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Two Approaches to Interpretation of Hubble Diagram
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Supernovae of type la are used as standard candles in modern cosmology, they serve to test
cosmological models. Interpretation of the Hubble diagram based on the standard cosmological
model led cosmologists to conclusion that the Universe is filled mostly with cosmic dust and
mysterious dark energy.

In this paper we present exact solutions of the Friedmann equation in standard cosmology
and conformal cosmology. The theoretical curves interpolating the Hubble diagram for the
latest supernova data are expressed in an analytical form. The functions belong to the class
of meromorphic Weierstrass functions. Both approaches describe the modern Hubble diagram
with the same accuracy. Physical interpretation from the standpoint of conformal cosmology
is preferable, since supernova data are described without using a A-term. In the standard
cosmology, the Hubble diagram is described by some characteristics: a Hubble parameter H (t),
a deceleration ¢(t), and a jerk j(¢). As calculations show, the deceleration parameter ¢ changes
its sign during the evolution of the Universe, the j-parameter remains constant. In the modern
era, the Universe expands with acceleration, and in the past its acceleration was negative. The
change in the sign of acceleration, without a clear physical reason, puzzles cosmologists.

It seems obvious to us that to study objects dislocated from us at distances of billions of
light years, we should not use the coordinate time customary for work in laboratories, but
the conformal time. In conformal coordinates, the behavior of photons is described as in the
Minkowski space. The time intervals dt and d» are different, they are related by the scale factor:
dt = adn. The conformal luminosity distance is longer than the standard luminosity distance,
which is manifested when observing distant stellar objects. As a result, the effective magnitude
value — the redshift relationship, on which the Hubble diagram is constructed, will be different.
Using the conformal Friedmann equation, we introduce the conformal parameters H(n), q(n),
j(n). All parameters remain positive during the evolution of the Universe. The scale factor
grows with deceleration. The Universe does not experience a jerk.

Key words and phrases: supernovae of type la, Friedmann equation, Weierstrass
functions, Hubble diagram, cosmological parameters, A-term

1. Introduction

A type la supernova occurs when a white dwarf in a double star system accumulates
a mass by accretion that sufficient to overcome the Chandrasekhar limit. The nature
of explosion of such a supernova depends on its prehistory insignificantly. Redshifts
z > 0.1 are large enough to ignore peculiar motions of light sources. Supernovae type
Ia, sufficiently bright stars whose absolute luminosity is known with good accuracy,
they serve as standard candles for testing cosmological models. Two collaborations
The Supernova Cosmology Project and High-z Supernova Search Team compared
the results of observations of supernovae with theoretical predictions for luminosity
distances as redshift functions. Interpretation of the Hubble diagram on the basis of
a standard cosmological model with adjustable cosmological parameters led cosmologists
to conclusion that the Universe is filled mainly with dust and, so-called, dark energy
— a substance with an equation of state not found in Nature [1-3]. Phenomenological
approach has not led to an understanding of the state of matter from which the Universe
consists.

Conformal cosmological model [4], based on conformal Dirac’s variables [5], allows
to explain data on supernovae without A-term [6-9]. We show that solutions of
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the differential Friedmann equation belong to the class of Weierstrass meromorphic
functions [10]. Therefore, it is natural to use them to compare predictions of these
two approaches [11-13]. In conclusion, we show that the difference between distance
modulus is interpolated by means of the Chebyshev polynomial of the fourth order with
a sufficient degree of accuracy.

2. Friedmann equation in classical cosmology

In the standard cosmological model the Friedmann equation
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is used for fitting SNe Ia data. It ties a scale of the Universe a(t) with density of matter p.
Here GG is Newton’s constant, k is a sign of curvature of a space, a dot denotes a derivative

with respect to coordinate time ¢. In generic case, the equation (1) is represented in the
following form

1 [(dz\?
1372 <dt) = Hg [QA + chrvfl'_2 + QMLU_3 + Qradaj_4 + Qrigidx_G] ’ (2)

where the variable x is given as a ratio of a scale a(t) to a modern one ag = 1:
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2 is a redshift of spectral lines (observed variable), Hy = h-10° m/s/Mpc, h = 0.7240.08 —
Hubble constant. In the right hand of the Friedmann equation (2) €; are partial densities
of, correspondingly, A-term, curvature of the space, dust-like matter, radiation, stiff-state
matter. For distant sources with z > 1 the interpretation of the cosmological redshift as
a Doppler shift is not valid [14]. An equation of continuity

. 36
p= —;(p +p),

with an equation of state of matter p = wp, which connects the density p and the pressure
p, yields the dependence of the density on the scale factor. So,

— for interstellar dust p = 0: p ~ a~3;

— for radiation p = p/3: p ~ a4

— for contribution from A-term p = —p: p ~ A;

— for stiff state of matter p = p: p ~ a=5.

The data of modern astronomical observations are fitted using cosmological

parameters [2]: Q = 0.72, Oy = 0.28. A solution of the Friedmann equation (2) with

such parameters is presented in analytical form

a(t) = ag \/@ {sh (2@}1@)” e . (4)

The second derivative of the scale factor is

b= Hiao [QQA (;L) — Oy (C;O)Q] . (5)
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Hence, in the modern era the Universe expands with acceleration, since 225 > Qu;
in the past, its acceleration was negative d < 0. This change of the sign of acceleration
without a clear physical cause is noted by cosmologists. From the solution (4), taking
into account the relation between the scale factor and the redshift (3), it follows age —

redshift relationship
2 Qp 1
Hot = Arsh — | . 6
=3 (\/QM (1-1-,2)3/2) (6)

The age to of the modern Universe in the coordinate time can be obtained by setting
z=0in (6)

(7)

If we know the redshift z of a certain galaxy, how do we find the coordinate distance
r to it? Since for the rays of light the spacetime interval is zero

ds* = —c2dt? + a*(t)dr? = 0,

we have the relation between intervals of space and time cdt = —a(t)dr, and, using the
notation introduced above (3) x = a/ao,
dt de 1
—agr = — = - . 8
aor C/:c C/Id$/dt ®

Substituting now the Friedmann equation (2) into (8)

%:H()\/QM/$+QALE2, (9)

we get an integral

Hor = (10)

1
c / dx
VO Vit + dasz’
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where we denote the ratio of partial densities as 4az = Q1 /4. The integral is calculated
using the inverse Weierstrass p-function [12] and one obtains coordinate distance —
redshift relationship

c [1 — V14 O/ (1 + 2)°

Ho’f':*

. (11)

\/QAp 2(1+2)? I\/QAp 2

o {U—VH+QMMM

The resulting formula is expressed in terms of the Weierstrass gp-function [10],
satisfying the differential equation

Vi?}=ﬂmm—amwwwmmw—@k (12)
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where p(wa) = €q, ' (wa) = 0, @ = 1,2,3 — three roots of a cubic polynomial on the
right-hand side of the differential equation (12)

1 /0w O\ /3
61:8<QA> (1+V3), ez——<QA) , €3

Invariants of the Weierstrass function are the following

Om \ 2
g2 =0, 93:a§:<49/\>;

the discriminant of a cubic polynomial is negative: A = g3 —27g3 < 0.

In astronomy, the method of determining distances to ultra-distant objects is based
on measuring their luminosity. The radiation power L of an object (a star or a galaxy) is
called its absolute luminosity. The flux density /, i.e., the radiation power per unit area,
is called its wvisible luminosity. In Euclidean geometry they are connected by the formula

_ L
 4nd?’

where d is the distance from us to the radiation object. In the second century BC the
Greek astronomer Hipparchus classified the stars visible to the naked eye into six classes
according to their brightness. The brightest stars were assigned the first magnitude,
and barely visible — the sixth magnitude. According to Norman Pogson in 1856 it was
decided that the luminosity of the objects of the first stellar magnitude is a hundred
times greater than the luminosity of the objects of the sixth stellar magnitude [14], i.e

é <§§M) (1—12V3).

(13)

0 =10,-100"™/5, L =Ly-100"M/5, (14)

where £y and Ly are some relevant luminosities. With the creation of photomultipliers at
the beginning of the XX-th century, the factors ¢y and Ly were fixed. We express from
(14) the apparent stellar magnitude m and the absolute stellar magnitude of the object
M using the decimal logarithms

5. ! 5 L
m = lgg M = _§lgL0 (15)

Then we express from (15) the distance modulus (m — M) through the distance d to
the radiation object, using (13)

i 5 f Lo _5 2 LQ . 5 gO
m—M=— 1 (L €>—2lg(47rd €0>—5lgd—|— lg( L0>

For performing calculations, the factors ¢y and Lg in (14) are chosen in such a way
that the distance d is measured in megaparsecs

m — M = 5lgd(Mpc) + M, (16)

where M = 25.

In the Friedman—Robertson—Walker cosmology, by analogy with the formula for the
distance d in Euclidean geometry (13), we determine a luminosity distance dy, to a star
object
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In standard cosmology, the luminosity distance d,(z)sc is related to the coordinate
distance r [2]:
dr(z)sc = (1+ z)aor. (18)

Here it was taken into account that the area of the sphere around the luminous
object passing through the Earth increases, the frequency of photons decreases during
their motion. Substituting the formula for the coordinate distance (11) into (18), we get
an analytical expression for luminosity distance

c(1+z) 1 (1—\/1+QM/QA) 1 1—\/1+QM/QA(1+2)3
dp(2)sc = ——== | ¢ —p 5
Hyv/Qn 2 2(1+ 2)
Modern observational cosmology is based on the Hubble diagram. Effective stellar
magnitude — redshift relationship

m(z) — M = 5lgldr(2)sc] + M, (19)

is used to test cosmological theories (dy, in megaparsecs) [2]. Here m(z) is the apparent
magnitude, M is its absolute magnitude, and M = 25 is a constant.

3. Friedmann equation in conformal cosmology

Interpretation of the Hubble diagram, based on a conformal cosmological model with
parameters {digiqg = 0.755, {hy = 0.245, yields the same qualitative approximation as the
standard cosmological model with parameters Q4 = 0.72, Qy = 0.28 [9]. A parameter
Quigia corresponds to a stiff state of matter, when the energy density is equal to the
pressure p = p [15,16] that is happened under a nucleosynthesis regime in stars. We
write out conformal Friedmann equation [4] with using meaningful conformal partial
parameters, discarding insignificant contributions

(5) = () foasn ()" o (2] &

The right-hand side of the equation (20) includes the densities of the state of matter
p(a) in accordance with their conformal weights; in the left, the prime denotes the
derivative with respect to the conformal time. After introducing the dimensionless
variable x = a/ag, the conformal Friedmann equation (20) takes the form

(\/Qi;%fm? (iﬁf 4P — gy = A — e1) (2 — e2)( — €3), (21)

where one root in the cubic polynomial on the right-hand side (21) is real, while the
other ones are complex conjugated

e = o[Qrigia 1 +1V/3 ey = 3/ Qrigia o5 = 3/ igia 1 — Z\/g'
Oum 2 ’ On Oum 2

The invariants of the cubic polynomial are as following:

4Qrigid

= 0 =
g2 y 93 Ot
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where H, is a conformal Hubble constant. The conformal Hubble parameter is related
to the usual parameter as H = (a/ag)H. Then we introduce a new variable u by the rule

do(w),

r=plu) = -2 (22)

The Weierstrass (-function satisfies the quasi-periodicity conditions [10]

((u+2w) = ((u) + 2¢(w), ((u+2w) = ((u) +2¢(w"),

where w and w’ are semi-periods of the function p(u).
The conformal Friedmann equation (21) is integrated and we obtain the conformal
age — redshift relationship in explicit form

n= \/Q%ZHO <C [p‘l (1iz>] —¢ [p‘l(l)]> : (23)

The equation written out in integral form is known in cosmology as the Hubble law.
An explicit formula for conformal age of the Universe 7y can be obtained by putting in
(23) z=0:

2¢c

No = m (( [@_1(0)] —¢ [@_1(1)]) . (24)

The interval of the coordinate conformal distance is equal to the interval of the
conformal time dr = dn, so we can represent (23) as the conformal distance — redshift
relationship.

In conformal coordinates, the behavior of photons is exactly the same as in the
Minkowski space. The time intervals between the emission of two photons and between
their absorption are the same. The time interval dt = —adr, used in standard cosmology,
and the time interval dn = —dr, used in conformal cosmology, are different. The
conformal luminosity distance dr(z)cc is related to the standard luminosity distance

dr(z)sc [9]

dr(z)cc = (1 +2)dr(z)sc = (1+2)°r(2),
where 7(z) is a coordinate distance. For photons dr/dn = —1, so we get an explicit
dependence: luminosity distance — redshift relationship

dr(z)cc = 2\6/(;2—;;)02 (C [@_1 <1 i 2)} - [@_1(1)}) . (25)

The effective magnitude — redshift relationship in the conformal cosmology has the
form

m(z) — M = 5lg[d.(z)cc] + M. (26)

4. Comparative analysis

According to the conformal cosmological model, the conformal quantities are physical
observables. Pearson’s criterion x? was applied in [9] for statistical fitting of results on
supernovae la [2]. The contribution from the component corresponding to the rigid state
of matter prigiq in the conformal model replaced the contribution from the A-term in the
standard model. In the rigid state of matter, its energy density is equal to the pressure.
As a result of the analysis, the conclusion was drawn: the best fitting of the conformal
model was not inferior to the best fitting of the standard model [9].

The curves for the two models, according to (26) and (19), are shown in Fig. 1.
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Figure 1. Curves: effective stellar magnitude — redshift for cosmological models
considered

The difference between the curves: effective magnitude value — redshift
A(m(z) — M) = blg[dL(z)cc] — SlgldL(z)sc] (27)

— predictions of models (26) and (19), is demonstrated in Fig. 2. A slight difference
between the curves, within the error of observations, is manifested in the early and late
stages of the evolution of the Universe [12].
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Figure 2. Difference between curves: effective magnitude — redshift for the two
models

The function (27) has a complex form, but it is easy interpolated, with a sufficient
degree of accuracy, Chebyshev polynomials of the first kind, the least deviating from zero
on the interval [—1; 1]

A(m— M) = % + a1 Ty (z) + axTo(x) + asTs(x) + asT(x).

Here you have utilized a variable —1 < z < 1: © = (20/17)z — 1, and the coefficients
of the expansion have the form: ag/2 = 0.0703, a; = 0.0513, az = 0.0513, a3 = —0.0123,
as = 0.0015. Chebyshev polynomials [17,18]:

To=1, Ti(z)==2, To(zx)=22>—-1, T3(z)=42® -3z, Ty(z)=8z" —82%+ 1.
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In the standard cosmology, the following characteristics are introduced to describe
the Hubble diagram: Hubble parameter, a deceleration and a jerk [2]

Ht) = + (Z) = Hop[ " 4, (28)

)= (2) (4) 7= 2o et (29

Qum + QACL3

i =+ (Z) (Z) Tl (30)

As we see, the deceleration parameter g (29) changes its sign during the evolution of
the Universe at the inflection point

j-parameter remains constant.
We define analogous parameters for the conformal cosmology

o =+ (%), (31)

aon=—(2) () (32)
i =+(2)(4) (33)

We calculate the conformal parameters using the conformal Friedmann equation (20).

Hubble parameter
H
H(n) = CTQO\/ Qrigia + Qma® > 0;

(Qigia — (Qm/2)a’
aln) = < Qrigia + Qua® >0

deceleration parameter

changes from 1 to (Qyigia — 2m/2); hence, the scale factor grows with deceleration; the
jerk parameter

. 3 rigia
im=g—"6-—3>0
() Qrigia + Qua®
changes from 3 to 3€Qigiq. Dimensionless parameters ¢(n) and j(n) remain positive during
the evolution. The Universe does not undergo, during its evolution, the so-called jerk —

artifact of approach of the standard cosmological model.

5. Conclusions

We present exact solutions of the Friedmann equation in standard cosmology and
conformal cosmology. The theoretical curves interpolating the Hubble diagram for the
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latest supernova data are expressed in an analytical form. The functions belong to
the class of meromorphic Weierstrass functions. Both approaches describe the modern
Hubble diagram with the same accuracy. We introduce conformal parameters describing
the Hubble diagram. All parameters remain positive during the evolution of the Universe.
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JIBa moaxonsa K MHTepHIpeTanun JuarpaMmMbl Xab0Ja
A. E. ITaBios

Kagedpa conpomusserus mMamepuanos u 0emaneti MauuH
Poccutickuii 2ocydapcmeennoiti aepapruti yrnusepcumem — MCXA um. K. A. Tumupasesa
Tumupazescxan ya., 0. 49, Mockea, Poccus, 127550

CsepxHOBBIE THIIA la MCIOIB3YIOTCSA KAK CTAHIAPTHBIE CBEYN B COBPEMEHHOM KOCMOJIOTHH, CJTY-
2KaT JJIs IPOBEPKHU KOCMOJIOTHYeCKuX Mojesneil. Vlnreprperarus nuarpaMmbl Xab06s1a Ha OCHOBE
CTAHJAPTHOM KOCMOJIOTMYECKOM MOJE/M MPUBea KOCMOJIOIOB K 3aKJIIOUEHHUIO, 9T0 Bceemennast
3aII0JTHEHA B OCHOBHOM KOCMMYECKOU IIBIJIBIO M 3araJIOYHON TEMHOU SHEPTHEeii.

B macrosmieit pabore mpescTaBieHb TOYHBIE pelieHus ypaBHenusi OpuamMana B CTaAHIAPT-
HOI KocMoJtoruu 1 KoHMOPMHON KocMmostoruu. TeopeTutieckne KpUBble, HHTEPIIOIUPYIOIINE THa-
rpamMmy Xab06J1a /ISl IOC/IeTHAX JIAHHBIX II0 CBEPXHOBBIM, BHIPAXKAIOTC B AHAJIUTHIECKOM BHJIE.
OyHKIMN TPUHAIIEXKAT KJaaccy MepomopdHbx ¢yHkmmit Betteprrrpacca. Oba moaxoma onu-
CBIBAIOT COBPEMEHHYIO JuarpaMmy XabbJia ¢ OJUHAKOBOW TOYHOCTBIO. Pusmdeckasi HHTEPIIPe-
TalUs C MO3UIMUN KOH(POPMHON KOCMOJIOTUM TTPEIIIOUTUTEIHHEE, TOCKOJIBKY JTaHHBIE MO CBEPX-
HOBBIM ONUCBHIBAIOTCs O€3 mcrnosib3oBanus A-wrena. B crangapTHOI KOCMOJOTHY M1 OTTUCAHUS
JuarpaMMbl Xa00s1a BBEJIEHBI XapaKTEPUCTUKA: napameTpbl Xabbma H(t), samenenus q(t) n
tosruka j(t). Kak mokaseiBaor pacdyérsl, napaMeTp 3aMe/JIeHNsI ¢ MEHsieT CBOIl 3HaK B TeYeHHE
sBoIonu Bceenennoit, j-mapamerp ocTaércst MoCTosiHHBIM. B coBpemennyio snoxy Bcesennas
PACIIUPSETCST C YCKOPEHUWEM, a B IIPOILIOM €€ YCKOPeHMe ObLIO OTPHUIATeIbHBbIM. V3Mmenenwme
3HaKa YCKOPEHU:A, 0e3 sICHOM (DU3MIECKOI MPUIUHBI, 033/IaTNBACT KOCMOJIOTOB.

Ham mpescraBisiercss O9eBUIHBIM, UTO JJIS MCCJIEIOBAHUS OOBEKTOB, HAXOISIIUXCI OT HAC
Ha PACCTOSHUAX MUJINAPIOB CBETOBBIX JIET, CJIEYET IIOJIb30BATLCS HE KOODAWHATHBLIM BpeMe-
HeM, IIPUBBIYHBIM JJIsi pabOThI B Ja00OpaTOpusx, a KOH(POPMHBIM BpeMmeHeM. B KOHMOPMHBIX
KOODJIMHATAX MMOBeIeHNe (DOTOHOB OMHUCHIBACTCA KaK B mpocTpancTBe MunkoBckoro. MlurepBasib
BpeMenu dt u dn OTIMYAIOTCS, UX CBA3BIBaET MacmTabHbiil hakTop: dt = adn. Koudopmuoe do-
TOMETPUIECKOE PACCTOSHUE JTTUHHEE CTAHIAPTHOTO (POTOMETPUIECKOTO PACCTOSIHUST, ITO TIPOSIB-
JISIeTCs TIpU HAOJIIOEHNN 38 YIAJEHHBIMU 3BE3THBIMEU O0ObeKTaMu. B pe3ynbraTe COOTHONEHNUS:
sbdexTuBHAS 3BE3MHAA BEJIMINHA — KPACHOE CMeEIIeHNe, Ha KOTOPBIX CTPOUTCS JuarpamMmma Xao-
OJ1a, 6yayT pasubiMu. Vcnonbs3ys KoHdpopMHOe ypaBHeHne Ppuamana, B pabore BBOIASITCS KOH-
dopmubie mapamerpst H (1), q(n), j(n). Bee napameTpbl 0cTaloTCsI ONOKUTEIBHBIMYA B T€YEHUE
spoJiont Beestennoit. MacimTabHbIil pakTop pacTér ¢ 3aMenyienneM. BeesleHHas He HCIIBITHIBA-
eT TOJTIKA.

KuroueBslie ciyioBa: cBepxHoBble THIA la, ypaBaHeHne Ppuamana, pyukimu BeitepriTpacca,
nuarpaMMa Xab6J1a, KOCMOJIOTMYECKHUe IapaMeTphl, A-ujieH
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