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Modern accelerator systems and detectors contain magnetic systems of complex geometrical
configuration. Design and optimization of the magnetic systems demands solving a nonlinear
boundary-value problem of magnetostatic.

The region in which the boundary-value problem is solved, consists of two sub-domains: a
domain of vacuum and a domain of ferromagnetic. In view of the complex geometrical config-
uration of magnetic systems, the ferromagnetic/vacuum boundary can be nonsmooth, i.e. it
contains a corner point near of which the boundary is formed by two smooth curves crossed in
a corner point at some angle.

Thereby, the solution of such a problem has to be found by numerical methods, a question
arises about the behavior of the boundary value problem solution around the angular point of
the ferromagnetic. This work shows that if the magnetic permeability function meets certain
requirements, the corresponding solution of the boundary value problem will have a limited
gradient. In this paper, an upper estimate of maximum possible growth of the magnetic field in
the corner domain is given.

In terms of this estimate, a method of condensing the differential mesh near the corner domain
is proposed. This work represents an algorithm of constructing an adaptive mesh in the domain
with a boundary corner point of ferromagnetic taking into account the character of behavior of
the solution of the boundary value problem. An example of calculating a model problem in the
domain containing a corner point is given.
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1. Introduction

Many physics research facilities use magnetic systems of various configurations, e.g.,
a system of spectrometric magnets. It is very important to know with a good accu-
racy the distribution of the magnetic field generated by this system. The problem is
actually reduced to formulation of a magnetostatics problem of finding the distribution
of the magnetic field generated by the magnetic system under consideration. Since the
magnetic system has a complicated configuration, the solution of the problem is usually
sought using numerical methods. The domain in which the boundary value problem is
solved during calculations of a particular magnetic system often has a piecewise smooth
boundary. In this case, the solution of the problem or the derivative solutions can have
a singularity. Therefore, the numerical search for the solution requires the use of special
methods.

2. Formulation of the Boundary Value Problem

The problem to be formulated is the magnetostatics problem of the magnetic field
distribution in the corner domain of a ferromagnetic (see Fig. 1). From the Maxwell’s
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equations and boundary relations (no currents are supposed to be in the region under
consideration) it follows that

div �⃗�(𝑝) = 0, curl �⃗�(𝑝) = 0, 𝑝 ∈ Ω;

�⃗� · (�⃗�1 − �⃗�2) = 0, �⃗�× (�⃗�1 − �⃗�2) = 0, 𝑝 ∈ Γ,

where Ω is the ferromagnetic and the vacuum region (on Figs. 1, 2 region Ω1 = Ω𝑣 and

region Ω2=Ω𝑓 ); Γ is the boundary; and �⃗� and �⃗� are the magnetic field induction and
strength vectors, respectively.

Figure 1. The
corner domain

Figure 2. The
angular sector

For the ferromagnetic region Ω2, we can write �⃗� = 𝜇0𝜇(𝐻)�⃗�, where 𝐻 =
⃒⃒⃒
�⃗�
⃒⃒⃒
, 𝜇(𝐻)

is the permeability, and 𝜇0 is the vacuum permeability. For the vacuum region Ω1, we

have �⃗� = 𝜇0�⃗�. Since there are no current sources in the region Ω = Ω1 ∪ Ω2, the field
is potential, and thus the following representation holds:

�⃗�(𝑝) = −∇𝑢(𝑝), 𝑝 ∈ Ω, 𝑢(𝑝) =

{︂
𝑢1(𝑝), 𝑝 ∈ Ω1,

𝑢2(𝑝), 𝑝 ∈ Ω2,

where 𝑢(𝑝) is the scalar potential. The consequent formulation of the boundary value
problem is

div [𝜇 (|∇𝑢1(𝑝)|)∇𝑢2(𝑝)] = 0, 𝑝 ∈ Ω2, ∆𝑢1(𝑝) = 0, 𝑝 ∈ Ω1,

𝑢1|Γ−
= 𝑢1|Γ+

, 𝜇 (|∇𝑢2(𝑝)|) 𝜕𝑢2
𝜕𝑛

⃒⃒⃒⃒
Γ+

=
𝜕𝑢1
𝜕𝑛

⃒⃒⃒⃒
Γ−

,

𝑢1|Γ1
= Ψ1; 𝑢2|Γ2

= Ψ2,

(1)

where the function 𝜇(𝐻) satisfies the conditions:

1. 𝜇(𝐻) ∈ 𝐶(1) [0,+∞) ;
2. 𝜇(𝐻) > 1 for 𝐻 ∈ [0,+∞) ;

3. 𝜇(𝐻)
𝐻→+∞−−−−−→ 1.

Let us consider the function �̄�(𝐻), an analogue of the function 𝜇 (𝐻), for which
conditions 2 and 3 are replaced by �̄� (𝐻 ′) = 1 for 𝐻 ′ > 𝐻0, where 𝐻0 is “large enough”.
In what follows we will assume that the solution to (1) is 𝑢 ∈ 𝐶(Ω ∪ Γ ∪ Γ1 ∪ Γ2), and
thus it follows that ∃𝐶0 > 0 ∀𝑝 ∈ Ω ∪ Γ ∪ Γ1 ∪ Γ2 : |𝑢(𝑝)| < 𝐶0.
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3. On a Certain Boundary Value Problem

Before proceeding to the main statements of the paper, we consider an auxiliary
problem that is discussed in detail in [1], namely, the boundary value problem (see
Fig. 2) ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

div [𝑞∇𝑢(𝑝)] = 0, 𝑝 ∈ Ω,

𝑢|Γ−
= 𝑢|Γ+

,

𝑞2
𝜕𝑢

𝜕𝑛

⃒⃒⃒⃒
Γ+

= 𝑞1
𝜕𝑢

𝜕𝑛

⃒⃒⃒⃒
Γ−

,

𝑢|Γ1
= Ψ1; 𝑢|Γ2

= Ψ2,

where 𝑞 =

{︂
𝑞1, 𝑝 ∈ Ω1,

𝑞2, 𝑝 ∈ Ω2,

Ω = Ω1 ∪ Ω2, Ω1 = {(𝑟, 𝜑) : 0 < 𝑟 < 𝑟0, |𝜑| < 𝜋/4} ,
Ω2 = {(𝑟, 𝜑) : 0 < 𝑟 < 𝑟0, |𝜑| > 𝜋/4} ,

where Ψ𝑖 ∈ 𝐶(1) (Γ𝑖), 𝑖 = 1, 2, (see Fig. 2). Let us introduce the polar coordinate system.
The solution is sought by the method of separation of variables: 𝑢 ∼ 𝑅(𝑟) · Φ(𝜙). As a
result, we have Φ′′ + 𝜆2Φ = 0, 𝑟2𝑅′′ + 𝑟𝑅′ − 𝜆2𝑅 = 0.

Thus, by virtue of boundedness of 𝑢(𝑝) at the origin, the solution for 𝑅(𝑟) will be
𝑅(𝑟) ∼ 𝑟𝜆, and for Φ(𝜙) there will be eigenfunctions divided into two groups, symmetric
about 𝜙 = 0 and antisymmetric about 𝜙 = 0. In the former case, the eigenfunctions take
the form

Φ
(1)
𝜆 (𝜙) =

{︂
cos (𝜆𝜙) , |𝜙| < 𝜋/4,

𝑎𝜆 cos (𝜆 (𝜋 − 𝜙)) , |𝜙| > 𝜋/4.

Here the constant 𝑎𝜆 is determined from the boundary ratio for normal derivatives

𝑎𝜆 = −
[︁
𝑞1 sin

(︁
𝜆
𝜋

4

)︁]︁⧸︁[︂
𝑞2 sin

(︂
𝜆

3𝜋

4

)︂]︂
,

and the eigenvalues 𝜆 can be determined using the continuity relation for the solution
𝑢 (𝑟, 𝜙) at the boundary

−𝑞1
𝑞2

=
cos
(︁
𝜆
𝜋

4

)︁
cos

(︂
𝜆

3𝜋

4

)︂ sin

(︂
𝜆

3𝜋

4

)︂
sin
(︁
𝜆
𝜋

4

)︁ .

Thus, either tg
(︁
𝜆
𝜋

4

)︁
= 0 and hence 𝜆 = 4𝑛, or 𝜆 = ±𝜆1 ± 4𝑛, where 𝜆1 is the

smallest root of the equation

−𝑞1
𝑞2

=
[︁
3 − tan2

(︁
𝜆
𝜋

4

)︁]︁⧸︁[︁
1 − 3tan2

(︁
𝜆
𝜋

4

)︁]︁
. (2)

The singularity is introduced in the solution by the series term 𝑟𝜆1Φ𝜆1 (𝜙) at 𝜆1 < 1.
From (2) it follows that

𝜆1 = 1 ⇔ 𝑞1 = 𝑞2. (3)

This means that if 𝑞1 = 𝑞2, |∇𝑢(𝑝)| will be limited.
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4. Behavior of the Solution of the Boundary Value Problem

Let us consider boundary value problem (1) with the permeability function �̄�, region
Ω (see Fig. 1).

Statement 1.

∃𝐾 > 0 ∀𝛿 > 0 0 < 𝜌 (𝑝,𝑄) < 𝛿 : |∇𝑢(𝑝)| < 𝐾,

where 𝜌 (𝑝,𝑄) is the distance between the points 𝑝 and 𝑄, and by boundedness on Γ is
meant boundedness on Γ+ and Γ−.

Proof. We will prove it by contradiction. Let us assume that it is not true. Then

∀𝐾 > 0 ∃𝛿 > 0 0 < 𝜌 (𝑝,𝑄) < 𝛿 : |∇𝑢(𝑝)| > 𝐾.

Let us take 𝐾 = max (𝐻0, 4𝐶0
√
𝜋), 0 < 𝛿0 < 𝛿, then for 𝑝 : 0 < 𝜌 (𝑝,𝑄) 6 𝛿0 the

condition
|∇𝑢(𝑝)| > 𝐻0 ⇒ �̄� (𝐻) = 1. (4)

should hold.
We introduce a polar coordinate system with the origin at the point 𝑄. Let 𝑢 (𝑟, 𝜙)

be the solution of our boundary value problem satisfying condition (4). Then on Γ± it
should satisfy the conditions

𝜕𝑢

𝜕𝜙
(𝛿0, 𝜙)

⃒⃒⃒⃒
𝜙=0+

=
𝜕𝑢

𝜕𝜙
(𝛿0, 𝜙)

⃒⃒⃒⃒
𝜙=0−

, (5)

and by virtue of continuity of 𝑢 (𝛿0, 𝜙)

𝑢 (𝛿0, 𝜙)|𝜙=0+ = 𝑢 (𝛿0, 𝜙)|𝜙=0− = 𝑢 (𝛿0, 0) (6)

should hold. It follows from (5) and (6) that

∃𝜕𝑢
𝜕𝜙

(𝛿0, 0) =
𝜕𝑢

𝜕𝜙
(𝛿0, 𝜙)

⃒⃒⃒⃒
𝜙=0+

=
𝜕𝑢

𝜕𝜙
(𝛿0, 𝜙)

⃒⃒⃒⃒
𝜙=0−

.

Thus, putting

Ψ𝑖(𝜑) = 𝑢𝑖 (𝛿0, 𝜑) , 𝑖 = 1, 2, Ψ =

{︃
Ψ1, Γ1,

Ψ2, Γ2,

Γ = {(𝛿0, 𝜑) : 0 < 𝜑 6 2𝜋} ,
in the 𝛿0-vicinity of the point 𝑄, we obtain the boundary value problem

∆𝑢1 (𝑝) = 0, 𝑝 ∈ Ω1, ∆𝑢2 (𝑝) = 0, 𝑝 ∈ Ω2,

𝜕𝑢2
𝜕𝑛

⃒⃒⃒⃒
Γ+

=
𝜕𝑢1
𝜕𝑛

⃒⃒⃒⃒
Γ−

, 𝑢1|Γ−
= 𝑢2|Γ+

, 𝑢|Γ = Ψ,
(7)

where Ψ ∈ 𝐶(1)
(︀
Γ
)︀
. From (3) (and also from [1]) we find that (7) has no singularities,

i.e., lim
𝑝→𝑄

|∇𝑢(𝑝)| =
√︀
𝑎21 + 𝑏21 6 4𝐶0

√
𝜋 = 𝐾, where 𝑎1 and 𝑏1 are the Fourier series

coefficients for the function 𝑢 (𝑝) at the boundary of Γ. Consequently, we have arrived
at a contradiction, which proves our statement. �
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Thus, it follows from the statement that the magnetic field is bounded in the corner
domain provided that the permeability function satisfies the conditions:

1) �̄� (𝐻) ∈ 𝐶(1)[0,+∞);
2) ∃𝐻0 > 0 ∀𝐻 ′ > 𝐻0 : �̄� (𝐻 ′) = 1.

Note an interesting fact. Let us solve boundary value problem (1) and let its solution
have unbounded |∇𝑢|. This means that in the vicinity of the point 𝑄 the permeability
function 𝜇 (|∇𝑢|) will tend to unity. Since the number of figures in the mantissa is limited,
it will turn out that in a certain small vicinity of the point 𝑄 the function 𝜇 (|∇𝑢|) will
be equal to 1. That is, there arises boundary value problem (1) with the permeability
function �̄� (𝐻) that has bounded |∇𝑢| and thus we get a contradiction. Consequently,
numerical calculations cannot “theoretically” yield a solution with the infinitely growing
|∇𝑢|, and we will seek the solution of another boundary value problem, namely, problem
(1) with �̄� (𝐻), where |∇𝑢| is limited. But the solution of problem (1) with �̄� (𝐻) does
not coincide in the general case with the solution of initial problem (7) with 𝜇 (𝐻). It
is therefore necessary to use special methods for solving this problem. One of these
methods is considered in [2, 3] for the solution of the equation div [𝜇 (|∇𝑢|)∇𝑢] = 0 in
the corner domain.

5. Estimation of the Magnetic Field Growth

Let us show that the magnetic field in the corner domain of a ferromagnetic satisfies
the condition

𝐻 (𝑠) 6 𝐶0 ln
1

𝑟𝑠
+ 𝑤 (𝑠) , (8)

where 𝐶0 is a constant; 𝑤 (𝑠) is a bounded function; and 𝑟𝑠 is the distance to the corner.
The integral formulation of the magnetostatic problem allows the magnetic field to be
represented as

�⃗� (𝑠) = �⃗�𝐶 (𝑠) −∇𝑠

∫︁
Ω𝑓

(︁
�⃗� (𝑝) ,∇𝑃Ψ (𝑠, 𝑝)

)︁
d𝜐𝑝, (9)

where �⃗�𝐶 is the field from the current sources; �⃗� is the ferromagnetic magnetization

vector; the function Ψ (𝑠, 𝑝) is equal to
1

4𝜋𝑟sp
or

1

2𝜋
ln 𝑟sp for the three-dimensional

and the two-dimensional case, respectively; and Ω𝑓 is the ferromagnetic domain (see
Fig. 2: region Ω1 = Ω𝑣 and region Ω2 = Ω𝑓 ). The magnetization vector is defined

as �⃗� = 𝜇0𝜒 (𝐻) �⃗� = 𝜇0 (𝜇 (𝐻) − 1) �⃗�, where 𝜇0 is a constant; 𝜒 (𝐻) is the magnetic
susceptibility; and 𝜇 (𝐻) is the permeability of the ferromagnetic. Given high fields

(𝐻 → ∞), the representation 𝜇 (𝐻) = 1 +
𝐴

𝐻
− 𝐵

𝐻2
, 𝐻 → ∞ is valid, where 𝐴 and 𝐵

are positive constants. Consequently, when 𝐻 → ∞, 𝑀 =
⃒⃒⃒
�⃗�
⃒⃒⃒

is limited by a constant

𝑀0 = 𝜇0𝐴. Let us consider the 2D case. From (9) we obtain

�⃗� (𝑠) = �⃗�𝐶 (𝑠) − 1

2𝜋
∇𝑠

∫︁
Ω𝑓

(︂
�⃗� (𝑝) ,

�⃗�sp
𝑟2sp

)︂
d𝜐𝑝.

Here the first term is limited, and we therefore estimate the second term
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⃒⃒⃒⃒
⃒⃒⃒∇𝑠

∫︁
Ω𝑓

(︂
�⃗� (𝑝) ,

�⃗�sp
𝑟2sp

)︂
d𝜐𝑝

⃒⃒⃒⃒
⃒⃒⃒ 6 2

∫︁
Ω𝑓

2𝑟2sp
⃒⃒
𝑀 (𝑥)

⃒⃒
+ 2𝑟2sp

⃒⃒
𝑀 (𝑦)

⃒⃒
𝑟4sp

d𝜐𝑝 6 8𝑀0

∫︁
Ω𝑓

1

𝑟2sp
d𝜐𝑝.

We calculate the integral∫︁
Ω𝑓

1

𝑟2sp
d𝜐𝑝 =

∫︁
𝑣𝛿

1

𝑟2sp
d𝜐𝑝 +

∫︁
Ω𝑓∖𝑣𝛿

1

𝑟2sp
d𝜐𝑝,

where 𝑣𝛿 = Ω𝑓 ∩ 𝑆𝛿 (𝑄) is the angular sector at the 𝑣𝛿 corner point 𝑄 (see Fig. 2).
The integral over the domain Ω𝑓/𝑣𝛿 will be limited, and we therefore consider only

the integral over the domain 𝑣𝛿

∫︁
Ω𝑓

1

𝑟2sp
d𝜐𝑝 =

𝜔0∫︁
0

d𝜙𝑝

𝛿∫︁
0

𝑟𝑝d𝑟𝑝
𝑟2𝑝 + 𝑟2𝑠 − 2𝑟𝑝𝑟𝑠 cos𝜙sp

=

=

𝜔0∫︁
0

d𝜙𝑝

⎛⎜⎝ 1∫︁
0

𝑡d𝑡

1 + 𝑡2 − 2𝑡 cos𝜙sp
+

𝛿/𝑟𝑠∫︁
1

𝑡d𝑡

1 + 𝑡2 − 2𝑡 cos𝜙sp

⎞⎟⎠ , 𝑡 =
𝑟𝑝
𝑟𝑠
.

Then we use the expression for the generating function

1√︀
1 + 𝑡2 − 2𝑡 cos𝜙sp

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+∞∑︁
𝑚=0

𝑃𝑚 (cos𝜙sp) 𝑡𝑚, |𝑡| < 1,

+∞∑︁
𝑚=0

𝑃𝑚 (cos𝜙sp) 𝑡−𝑚−1, |𝑡| < 1,

and obtain∫︁
Ω𝑓

1

𝑟2sp
d𝜐𝑝 = 𝜔0 ln

𝛿

𝑟𝑠
+

+∞∑︁
𝑚,𝑘=0

𝑃𝑚𝑃𝑘
𝛼𝑚,𝑘

𝑚+ 𝑘 + 2
+

+∞∑︁
𝑚+𝑘 ̸=0

𝑃𝑚𝑃𝑘
𝛼𝑚,𝑘
𝑚+ 𝑘

(︂(︁𝑟𝑠
𝛿

)︁𝑚+𝑘

− 1

)︂
=

= 𝐶1 ln
1

𝑟𝑠
+ 𝑤1 (𝑠) ,

where

𝛼𝑚,𝑘 =

𝜔0∫︁
0

𝑃𝑚 (cos𝜙sp)𝑃𝑘 (cos𝜙sp) d𝜙𝑝,

𝐶1 is a constant, and 𝑤1 (𝑠) is a bounded function. Thus, the validity of expression (8)
is ascertained.

6. Method of Mesh Condensing in the Corner Domain

In [4,5] there are examples of constructing a differential mesh for some boundary value
problems in corner domains. The main idea is to condense the differential mesh or finite
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elements for obtaining an admissible problem approximation error. This error involves

integrals over elementary domains estimated by the quantities of the form 𝐶ℎ𝛽𝑖 ‖𝑢‖𝑘,𝑗 ,
where ℎ𝑖 is the diameter of the 𝑖 elementary domain or mesh cell; 𝛽 is a positive number;
‖𝑢‖𝑘,𝑗 is the norm of the function with the 𝑘th derivative in this domain; and 𝐶 is
a constant independent of all these factors. Then we can require, for example, that

quantities 𝐶ℎ𝛽𝑖 ‖𝑢‖𝑘,𝑗 be identical in the domain under consideration. To this end, ℎ𝛽𝑖
can be decreased in inverse proportion to ‖𝑢‖𝑘,𝑗 on approach to the singular points. We
demonstrate the validity of the following statement.

Let �⃗� (𝑠) be the solution of the magnetostatic problem in the integral formulation

found by a numerical method and �⃗� (𝑠) be the exact solution. Then the following
estimate is valid: ⃦⃦⃦

�⃗� − �⃗�
⃦⃦⃦2
𝐿2(𝐷)

< ℎ2
(︀
𝑐1 ln2 ℎ+ 𝑐2 lnℎ+ 𝑐3

)︀
, (10)

where 𝑐1, 𝑐2, and 𝑐3 are positive constants and ℎ is the diameter of the domain 𝐷, which
is a differential grid cell containing the ferromagnetic corner.

By virtue of (9), the following expression for �⃗� (𝑠) holds:

�⃗� (𝑠) = �⃗�𝐶 (𝑠) − 1

2𝜋
∇𝑠

𝑁∑︁
𝑗=1

∫︁
Ω𝑗

(︃
�⃗�
(︁
�⃗�𝑗

)︁
,
�⃗�𝑠𝑝𝑗
𝑟2𝑠𝑝𝑗

)︃
d𝑣, (11)

where �⃗�𝑗 is the field in the cell Ω𝑗 , 𝑗 = 1 . . . 𝑁 ;
𝑁⋃︀
𝑗=1

Ω𝑗 = Ω𝑓 ; and 𝑟𝑠𝑝𝑗 is the distance

from the point 𝑠 to the point 𝑝𝑗 ∈ Ω𝑗 . We consider the difference

�⃗� (𝑠) − �⃗� (𝑠) = − 1

2𝜋
∇𝑠

𝑁∑︁
𝑗=1

∫︁
Ω𝑗

(︃
�⃗�
(︁
�⃗�𝑗

)︁
− �⃗�

(︁
�⃗� (𝑝𝑗)

)︁
,
�⃗�𝑠𝑝𝑗
𝑟2𝑠𝑝𝑗

)︃
d𝑣.

Since the quantity
⃒⃒⃒
�⃗�
⃒⃒⃒
< 𝑀0 is limited, it follows that

⃒⃒⃒
�⃗�
(︁
�⃗�𝑗

)︁
− �⃗�

(︁
�⃗� (𝑝𝑗)

)︁⃒⃒⃒
<

2𝑀0 for 𝑗 = 1 . . . 𝑁 . Thus, we obtain⃒⃒⃒
�⃗� (𝑠) − �⃗� (𝑠)

⃒⃒⃒
<

8𝑀0

𝜋

𝑁∑︁
𝑗=1

∫︁
Ω𝑗

d𝑣

𝑟2𝑠𝑝𝑗
=

8𝑀0

𝜋

𝑁∑︁
𝑗=1

∫︁
Ω𝑗∩𝑆𝛿(𝑄)

d𝑣

𝑟2𝑠𝑝𝑗
+

8𝑀0

𝜋

𝑁∑︁
𝑗=1

∫︁
Ω𝑗∖𝑆𝛿(𝑄)

d𝑣

𝑟2𝑠𝑝𝑗
.

As a result, using the estimate obtained above, we arrive at the expression⃒⃒⃒
�⃗� (𝑠) − �⃗� (𝑠)

⃒⃒⃒
< 𝐶2 ln

1

𝑟𝑠
+ 𝑤2 (𝑠) . (12)

It remains to estimate
⃦⃦⃦
�⃗� − �⃗�

⃦⃦⃦2
𝐿2(𝐷)

, where the domain 𝐷 is the 𝑆𝛿 (𝑄) — 𝛿-domain

of the corner point 𝑄. Using (12), we obtain⃦⃦⃦
�⃗� − �⃗�

⃦⃦⃦2
𝐿2(𝐷)

=

∫︁
𝐷

⃒⃒⃒
�⃗� (𝑠) − �⃗� (𝑠)

⃒⃒⃒2
d𝑣 < ℎ2

(︀
𝑐1 ln2 ℎ+ 𝑐2 lnℎ+ 𝑐3

)︀
,
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where ℎ = 2𝛿, and 𝑐1, 𝑐2, and 𝑐3 are constants. The result corresponds to (10). Based
on the aforesaid and inequality (10), we propose a differential mesh condensing method

ℎ1∫︁
0

⃒⃒⃒⃒
ln

1

𝑥

⃒⃒⃒⃒
d𝑥 = 𝑑0,

𝑥𝑚∫︁
𝑥𝑚−1

⃒⃒⃒⃒
ln

1

𝑥

⃒⃒⃒⃒2
d𝑥 = 𝑑0, 𝑥𝑚 − 𝑥𝑚−1 = ℎ𝑚, 𝑚 = 1, 2 . . . ,𝑀.

Here 𝑑0 is a constant; 𝑀 is the number of partitions along the coordinate axis (𝑂𝑋
or 𝑂𝑌 ) in the corner domain; ℎ𝑚 is the grid spacing; and 𝑥𝑚 is the coordinate of the
grid node along the 𝑂𝑋 or 𝑂𝑌 axis (the origin of the coordinates is at the corner point),
|𝑥| < 1.

7. Calculation of the Magnetic Field in the Corner Domain

In Section 5 we gave the upper estimate of the admissible magnetic field growth in
the corner domain of a ferromagnetic. In Section 6, based on this estimate, we proposed
a method of condensing the differential mesh in the corner domain. In this section we
present numerical calculations of a magnetic system using this method. It is evident
from the calculations that the above mesh condensing method substantially improves
the accuracy of the calculated magnetic field distribution. We considered a magnetic
system depicted in Fig. 2. The domain Ω𝑣 corresponds to the vacuum, and the domain
Ω𝑓 is filled with a ferromagnetic. A boundary value problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕

𝜕𝑥
𝜐
𝜕𝐴𝑧
𝜕𝑥

+
𝜕

𝜕𝑦
𝜐
𝜕𝐴𝑧
𝜕𝑦

= 0, 𝑝 ∈ Ω𝑓 ∪ Ω𝑣 = Ω,

𝐴𝑧|Γ−
= 𝐴𝑧|Γ+ , 𝜐

𝜕𝐴𝑧
𝜕𝑛

⃒⃒⃒⃒
Γ+

=
𝜕𝐴𝑧
𝜕𝑛

⃒⃒⃒⃒
Γ−

,

𝐴𝑧|𝑥=0 = 𝐶, 𝐴𝑧|𝑥=𝑥2
= −𝐶, 𝜕𝐴𝑧

𝜕𝑛

⃒⃒⃒⃒
𝑦=0,𝑦1

= 0,

(13)

corresponding to the formulation of the magnetostatic problem with respect to the vector
potential 𝐴𝑧, was solved in the domain under consideration. The function 𝜗 is defined
as 𝜗 = 1/𝜇 (𝐵), where 𝜇 (𝐵) is the permeability of the ferromagnetic; 𝐵 is the modulus

of the magnetic induction vector �⃗� = rot �⃗�; Γ± is the interface; and 𝐶 is a constant.
The efficiency of the differential mesh condensing method described in Section 6 was
estimated by the following calculations:

Variant 1. The solution to problem (13) was found on a sequence of (10𝑘) × (10𝑘)
meshes, where 𝑘 = 1, 2, 4, 8, 10, 20, 40; that is, 10 × 10, 20 × 20, . . . , 400 × 400 meshes
were obtained. The mesh spacing in the corner domain Π𝑄 was uniform.

Variant 2. Problem (13) was calculated on the same sequence of meshes at 𝑘 =
1, 2, 4, 8, but the mesh spacing in the domain Π𝑄 was chosen using the differential mesh
condensing method described in Section 6. In the domain Ω/Π𝑄 the mesh spacing was
not changed as compared with the previous variant. The number of node points in the
domain Π𝑄 was the same, and only their distribution was changed.

The results of the variant 1 calculations were taken to be a sort of reference because
the accuracy of the calculated solution was assumed to increase with increasing num-
ber of partitions, except probably for a particular corner domain. Then the results of
the variant 2 calculations were compared with the results of the variant 1 calculations.
Figures 3–6 shows distributions 𝐵𝑦 (𝑥) at 𝑦 = 𝑦1 for different meshes. In all figures the
reference distribution 𝐵𝑦 (𝑥) calculated on the 400 × 400 mesh is designated as trace 1.



Perepelkin E. E. et al. The Boundary Value Problem for Elliptic Equation in . . . 261

The plots of traces 2 and 3 are the distributions 𝐵𝑦 (𝑥) calculated by variants 1 and 2, re-
spectively. The distributions in Figs. 3–6 are calculated on the 10×10, 20×20, 400×400,
and 80× 80 meshes, respectively. It is evident from Figs. 3 that the accuracy of the vari-
ant 2 calculations (nonuniform mesh) is substantially higher than that of the variant 1
calculations (uniform mesh). Thus, it follows that the proposed method of constructing
a differential mesh in the corner domain is worth using and yields results comparable in
accuracy with the results obtained only on meshes with the number of nodes in each axis
four to five times greater than in the initial mesh.An algorithm of thickening differen-
tial mesh near the corner point has been developed. It allows one to significantly reduce
the computation time and simultaneously to increase the accuracy of the solution of the
boundary value problem. Variant 1 — maximum of relative error is 11.085%; variant 2
— maximum of relative error is 1.091%.

Figure 3. Distributions 𝐵𝑦 (𝑥) at
𝑦 = 𝑦1. Mesh 10x10

Figure 4. Distributions 𝐵𝑦 (𝑥) at
𝑦 = 𝑦1. Mesh 20x20

Figure 5. Distributions 𝐵𝑦 (𝑥) at
𝑦 = 𝑦1. Mesh 400x400

Figure 6. Distributions 𝐵𝑦 (𝑥) at
𝑦 = 𝑦1. Mesh 80x80

8. Results of Modeling of Some Magnetic Systems

The significance of numerical modeling at the investigating of magnetic systems is
defined by not only known dignities of computational experiment but also that the mea-
surement of magnetic field is labor-intensive and expensive problem. The process of the
mathematical modeling of magnetic systems (see Figs. 7 and 8), as the authors of this
work have presented, should be divided into two large stages.
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Figure 7. General view of
spectrometric magnet 1SP-40-4B Figure 8. Type of solenoidal magnet

8.1. Results of modeling magnetic systems SP-94 and 1SP-40-4B

In the experiment performed at the Veksler and Baldin Laboratory of High Energy
Physics, JINR, the SP-94 [6] magnet is used. It was necessary to select the configura-

tion of the core and the current coils such that the quantity
+∞∫︀
−∞

𝐵𝑦 (0, 0, 𝑧) d𝑧 had the

maximum value. Fig. 9a presents the distribution of 𝐵𝑦 in the 𝑋𝑂𝑍 plane for this con-
figuration of the magnet 𝑆𝑃 = 94 (variant 1). First, the initial configuration (variant 1)

was calculated. Here
𝐿∫︀

−𝐿
𝐵𝑦 (0, 0, 𝑧) d𝑧 = 2.314, where 𝐿 = 1.5 m is the dimension along

the 𝑂𝑍 axis of the region where the magnetic field was calculated for variant 1. Second,
the initial configuration (variant 2) was calculated. Fig. 9b presents the distribution
of 𝐵𝑦 in the 𝑋𝑂𝑍 plane for configuration of the magnet 𝑆𝑃 = 94 (variant 2). Here
𝐿∫︀

−𝐿
𝐵𝑦 (0, 0, 𝑧) d𝑧 = 2.987, which is 1.291 times greater than for the initial configuration

in variant 1.

Figure 9. Distribution of 𝐵𝑦 for three configurations of the magnet SP-94

Two configurations of the magnet 1SP-40-4B NIS (variant 1, 2, respectively) for which
the numerical computations of the magnetic fields were performed, i.e., in fact, a nonlin-
ear inverse problem of magnetostatics were solved. The purpose of the simulation is to
find by a calculation method such a magnet geometry that the region of the homogene-
ity of the magnetic field would be essentially larger as compared to the existing magnet
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configuration. Fig. 10 present distributions of the components of the magnetic field for
our two variants of configurations of the magnet 1SP-40-4B in a 3D case. Clearly, for
variant 2 the distributions of the components got more smooth.

Figure 10. Dependences 𝐵𝑦(𝑥, 0.3, 𝑧) for two configurations of the magnet,
current 1100 A

8.2. The Solenoid Type Magnetic Field Detector Modeling

Magnetic systems are very important parts [7, 8]. To create the necessary configu-
ration of magnetic field, the repeated solution of nonlinear boundary value problem of
magnetostatics is needed. In the present work, we consider the problem of creation of
homogeneous map of magnetic system of solenoidal type (see Fig. 8). As a result of op-
timization, the geometric parameters of magnetic system were chosen in such a way so
as to get maximal size of the domain of homogeneity of the magnetic field.

Due to symmetry, only 1/24 part of the geometry with corresponding boundary condi-
tions is modeled. The calculations were performed (using two software products: TOSCA
and native MFC) by the method of finite elements on tetrahedral mesh with 5 000 000
elements.

In Figs. 11 and 12 the domains with the degrees of homogeneity of magnetic field are
of 0.1% and 0.5%, respectively. The black continuous line shows that the homogeneity
of 0.1% is needed. In Fig. 11, the scale of magnetic field has site from 0.99–1.001 T, in
Fig. 12 from 0.998–1.002 T.

Figure 11. Field homogeneity is ±0.1% Figure 12. Field homogeneity is ±0.5%
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9. Conclusions

1. The upper estimate for the admissible growth of the magnetic field �⃗� (𝑝) in the
corner domain

𝐻 (𝑝) 6 𝐶0 ln
1

𝑟𝑝
+ 𝑤 (𝑝) ,

where 𝐶0 is a constant, 𝑤 (𝑝) is a bounded function, and 𝑟𝑝 is the distance to the corner,
is asymptotically obtained for the case of 𝜇 (𝐻) → 1 when 𝐻 → ∞.

2. A method of condensing the differential mesh in the corner domain is proposed,
which appreciably improves the accuracy of the calculated solution.

3. The numerical modeling results are presented for the SP-94 magnet system in the
Delta–Sigma experiment performed within the Topical Plan of JINR on international
collaboration. Two-dimensional and three-dimensional modeling of the configuration of
the magnet core and current coils was performed to obtain the maximum value of the
integral

𝐿∫︁
−𝐿

𝐵𝑦 (0, 0, 𝑧) d𝑧.

4. By a numerical method a configuration of the magnet 1SP-40-4B VBLHEP, JINR
has been selected for which the width of the domain of the homogeneity of the magnetic
field has grown up from 0.5 m to 1.0 m, i.e., twice. This growth considerably increases
the accuracy of regenerating the pulses of decay particles in the physical reaction under
study (search for pentaquarks).

5. As a result of optimization, the geometric parameters of the solenoid type magnetic
field detector were chosen in such a way so as to get maximal size of the domain of
homogeneity of the magnetic field.
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Краевая задача для уравнения эллиптического типа в области
с углом в математическом моделировании магнитных систем
Е. Е. Перепелкин*, Р. В. Полякова†, А. Д. Коваленко†, П. Н. Сысоев*,
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† Объединённый институт ядерных исследований

ул. Жолио-Кюри, д. 6, г. Дубна, Московская область, Россия, 141980

Современные ускорительные системы и детекторы содержат магнитные системы слож-
ной геометрической конфигурации. Проектирование и оптимизация магнитных систем тре-
бует решения нелинейной краевой задачи магнитостатики.

Область, в которой решается краевая задача, состоит из двух подобластей: область ваку-
ума и область ферромагнетика. Из-за сложной геометрической конфигурации магнитных
систем граница раздела сред ферромагнетик/вакуум может являться негладкой, то есть
содержать угловую точку, в окрестности которой граница образована двумя гладкими кри-
выми, пересекающимися в угловой точке под некоторым углом.

В связи с тем, что решение краевой задачи приходится искать численными методами,
встает вопрос о поведении решения в окрестности угловой точки ферромагнетика. Пока-
зано, что если функция магнитной проницаемости удовлетворяет определенным условиям,
то соответствующее решение краевой задачи будет иметь ограниченный градиент.

Дается верхняя оценка допустимого роста магнитного поля в окрестности угловой точки.
На основании полученной оценки предлагается метод сгущения разностной сетки вблизи
угловой точки, учитывающий характер поведения решения краевой задачи. Приводятся
примеры расчета магнитных систем в области, содержащей «угловую точку».

Ключевые слова: магнитные системы, математическое моделирование, краевая за-
дача, эллиптические уравнения, поведение решения в угловой точке

Литература
1. Strang G., Fix G. An Analysis of the Finite Element Method. Second edition. —

Wellesley-Cambridge Press, 2008.
2. Zhidkov E. P., Perepelkin E. E. An analytical approach for Quasi-Linear Equation

in Secondary Order // Computational Methods in Applied Mathematics. — 2001. —
Vol. 1, issue 3. — Pp. 285–297.

3. Перепёлкин Е. Е., Полякова Р. В., Юдин И. П. Краевая задача для эллиптиче-
ских уравнений в области с «угловой точкой» // Вестник РУДН. Серия: Мате-
матика. Информатика. Физика. — 2014. — Т. 2. — С. 410–414.

4. Волков Е. А. Метод сеток и бесконечных доменов с кусочно-гладкой границей //
Доклалы академии наук СССР. — 1966. — Т. 168(3). — С. 978–981.

5. Шайдуров В. В. Численное решение задачи Дирихле в области с углами // Вы-
числительные методы в прикладной математике. — Новосибирск: Наука, 1982.

6. Peculiar Features of Numerical Modeling of the Modified Spectrometer Magnet Field /
I. P. Yudin, V. A. Panacik, E. E. Perepelkin, R. V. Polyakova, A. N. Petersky //
Computer Research and Modeling. — 2015. — Vol. 7, No 1. — Pp. 93–105.

7. Perepelkin E. et al. The ATLAS Experiment at the CERN Large Hadron Collider. —
Aad, JINST, 2008. — Vol. 3, 437 p.

8. Perepelkin E. et al. Commissioning of the Magnetic Field in the ATLAS Spectrome-
ter. — 2008. — Vol. 177–178, Pp. 265–266.

© Perepelkin E. E., Polyakova R. V., Kovalenko A. D., Sysoev P. N., Sadovnikova
M. B., Tarelkin A. A., Yudin I. P., 2017


