod | 39.389 | 23.786 | 0.034
Mozhaysk 38.547 | 23.755 | 0.097
Moscow VDNH 43.327 | 25.309 | 0.017
Kolomna 33.606 | 20.851 | 0.098
Ryazan 33.546 | 20.801 | 0.107
Tambov 30.413 | 20.217 | 0.08
Penza 32.414 | 21.085 | 0.048

Table 2

Comparison of 4 models of trend surfaces for GEV parameters. The best model is
chosen by the least value of TIC

GEV Trend Surface TIC
A( ) = 36.1540.001 - lat(s)
G(s) =24.94 —0.05 - lon(s) 96840.95
£(s) = 0.06803
f(s) = —124.67 4+ 2.89 - lon(s) + 3.07 - lat(s) — 0.06 - lon(s)lat(s)
5(s) = 22.7 96768.01
£(s) = 0.06956
f(s) = —123.67 4+ 2.87 - lon(s) + 3.09 - lat(s) — 0.06 - lon(s)lat(s)
G(s) =—12.42+0.63 - lon(s) + 0.73 - lat(s) — 0.01 - lon(s)lat(s) | 96741.95
£(s) = 0.06924
i(s) = 52.9160 — 0.2064 - lon(s) — 0.1261 - lat(s)
&(s) = 30.208 — 0.114 - lon(s) — 0.045 - lat(s) 96797.6
£(s) = 0.06768

Finally, we compare the various models of max-stable processes [12]. The Table 3 below
shows various families of processes and correlation functions are given in parentheses.
The best model corresponds to the smallest value of TIC. We don’t consider comparing
Smith model [13,14] with presented ones because, despite being easy to understand
and even easier to implement, it’s quite ineffective in terms of modeling and fitting
real environmental problems. 5 out of 7 models belong to Schlather family that can
be explained by its popularity in comparison with more complex Brown—Resnick and
Extremal-t processes yet last ones show better results [15]. Their modeling and fitting
are still very consuming, both in terms of time and in terms of computing resources.

The best model is an extremal-t process with the Whittle-Matern correlation function.
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Table 3
Results of max-stable processes’ parameters estimating

Model Parameters TIC

Brown—Resnick nugget = 0.4543 454911.7
range = 6.4889
smooth = 0.7099

Schlather nugget = 3.97 - 107° 455315.8
(Whittle-Matern) range = 7.569 - 10

smooth = 8.006 - 102
Schlather nugget = 0.4543 455151.4
(Cauchy) range = 6.4889

smooth = 0.7099
Schlather nugget = 0.4679 455170.3
(Power Exponential) | range = 9.6612 - 10

smooth = 2.0
Schlather nugget = 0.4655 455170.9
(Bessel) range = 0.4309

smooth = 120.2719
Schlather nugget = 0.4513 455155.1

(Generalized Cauchy) | range = 6.9826
smooth = 1.5525

smooth2 = 2.0
Extremal-t nugget = 0.2552 454108.9
(Whittle-Matern) range = 2.7715

smooth = 96.3061

df = 3.2056

5. Discussion

In this paper we propose using the extreme value theory methods for modeling daily
maximum precipitation fields in the European part of Russia. Our approach consists in
estimating parameters of one-dimensional extreme distributions (1) for each metering
station and developing models of statistical dependence spatial structures with the use
of max-stable processes for the entire measurement domain. Using the data of the
All-Russian Scientific Research Institute of Hydrometeorological Information — World
Data Center, the fields of precipitation of daily measurements converted into monthly
maximum precipitation were studied in 14 cities of the European part of Russia for the
period 1966—2016 years. Parameters of precipitation fields models were estimated using
the censored method of pairwise maximum likelihood [16] which further allows us to
simulate daily precipitation amount throughout the region. Various parametric families
of max-stable processes are developed and their estimates are obtained. The best model
is the t-extremal process with the parameters shown above (in Table 3).

Interpolation of precipitation values in unobservable regions adjacent to the observed
ones is usually solved by kriging [17] but despite the fact that this yields the optimal
result for Gaussian processes, it can give erroneous forecasts for extreme values due to
the unsuitability of the Gaussian model for the data. Approach that uses conditional
max-stable simulation [18] is more suitable for these purposes.
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Proposed approach can be used in other areas where spatial modeling of extreme
values and processes is required. The models of the max-stable processes used by us
are also suitable for time scales in which precipitation measurements are stationary
series. However the influence of estimation errors’ autocorrelation increases in case of
more frequent measurements and then it is necessary to develop models of space-time
dependence structures [19,20]. This is one of the directions for the further development
of this work.
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MoeaupoBaHue NoJjieli SKCTPEMAJIbHBIX OCAJIKOB HA TE€PPUTOPUU
EBpomneiickoii vactu Poccun

E. 1O. Illerunun*, H. /1. Paccaxan’

* Beepoccudickudi HayuHO-UCCACI08ATNEALCKUT, UHCMUMYM,
no npobaemam 2paricoancroti 060porvL u upe3svinatinve cumyayut MYC Poccuu
ya. Jaswodkosckan, 0. 7, Mocksa, Poccus, 121352
T Kagpedpa npukiadnoti mamemamury
Mocxosckudi 2ocydapemeenmnvili mexhonoeuneckuti ynusepcumem «Cmanxurs
Badxoscuti nepeyaox, 0. a, Mockea, Poccus, 127055

B macrosmeit pabore uccieioBana mpobaeMa MOAEIUPOBAHUS TPOCTPAHCTBEHHO-BPEMEHHBIX
CTATUCTUYECKHUX CTPYKTYP SKCTPEMAJIBHOI'O THUIIA C UCIOJIb30BAHUEM IIPOIECCOB YCTONYMBBIX
MaKCUMYMOB. PaccMoTpeHa TeopHusi OJJHOMEPHBIX SKCTPEMAJBHBIX BEJIUYNH U €€ pacIliupeHue 10
JIBYMEPHOTO CJIydasi, JJI 9ero BBOJATCS MPOIECCHl YCTONYUBBIX MaKCUMYMOB.

[IpemoxkeHa MaTeMaTUIeCKasi MOJEb MIPOIECCa YCTONIUBBIX MAKCUMYMOB U TIPEICTABIEHBI OC-
HOBHBIE TapameTputeckue cemeiicrBa — [Ilmarepa, Cmura, Bpayna—Pe3snuka, xcTpemaabHOe-t.
IIpu oMo MomudUKAIINT METO/Ia MAKCUMAJIBHOTO TPaBIOIOM00USI, 8 UMEHHO C UCIOJIb30-
BaHUEM HAPHON (PYHKIIUU TPABIONOA00MS, OBLIN MTOJIYYeHbl OIEHKH 1apaMeTPOB JIJIsi KaXK /10
u3 Mojeneit, 3pPEeKTUBHOCTh KOTOPBIX OBbLIA 3aTEM CpaBHEHA IPU ITOMOIIKM WH(MPOPMAIMOHHOIO
kpurepus Takeyuu (TIC).

TlosyaenHbIe MOJI€/IM COTVIACYIOTCS C KJIACCHYECKON TeOpUeil SKCTPEMAJIbHBIX 3HAYEHUN U 103-
BOJISIIOT pacCMaTPUBATh YCTOMIMBYIO IIPOCTPAHCTBEHHYIO 3aBUCUMOCTD OCAIKOB. DM (MEKTUBHOCTD
MPEJIIOXKEHHBIX MOJIEJIeN TTPOBEPsJIaCh HA €XKEeTHEBHBIX JAHHBIX IO CyMMAapHBIM OCaJIKaM, 3a-
pPErucTpUpOBaHHBIX Ha 14 cTaHIUAX B IEHTPAJbHON eBporeiickoit yactu Poccum Ha mepuojt
1966—2016 rr.: CpaBHUBAIOTCSI CTATUCTUIECKUE MOJIEIN U3 PA3IUIHBIX CEMEUCTB, MTOIXOIAIIINX
JIJIST IPOCTPAHCTBEHHBIX SKCTPEMYMOB, IIOCJIE YEr0 BBIOMPAIOTCST T€, KOTOPbIE HAWUIYYIINM 00-
pPa30M OMHUCHIBAIOT CYIIECTBYIONIME JAHHBIE. DTOT METOJ MOXKHO WCIOJB30BaTh U B JPYTUX
TMIPUJTOXKEHUSIX JIJIsT CO3TAHUST CUMYJIAIIN, HEOOXOIUMBIX JJIsI TUAPOJOTHIECKUX MOJETe U, B
YaCTHOCTH, JJIsT CO3/IaHUsI ITPOCTPAHCTBEHHO-HEOTHOPOIHBIX OCAJIKOB Ha/l Bojiocbopamu. BbLio
IIOKa3aHO, YTO HAWJIy4dllleil MOAEIIbIO OKa3aJICd dKCTPEMaJIbHbIN-t IIPOIEecC ¢ KOPPEeJIAIMOHHONR
dbyuknueit Yurrtia—MarepHa.

KurodeBrnie ciioBa: IPOCTPAHCTBEHHOE MOJIEIMPOBAHUE, SKCTPEMAaJIbHbIE OCAIKH, IIPOIECCHI
YCTOUYINBBIX MaKCUMYMOB, T€OPHUs IKCTPEMAJIbHBIX BEJIWYNH, IPOCTPAHCTBEHHBIE CTPYKTYPbI
CTATUCTUYECKON 3aBUCUMOCTH, NapHas (pYHKIUs TPaBIOTIOI00UT

JIuteparypa

1. Axumos B. A., Bwxos A. A., Illemunun E. FO. Beenenue B CTaTUCTUKY 3KCTPEMAJIb-
HBIX BeJIMYuH u ee npujoxkenusi. — M.: @TY BHUM I'OYC (PI1) MYC Poccun,
2009.

2. de Haan L., Ferraria A. Extreme Value Theory: an Introduction. — New York:
Springer-Verlag, 2006.

3. Reiss R.-D., Thomas M. Statistical Analysis of Extreme Values with Applications to
Insurance, Finance, Hydrology and Other Fields. — Basel: Birkhauser, 2007.

4. Brown B. M., Resnick S. I. Extreme Values of Independent Stohastic Processes //
Journal of Applied Probability. — 1977. — Vol. 14. — Pp. 732-739.

5. Smith J., Karr A. A Statistical Model of Extreme Storm Rainfall // Journal of
Geoghysical Research: Atmospheres. — 1990. — Vol. 95. — Pp. 2083-2092.

6. Schlather M. Models for Stationary Max-Stable Random Fields // Extremes. — 2002. —
Vol. 5, No 1. — Pp. 33-44.

7. Opitz T. Extremal t Processes: Elliptical Domain of Attraction and a Spectral Repre-
sentation // Journal of Multivariate Analysis. — 2013. — Vol. 122. — Pp. 409-413.

8. Aghakouchak A., Nasrollahi N. Semi-Parametric and Parametric Inference of Ex-
treme Value Models for Rainfall Data // Water Resources Management. — 2010. —
Vol. 24, No 6. — Pp. 1229-1249.



Shchetinin E. Yu., Rassakhan N.D. Modeling of Extreme Precipitation Fields. .. 83

9. Davison A. C., Padoan S. A., Ribatet M. Statistical Modeling of Spatial Extremes //
Statistical Science. — 2012. — Vol. 27, No 2. — Pp. 161-186.

10. Coles S. An Introduction to Statistical Modeling of Extreme Values. — London:
Springer-Verlag, 2001.

11. Galambos J. Order Statistics of Samples from Multivariate Distributions // Journal
of the American Statistical Association. — 1975. — Vol. 70, No 351. — Pp. 674—680.

12. Davis R., Kluppelberg C., Steinkohl C. Max-Stable Processes for Modeling Extremes
Observed in Space and Time // Journal of the Korean Statistical Society. — 2013. —
Vol. 42, No 3. — Pp. 399-414.

13. Embrechts P., Lindskog F., McNeil A. Modelling Dependence with Copulas and
Applications to Risk Management. — Elseiver, 2001.

14. Diggle P., Ribeiro P. J. Model-Based Geostatistics. — N.-Y.: Springer-Verlag, 2007.

15. Kabluchko Z., Schlather M., de Haan L. Stationary Max-Stable Fields Associated to
Negative Definite Functions // The Annals of Probability. — 2009. — Vol. 37, No 5. —
Pp. 2042-2065.

16. Padoan S., Ribatet M., Sisson S. Likelihood-Based Inference for Max-Stable Pro-
cesses // Journal of the American Statistical Association (Theory & Methods). —
2010. — Vol. 105, No 489. — Pp. 263-277.

17. Statistics of Extremes: Theory and Applications / J. Beirlant, Y. Goegebeur,
J. Teugels, J. Segers. — New York: Wiley, 2004.

18. Dombry C., Eyi-Minko F., Ribatet M. Conditional Simulation of Max-Stable Pro-
cesses // Biometrika. — 2013. — Vol. 100, No 1. — Pp. 111-124.

19. Frahm G., Junker M., Schmidt R. Estimating the Tail-Dependence Coefficient: Proper-
ties and Pitfalls // Insurance: Mathematics and Economics. — 2005. — Vol. 37, No 1. —
Pp. 80-100.

20. Schmidt R., Stadtmuller U. Non-Parametric Estimation of Tail Dependence // Scan-
dinavian Journal of Statistics. — 2006. — Vol. 33, No 2. — Pp. 307-335.

(©) Shchetinin E. Yu., Rassakhan N.D., 2018

g nmurupoBaHus:
Shchetinin E. Yu., Rassakhan N.D. Modeling of Extreme Precipitation Fields on the
Territory of the European Part of Russia // RUDN Journal of Mathematics, Information
Sciences and Physics. — 2018. — Vol. 26, No 1. — Pp. 74-83. — DOI: 10.22363/2312-
9735-2018-26-1-74-83.

For citation:

Shchetinin E. Yu., Rassakhan N.D. Modeling of Extreme Precipitation Fields on the
Territory of the European Part of Russia, RUDN Journal of Mathematics, Information
Sciences and Physics 26 (1) (2018) 74-83. DOI: 10.22363/2312-9735-2018-26-1-74-83.

CBenenusi o6 aBTOpax:

IMerunun EBrenunii FOpbeBuy — mpodeccop, HOKTOp PU3NKO-MATEMATHIECKAX Ha~
YK, Begymuit Hayunbtii corpyaank @TBY BHUU I'OYC (®II) (e-mail: riviera-molto®@
mail.ru, Tex.: +7 (917)539-06-98)

Paccaxan Hukura JIMutpueBuUY — MarucTpanT Kadeapbl IPUKIIAIHON MATEMATHKI
®I'BOY BO MI'TY «Crankun» (e-mail: rassahan@gmail.com, Ten.: +7 (906)095-02-87)

Information about the authors:

Shchetinin E. Yu. — professor, Doctor of Physical and Mathematical Sciences, Leading
Researcher of FGU “All-Russian research institute on problems of civil defence and emer-
gencies of Emergency Control Ministry of Russia” (e-mail: riviera-molto@mail.ru,
phone: +7 (917)539-06-98)

Rassakhan N. D. — Master of Science of the Applied Mathematics Department,
MSTU “Stankin” (e-mail: rassahan@gmail.com, phone: +7 (906)095-02-87)



