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Pressure Operator for the Poeschl-Teller Oscillator
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The quantum-mechanical properties of the strongly non-linear quantum oscillator in the
Poéeschl-Teller model are considered. In the first place, the energy spectrum and its depen-
dence upon the confinement parameter (i.e., the width of the “box”) are studied. Moreover, on
the grounds of the Hellman—Feynman theorem the pressure operator in this model is obtained
and (along with the energy spectrum) is studied in two main approximations: the “particle in
the box” and “linear (harmonic) oscillator” for large and low values of the main quantum num-
ber; the critical value is also evaluated. Semi-classical approximation as well as perturbation
theory for the Pdeschl-Teller are also considered. The results obtained here are intended for
future thermodynamic calculations: first of all, for the generalization of the well-known Bloch
result for the linear harmonic oscillator in the thermostat. To this end, the density matrix for
the Péeschl-Teller oscillator will be calculated and the full Carnot cycle conducted.
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1. Formation of the Model

Some decades ago Poeschl and Teller [1] introduced a family of anharmonic PT-
potentials U(x), which allowed the exact solutions of the one-dimensional Schrédinger
equation in the coordinate, or z-representation [2,3]. One of the most interesting member
of the PT-family is the symmetric trigonometric potential, which is even in the variable
x, where —L < x < L.

U(va) = U(_IvL) = 0o tgg[a(L):E], (1)
a(L) =m/2L.

At z = £+L the potential becomes singular, which physically means the presence of
a pair of impenetrable walls. They confine the movement of the non-relativistic particle
with positive constant mass m. The parameters Uy and L are also positive, though the
limits Ug — 0 and L — oo are also allowable and will be considered properly.

The presence of the walls is of specific interest for the future thermodynamic de-
scription of this model, placed into some thermostat. In contrast to ordinary harmonic
oscillator (HO) for the PT-oscillator (PTO) it is possible to introduce the pressure op-

erator P(, p, L) which according to Hellmann and Feynman [4,5] is connected with the

A P2
energy operator or the Hamiltonian H (&, p, L) = (2—) + O(z, L) by the formal relation:
m
Plap L) = —-H(#,p. L) 2
x’ p7 - aL :I/l’ p7 :

Strictly speaking, one should differentiate in (2) with the volume U = L, where d
is dimension of the coordinate space, where d = 1 will be held here everywhere. The
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0 N
important point is that the operation (8L) may be fulfilled only after the operator H

has acted upon some wave function ¢ — as a rule, upon the eigenfunction ¢, () of H with
eigenvalue E,, (see, e.g., the detailed analysis in [4,5]). The importance of this sequence
of operations is directly connected with the account of boundary conditions v, (£L) = 0
at all values of n. In this case the formal definition (2) acquires more definite sense:

oE,

Note, that in this paper we won’t be engaged with the eigenfunctions ), (+L) —
it is sufficient to know that all of them contain the factor cosax, which ensures the

fulfillment of zero boundary condition at the walls z = iQL = +L. Following (7) one

fe!
may see, in particular, that if the energy spectrum E,, (L) is a uniform function of L (e.g.

E,(L)~ L% >0) so that P,(L) = (%) E, (L), or in the operator form:
P(L) = sh(L), (4)

where h(L) = FIEL)

known barocaloric equation of state for the ideal gas. Note that by obtaining (4) we have

is the (linear) density of the energy; the last relation is the well

d
used Euler’s uniformity property (dL) a™(L) = (%) a™ (L) valid for any real value of

m.

2. Exact Energy and Pressure Spectra

It is remarkable that the complication potential (2), leads to an exact solution of
the Schrodinger equation with potential (1) with fully discrete positive energy levels
E,(L) > 0 (including the ground levels Ey(L)):

EN(L) = E.P (L) + B,O(L), (n=1,23,...), (5)

obviously, the spectrum F,, (L) is unbounded from above.
Two terms in (5) look like the free particle in the box and harmonic oscillator respec-
tively:
1
EEF() = T2, EO(L) = ha(z) (n - 3 ). 0
note, that (6) doesn’t contain terms of higher order in n that quadratic one.

The quantity 7'(L) is equal to the well known minimal kinetic energy of the F'P in
the box with dimensions [—L, L] :

™

T(L) = EY¥(L) = 5 o*(L), oL)= ST

m

(7)

The w(L) quantity is the frequency of some HO, and depends upon «(L) in much
more complicated way than (7)).
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In this paper we won’t be engaged with the eigenfunctions ¢, (x) — it is sufficient
to know that all of them contain the factor cos ax, which ensures the fulfillment of zero
boundary condition at the walls © = +5- = +L.

Complicated method:

hw(L) = T(L)AL), (L) = KW;L))Q + 1] - 1, (8)
()= 70 = (f)Qmﬂjoa%m. (9

Obviously, that the formal structure of the parameter A\(L) resemble the kinetic energy
of the free relativistic particle with rest mass in ((¢(L)) is the like p, where p is the
particle’s momentum) A(L) > 0 A\(L) = 0 only at the point C ﬁ = 0 in the limit
L — ).

Following the definition (3), one finds from (5) the exact diagonal matrix elements of
the pressure operator (2):

2

P (L) = BP(L) + PO(L), PP (L) = 2 B,7 (L), (10)
PEO(L) = ZEE(L) - T(0w() (0 - 5 ) (1)
the Euler’s uniformity property:
Y(L) = ML)+ 1] {1 = \(L) +1] 7%} > 0, (12)
where we have used Euler’s (ddL> a™(L) = (%) a™(L)

The expressions (E1C) and (PH©) are rather complicated since A\(L) is non-uniform
function of L pressure operator P(L) for PTO is in general not proportional to the energy
operator H(L), but in extreme case (FP and H-parts) this property is restored.

At fixed L, the relative contribution of the FP and HO depends upon n and it’s
determined by the ratio:

n (L

E ) n 1
") = BEO(L) T e (D) AI)

Ner (L) = D)

(13)

Clearly, at n,,(L) < 1, n < nCT(L) i.e for lower energy levels, the HO-part dominates,
whereas at 1.-(L) > 1,n > n¢-(L), i.e, for higher energy levels the FP-part dominates.
This is easy to understand, because at Vo and L held constant the growth of the particle’s
energy E makes the potential (1) more and more the limiting potential O(x, L) = 6(z —
L) + 6(xz + L), which characterizes the FP in the box.

In the last case we obtain he fully free particle without any “box”, so the particle’s
energy is not quantized at all. The same limit at fixed n is achieved at Vj = 0.

Moreover, the FP-limit full at fixed n is achieved also at the limiting point «(L) = 0

1
or — = 0, because in this case the potential (1) also is identically equal to zero. However,

one should note that the limit of small, but finite a(L) < 1 resembles more not the FP-,
but the HO-case.
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3. FP- and HO-Limits for the Energy and Pressure Spectra

It is instructive to consider the expressions (5) and (10) at fixed values of n in two
basic limiting cases, i.e. FP in the box and HO-limits.

3.1. FP in the Box Limit: L = const, Vy — 0, 7((L) — o

In this case, T'(L) is large compared to Vp, so =WT(L) <« 1, thus:

b
(mC(L))

Ny~ — 2 hiol2
(m¢(L)) 2 (m¢(L))

Due to the general definition (8), the effective frequency is of the form:

] , ML) < 1. (14)

2 2
hw(L) = 2V, [1— VO}

T(L)

and tends to zero with V.
For the pressure operator P in this limit the whole term (11) is negligible, so for P¥F¥
the linear operation, equation of state (4) holds, where s = 2 and

2

. P

3.2. HO-Limit: V = const, L — oo, 7((L) ~ a(L) -0

In this case, T(L) ~ o?(L) is small compared to the effective frequency in the lowest
order HO-approximation fuw(L) = T(L) ~ Aoa?(L) here:

2 1

MO~ 2D ™ a)

is a large quantity. More precisely, from (8) follows that

. 111
D)~ AD)|1= 55+ TG ML) < 1,
further, using again (8), one obtains
(L) ~ hia(L) — T(L) + ;% (15)
Here
(L) = T(ND) = 2 Wt () = a()[22] (16)

is of order «(L), while the second and third term in (15) are of the order (L) and
a3(L) accordingly.

The pressure operator P in this limit may be found from (15) by noticing that both
terms in the rhs of the equation make contributions of opposite sign, but of the same



280 RUDN Journal of MIPh. Vol. 25, No 3, 2017. Pp. 276-282

(lowest) order o(L). Indeed, in this limit T'(L)y(L) ~ T(L)A(L) = hw(L) and
EIO() ~ E,"°(L) = ha(L) <n - ) (17)

Combining relations (16) and (17)) one finds for the pressure operator PHO, as well

as for Z5FP, the linear operator equation of state (4) holds, but now with s = 1 and

effective Hamiltonian: A
HHO _ P72 + 1 ~2(L) 2
(@0) ~ 9 oW L

which describes some “confined” HO.

4. Approximations for the Energy Spectrum
4.1. Quasi-Classical Approximation (QC)

It is instructive to compare the exact energy spectrum (5) with its QC-counterpart,
for which the quantization rule states that for n =1,2,3,...

zo(E)
a(E) =2 /p(x, B)dz = 27Th<n _ ;) (18)
—zo(E)

here J(FE) is the classical action for the PT oscillator with the potential energy (1) while
p(z, E) is the classical momentum

NI

p(z, E) =V2m [E — U tg? a(L)x} , plxo, E) =0, (19)

obviously, zo(FE) — £L as E — oc.
The Bohr—Sommerfeld quantization takes the explicit form:

B N

so that the QC energy spectrum will be of the same form as in (5)—(6). The only difference
is that the exact quantity A(L) in the QC-case will be substituted by it’s QC-analogy

[%] + 1. It is easy to verify that, all the basic features of the PT-oscillator remain
just the same (up to some numerical factors).

4.2. Perturbation Theory

Consider the expansion of the potential:

(@, L) = Bo = (a(L)a?) [(1 + ga(L)ﬁ)] + [y, (21)

which is plausible when both «(L) and = are small. The leading term in (21) may be
written down as the usual HO-potential:

Voo (L)2? = —ma*(L)2?,
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where the frequency @?(L) is the same as defined by (15). It may seem rather unpleasant
that @?(L) goes to zero with a(L) at L — oo, and so one may ask for the usual constant

k
HO-frequency wg = 1/ — (k = const).
m

Such a result may be achieved simply by means of the potential intensity
Uo — (5)a~2(L). Note, that in this case as the limit point a(L). One arrives strictly
to the usual HO-oscillator (but not the PT-oscillator). Indeed, the suggested rescaling
can’t save “all the next order terms in the expansion” (21). Moreover, at this limiting
point the notion of pressure (the operator as well as it’s spectrum becomes meaningless,
so that we don’t use this “scaling trick” — as well as the point «(L) = 0 in the follow-
ings (though the HO-limit a(L) < 1 is quite appropriate)). Consider now the term of

the lowest order (a(L)x)4 in (21) as the weak an harmonics them the energy spectrum
is of the form [2,3]:

Bu(L) = (L) + ABA(D), BEO() = aAn) (n+3). (22)

ssin - (o 3] (k) o sov

where n =0,1,....
Making the shift n — (n — 1):

EYO(L) = hao(L) <n - ;) AE, (L) =T(L) [nz +n+ ﬂ . (23)

Two effects are evident once from (23). Firstly, the linear in n part of AE, (L)

brings for the non-perturbated spectrum EHO(L) equal to [-T'(L)], which agrees with
the correction of the same order in (2) the full expansion. Secondly, the quadratic in n
part reproduces the term EXF (L) from the exact energy spectrum (6). Unfortunately, the
next approximation (e.g. of orders (ax)® and/or (az)® tend to spoil these nice results.
In particular, they bring in E, (L) so, “non-physical” terms of orders n3, n?, etc. and
also deform the term T'(L)n?, which should not be affected at all.

5. Conclusion

In this paper the quantum-mechanical properties of the strongly non-linear quantum
oscillator in the Péeschl-Teller model were considered. In Sec. 1 the formulation of the
model was given and its relations with two well known models — i.e., the free particle in
the box and the harmonic oscillator were considered. Sec. 3 was devoted to the analysis
of the fully discrete spectrum of the model; also, using the Hellman—Feynman theorem
the pressure operator was obtained and analyzed. namely, both the “free particle in
the box” and “harmonic oscillator” limits were given the detailed investigation. Finally,
in Sec. 4 some approximations for the energy spectrum are considered — namely, the
quasi-classical one as well as the perturbation theory in the region near the harmonic
one — i.e., were the anharmonic terms are relatively small. All the results obtained here
will be used for the thermodynamic calculations in the nearest future publication.



282 RUDN Journal of MIPh. Vol. 25, No 3, 2017. Pp. 276-282

References

1. G. Poschl, E. Teller, Bemerkungen zur quantenmechanik des anharmonischen oszilla-
tors, Zeitschrift fiir Physik 83 (1933) 143-151. doi:10.1007/BF01331132.

. I I. Goldman, V. D. Krivchenkov, Problems in Quantum Mechanics, GITTL, Moscow,
1957, in Russian.

. S. Fliigge, Practical Quantum Mechanics. Vol. I,, Springer, Berlin, 1971.

. H. Hellmann, Einfihrung in die Quantenchemie, Deuticke, Leipzig, 1937.

. R. P. Feynman, Forces in molecules, Phys. Rev. 56 (1939) 340.

[\

Ot W

VIK 532.11; 539.19
DOLI: 10.22363/2312-9735-2017-25-3-276-282

Oneparop maBjenus g ocuusuisstopa Ilémasa—Tennepa
10. T. Pynoii, E. O. Onagumeaxu

Kagedpa meopemuueckoti Gusuru v MeTAHUKY
Poccutickuti ynusepcumem dpyotcbv. Hapodos
ya. Muxayzro-Maxaas, 0. 6, Mocksa, Poccus, 117198

PaccMmoTpenbl KBAHTOBO-MEXaHUYECKHUE CBONCTBA CUILHO HEJTMHEHHOTO KBAHTOBOTO OCIIUAJLIIS-
Topa B Mozenu llénurs—Tennepa. VI3yyen sHepreTmyeckuii CeKTp MOJIEM U €r0 3aBUCUMOCTb
oT mapameTpa KoHdaiHMeHTa, nin 3bMEKTUBHON NIMPUHBI TOTEHIAA. Ha OCHOBEe TeopeMbl
lenbmana—®@eliHMaHa, MOJyYEH OMEPATOP JABJICHUS JJIsl YKA3aHHON MOJEIN, KOTOPBIN BMeCTe ¢
IHEPTEeTUIECKUM CIIEKTPOM U3yYeH B JIBYX OCHOBHBIX MPUOJIMKEHUSIX: YACTHUIILI B SIIITUKE W JIV-
HEWHOTr0 TAPMOHHUYIECKOT'O OCIIUJIIATOPA JIJIsT OOJIBINIUX U MAJIBIX 3HAYEHU [JIABHOTO KBAHTOBOI'O
YUCJIa T COOTBETCTBEHHO; [IOJIYyYEHO TaKKe 3HAYEHHE KPUTUIECKOrO 3HAYEHUS Nyp. PaccMoTpe-
HBI TaKyKe KBAa3WKJIACCUIECKOE TMPUOIMKEHNE W TEOPUsl BO3MYINEHUN JJisT 00OUX MPEIeTbHBIX
ciaydaeB. [lomyuenuble pe3yabTaThl TpeIHA3HAYEHBI IS UCIOJIB30BAHNUS B MOCIEIYIONIUX TEP-
MOJUHAMUYECKUX MPUIOKEHUIX — IPEXKIE BCEro, 0600IIEHNsT XOPOIIO U3BECTHOIO PE3yJIbTaTa
Bioxa mjis muHERHOTO rapMOHUYECKOTO OCIIMILIATOPa B TepMmocTare. C 3Toi Mebio He0OX0 MO
TMIOCTPOUTH MATPHUILY IIOTHOCTH Mt octmiaTopa [lémas—Temmepa st nmpoBeeHns TTOJTHOTO
nukJia KapHo.

KiroueBbie ciioBa: kBaHTOBBIN ocrmiaaTop Bioxa u [émmsa—Tentepa, omepaTop mgasiie-

Hust, Teopema ['enbmana—PeitHMana, KBA3UKJIACCUIECKOE TPUOJIMKEHE, TADMOHUYIECKU OCITHJI-
JISITOP, YaCTUIA B SIUKE
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