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Pressure Operator for the Pöeschl–Teller Oscillator
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The quantum-mechanical properties of the strongly non-linear quantum oscillator in the
Pöeschl–Teller model are considered. In the first place, the energy spectrum and its depen-
dence upon the confinement parameter (i.e., the width of the “box”) are studied. Moreover, on
the grounds of the Hellman–Feynman theorem the pressure operator in this model is obtained
and (along with the energy spectrum) is studied in two main approximations: the “particle in
the box” and “linear (harmonic) oscillator” for large and low values of the main quantum num-
ber; the critical value is also evaluated. Semi-classical approximation as well as perturbation
theory for the Pöeschl–Teller are also considered. The results obtained here are intended for
future thermodynamic calculations: first of all, for the generalization of the well-known Bloch
result for the linear harmonic oscillator in the thermostat. To this end, the density matrix for
the Pöeschl–Teller oscillator will be calculated and the full Carnot cycle conducted.

Key words and phrases: Bloch and Pöeschl–Teller quantum oscillator, pressure op-
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1. Formation of the Model

Some decades ago Pöeschl and Teller [1] introduced a family of anharmonic PT-
potentials f(𝑥), which allowed the exact solutions of the one-dimensional Schrödinger
equation in the coordinate, or 𝑥-representation [2,3]. One of the most interesting member
of the PT-family is the symmetric trigonometric potential, which is even in the variable
𝑥, where −𝐿 < 𝑥 < 𝐿.

f(𝑥, 𝐿) = f(−𝑥, 𝐿) = f0 tg2[𝛼(𝐿)𝑥], (1)

𝛼(𝐿) = 𝜋/2𝐿.

At 𝑥 = ±𝐿 the potential becomes singular, which physically means the presence of
a pair of impenetrable walls. They confine the movement of the non-relativistic particle
with positive constant mass 𝑚. The parameters f0 and 𝐿 are also positive, though the
limits f0 → 0 and 𝐿→ ∞ are also allowable and will be considered properly.

The presence of the walls is of specific interest for the future thermodynamic de-
scription of this model, placed into some thermostat. In contrast to ordinary harmonic
oscillator (HO) for the PT-oscillator (PTO) it is possible to introduce the pressure op-

erator 𝑃 (𝑥̂, 𝑝, 𝐿) which according to Hellmann and Feynman [4,5] is connected with the

energy operator or the Hamiltonian 𝐻̂ (𝑥̂, 𝑝, 𝐿) = (
𝑃 2

2𝑚
) +f(𝑥, 𝐿) by the formal relation:

𝑃 (𝑥̂, 𝑝, 𝐿) = − 𝜕

𝜕𝐿
𝐻̂(𝑥̂, 𝑝, 𝐿). (2)

Strictly speaking, one should differentiate in (2) with the volume f = 𝐿𝑑, where 𝑑
is dimension of the coordinate space, where 𝑑 = 1 will be held here everywhere. The
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important point is that the operation

(︂
𝜕

𝜕𝐿

)︂
may be fulfilled only after the operator 𝐻̂

has acted upon some wave function 𝜑 — as a rule, upon the eigenfunction 𝜑𝑛(𝑥) of 𝐻̂ with
eigenvalue 𝐸𝑛 (see, e.g., the detailed analysis in [4,5]). The importance of this sequence
of operations is directly connected with the account of boundary conditions 𝜓𝑛(±𝐿) = 0
at all values of 𝑛. In this case the formal definition (2) acquires more definite sense:

𝑃𝑛(𝐿̂) = −𝜕𝐸𝑛
𝜕𝐿

, (3)

if 𝐻̂𝜓𝑛(𝑥, 𝐿) = 𝐸𝑛𝜓𝑛(𝐿).

Note, that in this paper we won’t be engaged with the eigenfunctions 𝜓𝑛(±𝐿) —
it is sufficient to know that all of them contain the factor cos𝛼𝑥, which ensures the

fulfillment of zero boundary condition at the walls 𝑥 = ± 𝜋

2𝛼
= ±𝐿. Following (7) one

may see, in particular, that if the energy spectrum 𝐸𝑛(𝐿) is a uniform function of 𝐿 (e.g.

𝐸𝑛(𝐿) ∼ 𝐿−𝑠 > 0) so that 𝑃𝑛(𝐿) =
(︁ 𝑠
𝐿

)︁
𝐸𝑛(𝐿), or in the operator form:

𝑃 (𝐿) = 𝑠ℎ̂(𝐿), (4)

where ℎ̂(𝐿) =
𝐻̂(𝐿)

𝐿
is the (linear) density of the energy; the last relation is the well

known barocaloric equation of state for the ideal gas. Note that by obtaining (4) we have

used Euler’s uniformity property

(︂
d

d𝐿

)︂
𝛼𝑚(𝐿) =

(︁𝑚
𝐿

)︁
𝛼𝑚(𝐿) valid for any real value of

𝑚.

2. Exact Energy and Pressure Spectra

It is remarkable that the complication potential (2), leads to an exact solution of
the Schrödinger equation with potential (1) with fully discrete positive energy levels
𝐸𝑛(𝐿) > 0

(︀
including the ground levels 𝐸1(𝐿)

)︀
:

𝐸PT
𝑛 (𝐿) = 𝐸FP

𝑛 (𝐿) + 𝐸HO
𝑛 (𝐿), (𝑛 = 1, 2, 3, . . . ), (5)

obviously, the spectrum 𝐸𝑛(𝐿) is unbounded from above.

Two terms in (5) look like the free particle in the box and harmonic oscillator respec-
tively:

𝐸FP
𝑛 (𝐿) = 𝑇 (𝐿)𝑛2, 𝐸HO

𝑛 (𝐿) = ~𝜔(𝐿)

(︂
𝑛− 1

2

)︂
, (6)

note, that (6) doesn’t contain terms of higher order in 𝑛 that quadratic one.

The quantity 𝑇 (𝐿) is equal to the well known minimal kinetic energy of the 𝐹𝑃 in
the box with dimensions [−𝐿,𝐿] :

𝑇 (𝐿) = 𝐸FP
1 (𝐿) =

~2

2𝑚
𝛼2(𝐿), 𝛼(𝐿) =

𝜋

2𝐿
. (7)

The 𝜔(𝐿) quantity is the frequency of some HO, and depends upon 𝛼(𝐿) in much
more complicated way than (7)).
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In this paper we won’t be engaged with the eigenfunctions 𝜙𝑛(𝑥) — it is sufficient
to know that all of them contain the factor cos𝛼𝑥, which ensures the fulfillment of zero
boundary condition at the walls 𝑥 = ± 𝜋

2𝛼 = ±𝐿.

Complicated method:

~𝜔(𝐿) = 𝑇 (𝐿)𝜆(𝐿), 𝜆(𝐿) =

[︂(︂
2

𝜋𝜁(𝐿)

)︂2

+ 1

]︂ 1
2

− 1, (8)

𝜁2(𝐿) =
1

𝜋2

𝑇 (𝐿)

f0
=

(︂
~
𝜋

)︂2
1

2𝑚f0
𝛼2(𝐿). (9)

Obviously, that the formal structure of the parameter 𝜆(𝐿) resemble the kinetic energy
of the free relativistic particle with rest mass in

(︀
(𝜁(𝐿)

)︀
is the like 𝑝, where 𝑝 is the

particle’s momentum) 𝜆(𝐿) ≥ 0 𝜆(𝐿) = 0 only at the point 1
𝜁(𝐿) = 1

𝛼(𝐿) = 0 in the limit

𝐿→ ∞).

Following the definition (3), one finds from (5) the exact diagonal matrix elements of
the pressure operator (2):

𝑃PT
𝑛 (𝐿) = 𝑃FP

𝑛 (𝐿) + 𝑃HO
𝑛 (𝐿), 𝑃FP

𝑛 (𝐿) =
2

𝐿
𝐸FP
𝑛 (𝐿), (10)

𝑃HO
𝑛 (𝐿) =

2

𝐿
𝐸HO
𝑛 (𝐿) − 1

𝐿
𝑇 (𝐿)𝜓(𝐿)

(︂
𝑛− 1

2

)︂
, (11)

the Euler’s uniformity property:

𝜓(𝐿) = [𝜆(𝐿) + 1]
{︀

1 − [𝜆(𝐿) + 1]−2
}︀
≥ 0, (12)

where we have used Euler’s

(︂
d

d𝐿

)︂
𝛼𝑚(𝐿) =

(︁𝑚
𝐿

)︁
𝛼𝑚(𝐿)

The expressions (𝐸HO) and (𝑃HO) are rather complicated since 𝜆(𝐿) is non-uniform

function of 𝐿 pressure operator ̂︀𝑃 (𝐿) for PTO is in general not proportional to the energy

operator ̂︀𝐻(𝐿), but in extreme case (FP and H-parts) this property is restored.
At fixed 𝐿, the relative contribution of the FP and HO depends upon 𝑛 and it’s

determined by the ratio:

𝜂𝑛(𝐿) =
𝐸FP
𝑛 (𝐿)

𝐸HO
𝑛 (𝐿)

=
𝑛

𝑛𝑐𝑟(𝐿)
, 𝑛𝑐𝑟(𝐿) =

1

𝜆(𝐿)
. (13)

Clearly, at 𝜂𝑛(𝐿) ≪ 1, 𝑛≪ 𝑛𝑐𝑟(𝐿) i.e for lower energy levels, the HO-part dominates,
whereas at 𝜂𝑐𝑟(𝐿) ≫ 1, 𝑛≫ 𝑛𝑐𝑟(𝐿), i.e, for higher energy levels, the FP-part dominates.
This is easy to understand, because at 𝑉0 and 𝐿 held constant the growth of the particle’s
energy 𝐸 makes the potential (1) more and more the limiting potential f(𝑥, 𝐿) = 𝛿(𝑥−
𝐿) + 𝛿(𝑥+ 𝐿), which characterizes the FP in the box.

In the last case we obtain he fully free particle without any “box”, so the particle’s
energy is not quantized at all. The same limit at fixed 𝑛 is achieved at 𝑉0 = 0.

Moreover, the FP-limit full at fixed 𝑛 is achieved also at the limiting point 𝛼(𝐿) = 0

or
1

𝐿
= 0, because in this case the potential (1) also is identically equal to zero. However,

one should note that the limit of small, but finite 𝛼(𝐿) ≪ 1 resembles more not the FP-,
but the HO-case.
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3. FP- and HO-Limits for the Energy and Pressure Spectra

It is instructive to consider the expressions (5) and (10) at fixed values of 𝑛 in two
basic limiting cases, i.e. FP in the box and HO-limits.

3.1. FP in the Box Limit: 𝐿 = const, 𝑉0 → 0, 𝜋𝜁(𝐿) → ∞

In this case, 𝑇 (𝐿) is large compared to 𝑉0, so
1

(𝜋𝜁(𝐿))
= 𝑉0𝑇 (𝐿) ≪ 1, thus:

𝜆(𝐿) ≈ 2(︀
𝜋𝜁(𝐿)

)︀2
[︃

1 − 1

2

2(︀
𝜋𝜁(𝐿)

)︀2
]︃
, 𝜆(𝐿) ≪ 1. (14)

Due to the general definition (8), the effective frequency is of the form:

~𝜔(𝐿) ≈ 2𝑉0

[︂
1 − 2𝑉 2

0

𝑇 (𝐿)

]︂
and tends to zero with 𝑉0.

For the pressure operator 𝑃 in this limit the whole term (11) is negligible, so for 𝑃FP

the linear operation, equation of state (4) holds, where 𝑠 = 2 and

𝐻̂FP
(𝑥,𝑝) =

𝑃 2

2𝑚
+ [𝛿(𝑥− 𝐿) + 𝛿(𝑥+ 𝐿)] .

3.2. HO-Limit: 𝑉0 = const, 𝐿→ ∞, 𝜋𝜁(𝐿) ∼ 𝛼(𝐿) → 0

In this case, 𝑇 (𝐿) ∼ 𝛼2(𝐿) is small compared to the effective frequency in the lowest
order HO-approximation ~𝜔(𝐿) = 𝑇 (𝐿) ∼ 𝜆0𝛼

2(𝐿) here:

𝜆(𝐿) ≈ 2

𝜋𝜁(𝐿)
∼ 1

𝛼(𝐿)

is a large quantity. More precisely, from (8) follows that

𝜆(𝐿) ≈ 𝜆̃(𝐿)

[︂
1 − 1

𝜆̃(𝐿)
+

1

2

1(︀
𝜆̃(𝐿)

)︀2 ]︂, 𝜆(𝐿) ≪ 1,

further, using again (8), one obtains

~𝜔(𝐿) ≈ ~𝜔̃(𝐿) − 𝑇 (𝐿) +
1

2

𝑇 (𝐿)

~𝜔(𝐿)
. (15)

Here

~𝜔̃(𝐿) = 𝑇 (𝐿)𝜆̃(𝐿) = 2 [𝑉0𝑇 (𝐿)]
1
2 = 𝛼(𝐿)

[︂
2𝑉0~2

𝑚

]︂ 1
2

(16)

is of order 𝛼(𝐿), while the second and third term in (15) are of the order 𝛼2(𝐿) and
𝛼3(𝐿) accordingly.

The pressure operator 𝑃 in this limit may be found from (15) by noticing that both
terms in the rhs of the equation make contributions of opposite sign, but of the same
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(lowest) order 𝛼(𝐿). Indeed, in this limit 𝑇 (𝐿)𝜓(𝐿) ≈ 𝑇 (𝐿)𝜆(𝐿) = ~𝜔̃(𝐿) and

𝐸HO
𝑛 (𝐿) ≈ 𝐸𝑛

HO
(𝐿) = ~𝜔̃(𝐿)

(︂
𝑛− 1

2

)︂
. (17)

Combining relations (16) and (17)) one finds for the pressure operator 𝑃HO, as well

as for 𝑃FP, the linear operator equation of state (4) holds, but now with 𝑠 = 1 and
effective Hamiltonian:

𝐻̃HO
(𝑥̂,𝑝) =

𝑃 2

2𝑚
+

1

2
𝑚𝜔̃2(𝐿)𝑥2,

which describes some “confined” HO.

4. Approximations for the Energy Spectrum

4.1. Quasi-Classical Approximation (QC)

It is instructive to compare the exact energy spectrum (5) with its QC-counterpart,
for which the quantization rule states that for 𝑛 = 1, 2, 3, . . .

i(𝐸) = 2

𝑥0(𝐸)∫︁
−𝑥0(𝐸)

𝑝(𝑥,𝐸) d𝑥 = 2𝜋~
(︂
𝑛− 1

2

)︂
, (18)

here i(𝐸) is the classical action for the PT oscillator with the potential energy (1) while
𝑝(𝑥,𝐸) is the classical momentum

𝑝(𝑥,𝐸) =
√

2𝑚
[︀
𝐸 − f0 tg2 𝛼(𝐿)𝑥

]︀ 1
2 , 𝑝(𝑥0, 𝐸) = 0, (19)

obviously, 𝑥0(𝐸) → ±𝐿 as 𝐸 → ∞.
The Bohr–Sommerfeld quantization takes the explicit form:(︂

1

𝛼(𝐿)

)︂√
2𝑚
[︁
(𝐸 + 𝑉0)

1
2 − 𝑉

1
2
0

]︁
= ~

(︂
𝑛− 1

2

)︂
, (20)

so that the QC energy spectrum will be of the same form as in (5)–(6). The only difference
is that the exact quantity 𝜆(𝐿) in the QC-case will be substituted by it’s QC-analogy[︀

2
𝜋𝜁(𝐿)

]︀
+ 1. It is easy to verify that, all the basic features of the PT-oscillator remain

just the same (up to some numerical factors).

4.2. Perturbation Theory

Consider the expansion of the potential:

f(𝑥, 𝐿) = f0 = (𝛼(𝐿)𝑥2)

[︂(︂
1 +

2

3
𝛼(𝐿)𝑥2

)︂]︂
+
[︁
(𝛼(𝐿)𝑥)4

]︁
, (21)

which is plausible when both 𝛼(𝐿) and 𝑥 are small. The leading term in (21) may be
written down as the usual HO-potential:

𝑉0𝛼
2(𝐿)𝑥2 =

1

2
𝑚𝜔̃2(𝐿)𝑥2,
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where the frequency 𝜔̃2(𝐿) is the same as defined by (15). It may seem rather unpleasant
that 𝜔̃2(𝐿) goes to zero with 𝛼(𝐿) at 𝐿→ ∞, and so one may ask for the usual constant

HO-frequency 𝜔0 =

√︂
𝑘

𝑚
(𝑘 = const).

Such a result may be achieved simply by means of the potential intensity
f0 → (𝑘2 )𝛼−2(𝐿). Note, that in this case as the limit point 𝛼(𝐿). One arrives strictly
to the usual HO-oscillator (but not the PT-oscillator). Indeed, the suggested rescaling
can’t save “all the next order terms in the expansion” (21). Moreover, at this limiting
point the notion of pressure (the operator as well as it’s spectrum becomes meaningless,
so that we don’t use this “scaling trick” — as well as the point 𝛼(𝐿) = 0 in the follow-
ings

(︀
though the HO-limit 𝛼(𝐿) ≪ 1 is quite appropriate)

)︀
. Consider now the term of

the lowest order
(︀
𝛼(𝐿)𝑥

)︀4
in (21) as the weak an harmonics them the energy spectrum

is of the form [2,3]:

𝐸𝑛(𝐿) = 𝐸̃HO
𝑛 (𝐿) + ∆𝐸𝑛(𝐿), 𝐸̃HO

𝑛 (𝐿) = ~𝜔̃(𝐿)

(︂
𝑛+

1

2

)︂
, (22)

∆𝐸𝑛(𝐿) =

(︂
3

2

)︂[︂
𝑉0𝛼

2(𝐿)

(︂
2

3

)︂
𝛼2(𝐿)

]︂(︂
~

𝑚𝜔̃(𝐿)

)︂2[︂
𝑛2 + 𝑛+

1

2

]︂
,

where 𝑛 = 0, 1, . . ..

Making the shift 𝑛→ (𝑛− 1):

𝐸HO
𝑛 (𝐿) = ~𝜔̃(𝐿)

(︂
𝑛− 1

2

)︂
, ∆𝐸𝑛(𝐿) = 𝑇 (𝐿)

[︂
𝑛2 + 𝑛+

1

2

]︂
. (23)

Two effects are evident once from (23). Firstly, the linear in 𝑛 part of ∆𝐸𝑛(𝐿)

brings for the non-perturbated spectrum 𝐸̃HO
𝑛 (𝐿) equal to [−𝑇 (𝐿)], which agrees with

the correction of the same order in (2) the full expansion. Secondly, the quadratic in n
part reproduces the term 𝐸FP

𝑛 (𝐿) from the exact energy spectrum (6). Unfortunately, the
next approximation (e.g. of orders (𝛼𝑥)6 and/or (𝛼𝑥)8 tend to spoil these nice results.
In particular, they bring in 𝐸𝑛(𝐿) so, “non-physical” terms of orders 𝑛3, 𝑛4, etc. and
also deform the term 𝑇 (𝐿)𝑛2, which should not be affected at all.

5. Conclusion

In this paper the quantum-mechanical properties of the strongly non-linear quantum
oscillator in the Pöeschl–Teller model were considered. In Sec. 1 the formulation of the
model was given and its relations with two well known models — i.e., the free particle in
the box and the harmonic oscillator were considered. Sec. 3 was devoted to the analysis
of the fully discrete spectrum of the model; also, using the Hellman–Feynman theorem
the pressure operator was obtained and analyzed. namely, both the “free particle in
the box” and “harmonic oscillator” limits were given the detailed investigation. Finally,
in Sec. 4 some approximations for the energy spectrum are considered — namely, the
quasi-classical one as well as the perturbation theory in the region near the harmonic
one — i.e., were the anharmonic terms are relatively small. All the results obtained here
will be used for the thermodynamic calculations in the nearest future publication.
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Оператор давления для осциллятора Пёшля–Теллера
Ю. Г. Рудой, Е. О. Оладимеджи

Кафедра теоретической физики и механики
Российский университет дружбы народов

ул. Миклухо-Маклая, д. 6, Москва, Россия, 117198

Рассмотрены квантово-механические свойства сильно нелинейного квантового осцилля-
тора в модели Пёшля–Теллера. Изучен энергетический спектр модели и его зависимость
от параметра конфайнмента, или эффективной ширины потенциала. На основе теоремы
Гельмана–Фейнмана получен оператор давления для указанной модели, который вместе с
энергетическим спектром изучен в двух основных приближениях: частицы в ящике и ли-
нейного гармонического осциллятора для больших и малых значений главного квантового
числа 𝑛 соответственно; получено также значение критического значения 𝑛кр. Рассмотре-
ны также квазиклассическое приближение и теория возмущений для обоих предельных
случаев. Полученные результаты предназначены для использования в последующих тер-
модинамических приложениях — прежде всего, обобщения хорошо известного результата
Блоха для линейного гармонического осциллятора в термостате. С этой целью необходимо
построить матрицу плотности для осциллятора Пёшля–Теллера для проведения полного
цикла Карно.

Ключевые слова: квантовый осциллятор Блоха и Пёшля–Теллера, оператор давле-
ния, теорема Гельмана–Фейнмана, квазиклассическое приближение, гармонический осцил-
лятор, частица в ящике
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