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Modern accelerator systems and detectors contain magnetic systems of complex geometrical
configuration. Design and optimization of the magnetic systems demands solving a nonlinear
boundary-value problem of magnetostatic.

The region in which the boundary-value problem is solved, consists of two sub-domains: a
domain of vacuum and a domain of ferromagnetic. In view of the complex geometrical config-
uration of magnetic systems, the ferromagnetic/vacuum boundary can be nonsmooth, i.e. it
contains a corner point near of which the boundary is formed by two smooth curves crossed in
a corner point at some angle.

Thereby, the solution of such a problem has to be found by numerical methods, a question
arises about the behavior of the boundary value problem solution around the angular point of
the ferromagnetic. This work shows that if the magnetic permeability function meets certain
requirements, the corresponding solution of the boundary value problem will have a limited
gradient. In this paper, an upper estimate of maximum possible growth of the magnetic field in
the corner domain is given.

In terms of this estimate, a method of condensing the differential mesh near the corner domain
is proposed. This work represents an algorithm of constructing an adaptive mesh in the domain
with a boundary corner point of ferromagnetic taking into account the character of behavior of
the solution of the boundary value problem. An example of calculating a model problem in the
domain containing a corner point is given.

Key words and phrases: magnet systems, mathematical modeling, boundary value
problem, elliptic equations, the behavior of solutions in the corner domain

1. Introduction

Many physics research facilities use magnetic systems of various configurations, e.g.,
a system of spectrometric magnets. It is very important to know with a good accu-
racy the distribution of the magnetic field generated by this system. The problem is
actually reduced to formulation of a magnetostatics problem of finding the distribution
of the magnetic field generated by the magnetic system under consideration. Since the
magnetic system has a complicated configuration, the solution of the problem is usually
sought using numerical methods. The domain in which the boundary value problem is
solved during calculations of a particular magnetic system often has a piecewise smooth
boundary. In this case, the solution of the problem or the derivative solutions can have
a singularity. Therefore, the numerical search for the solution requires the use of special
methods.

2. Formulation of the Boundary Value Problem

The problem to be formulated is the magnetostatics problem of the magnetic field
distribution in the corner domain of a ferromagnetic (see Fig. 1). From the Maxwell’s
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equations and boundary relations (no currents are supposed to be in the region under
consideration) it follows that

divé(p) =0, curlﬁ(p) =0, pe
ﬁ'(B)l*éQ):O, ﬁX(ﬁ1*ﬁ2>:0, pel,

where Q is the ferromagnetic and the vacuum region (on Figs. 1, 2 region Q; = Q, and

region 2=Q¢); I' is the boundary; and B and H are the magnetic field induction and
strength vectors, respectively.

Iy YA Ty

Q
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I

Figure 1. The Figure 2. The
corner domain angular sector

For the ferromagnetic region €, we can write B = pou(H)H, where H = w(H)

is the permeablhty, and g is the vacuum permeability. For the vacuum region Ql, we

have B = MOH Since there are no current sources in the region 2 = 3 U Q9, the field
is potential, and thus the following representation holds:

H(p) =—Vu(p), peQ, ulp) = {Ul(P), pEQ,

B Uz(p), pE QQ,

where u(p) is the scalar potential. The consequent formulation of the boundary value
problem is

div [ (|Vui(p)]) Vua(p)] =0, p €2, Aus(p) =0, pell,

Tal = o

u|p_ = U1|r+a M(|VU2(p)|)87 . ~ on .
+ —

uilp, = Vi3 uglp, = ¥,

where the function p(H) satisfies the conditions:

1. p(H) € CW [0, +00);
2. u(H) > 1 for H € [0,+00);
3

(H) 22t

Let us consider the function f(H), an analogue of the function u (H), for which
conditions 2 and 3 are replaced by i (H') = 1 for H' > Hy, where Hy is “large enough”.
In what follows we will assume that the solution to (1) is u € C(QUIT UT; UTy), and
thus it follows that 3Cy > 0Vp € QUT UT, Ul : |u(p)| < Co.
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3. On a Certain Boundary Value Problem

Before proceeding to the main statements of the paper, we consider an auxiliary
problem that is discussed in detail in [1], namely, the boundary value problem (see
Fig. 2)

div [¢Vu(p)] =0, pe,

ulp = ulp,,
* q1, D S Ql?
ou ou where ¢ =
P =qa| q2, p €,
on|p on|p
+ —_

L u‘pl = Uy; U|F2 = V,,
Q=0 UQ,, le{(T,¢)Z 0<r<rg, |d)’<’ﬂ'/4},
QQZ{(T7¢):O<T<’F07 |¢|>7T/4}7

where ¥; € CW (T;), i = 1,2, (see Fig. 2). Let us introduce the polar coordinate system.
The solution is sought by the method of separation of variables: u ~ R(r) - ®(¢). As a
result, we have ®' + \2® =0, r’R" +rR' — \2R = 0.

Thus, by virtue of boundedness of u(p) at the origin, the solution for R(r) will be

R(r) ~ r*, and for ®(¢p) there will be eigenfunctions divided into two groups, symmetric
about ¢ = 0 and antisymmetric about ¢ = 0. In the former case, the eigenfunctions take

the form
) axcos (A (7 — @), Il > /4.

Here the constant a) is determined from the boundary ratio for normal derivatives

o= foin (53] ()]

and the eigenvalues A can be determined using the continuity relation for the solution

u(r, ) at the boundary
3m
T\ sin (/\>
o cos ()\4) 4

©@ <A3I> sim(A])

Thus, either tg (A%) = 0 and hence A\ = 4n, or A = +XA; £ 4n, where \; is the

smallest root of the equation
—;% - [3 ~ tan? ()\%)]/[1 ~ 3tan? (A%)} 2)

The singularity is introduced in the solution by the series term r*1®,, (¢) at \; < 1.
From (2) it follows that

M=1 & ¢ =q. (3)

This means that if ¢; = g2, |Vu(p)| will be limited.
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4. Behavior of the Solution of the Boundary Value Problem
Let us consider boundary value problem (1) with the permeability function [, region
Q (see Fig. 1).

Statement 1.
dJK >0 V6>0 0<p(p,@Q)<é:|Vu(p)| <K,

where p (p, @) is the distance between the points p and @, and by boundedness on T is
meant boundedness on I'; and I'_.

Proof. We will prove it by contradiction. Let us assume that it is not true. Then
VK >0 30>0 0<p(p,Q)<d:|Vu(p)| > K.

Let us take K = max (Hy,4Cy/7), 0 < dg < §, then for p : 0 < p(p,Q) < g the
condition
Vulp)| 2 Hy = p(H)=1 (4)
should hold.
We introduce a polar coordinate system with the origin at the point Q. Let u (7, ¢)

be the solution of our boundary value problem satisfying condition (4). Then on I'y it
should satisfy the conditions

: (5)

ou
YR (507 ()0)
dp o—0—

ou
= 5 (507 SD)
=0+ agp

and by virtue of continuity of u (dg, )
(00, 0)| p—o4 = u (00, ¢)|,—o— = u(d0,0) (6)
should hold. Tt follows from (5) and (6) that

ou ou
3% (00,0) = % (90, )

ou
- % (607 SD)

Thus, putting

Ti6) = s (o), =12 G={ o0
7 = U; ) ) 1= 1,4 = — =
’ \1127 F27

f:{(507¢) O<¢< 27T}7
in the dp-vicinity of the point (), we obtain the boundary value problem
AUl (p) = 07 pE Ql? AUQ (p) = 07 pE QQ;
_dn
r, on

Ouy
on

(7)

5 u1|1“7 = u2|1“+? u|F:@a
r_

where U € C) (T). From (3) (and also from [1]) we find that (7) has no singularities,
ie., linb|Vu(p)| = a? +b? < 4Cy/7 = K, where a; and by are the Fourier series
p—

coefficients for the function u (p) at the boundary of T'. Consequently, we have arrived
at a contradiction, which proves our statement. 0
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Thus, it follows from the statement that the magnetic field is bounded in the corner
domain provided that the permeability function satisfies the conditions:

1) i (H) € CO[0, +00);
2) 3Hy >0 VH' > Hy : i (H') = 1.

Note an interesting fact. Let us solve boundary value problem (1) and let its solution
have unbounded |Vu|. This means that in the vicinity of the point @ the permeability
function p (|Vu|) will tend to unity. Since the number of figures in the mantissa is limited,
it will turn out that in a certain small vicinity of the point @ the function p (|Vul|) will
be equal to 1. That is, there arises boundary value problem (1) with the permeability
function i (H) that has bounded |Vu| and thus we get a contradiction. Consequently,
numerical calculations cannot “theoretically” yield a solution with the infinitely growing
|Vu|, and we will seek the solution of another boundary value problem, namely, problem
(1) with @ (H), where |Vu| is limited. But the solution of problem (1) with i (H) does
not coincide in the general case with the solution of initial problem (7) with p(H). It
is therefore necessary to use special methods for solving this problem. One of these
methods is considered in [2,3] for the solution of the equation div [u (|Vu|) Vu] = 0 in
the corner domain.

5. Estimation of the Magnetic Field Growth

Let us show that the magnetic field in the corner domain of a ferromagnetic satisfies
the condition

1
H(s) < Coln— 4w (s), (8)
/rS
where C is a constant; w (s) is a bounded function; and r; is the distance to the corner.
The integral formulation of the magnetostatic problem allows the magnetic field to be
represented as

(5) = fio (s) = V. [ (3 (), V¥ (s.)) v, ©)
Qp

where Hc is the field from the current sources; M is the ferromagnetic magnetization
1

or —Inrg, for the three-dimensional

TTsp 2m

and the two-dimensional case, respectively; and Qy is the ferromagnetic domain (see

Fig. 2: region €; = €, and region Qy = Q). The magnetization vector is defined

vector; the function W (s,p) is equal to

as M = pox (H)H = po (u(H) — 1) H, where g is a constant; x (H) is the magnetic
susceptibility; and p (H) is the permeability of the ferromagnetic. Given high fields

H A B
— th tati H) =14+ = —
( 00), the representation p (H) 4 =

are positive constants. Consequently, when H — oo, M = ‘]\Z ‘ is limited by a constant

H — oo is valid, where A and B

My = ppA. Let us consider the 2D case. From (9) we obtain

- - 1 . 7,
()= e () - -9, [ (310). 52 ) av,
Sp
Q2

Here the first term is limited, and we therefore estimate the second term
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w2 | M@| 1272 | MW 1
v, /(M() Tsp)dvp < 2/ Tsp’ ‘ Tsp| ’dUp < 8M0/702dvp.

4
sp Ts sp sp

s 2y Qy
We calculate the integral
1 1 1
/dep = / Td?)p + / Td?)p,
T Tso Teo
Qyp v Qr\vs

where vs = Qy N Ss (Q) is the angular sector at the vs corner point @ (see Fig. 2).
The integral over the domain Qf/vs will be limited, and we therefore consider only
the integral over the domain v

wo )
1 r,dr
—dv, = [ dp P2 =
r2 P P or2 492 — 2 1, cos
sp P s p's Psp
Qy 0 0

wo 1 d 5/"”3 d
tdt tdt Tp
Joo|f et [ et
14+t — 2t cos pgp 14t — 2t cos pgp Ts
0 0 1

Then we use the expression for the generating function

Z Pm (COS QOSP) tma |t‘ < 17
1
1+12—2tcospy, | +2
v v ZPm(COS(pSp)timil, lt] < 1,
m=0
and obtain
1 5 O ke m+k
—dv, = woln — PP PP ( ) 1) =
[ R S e (5 )
Qf mk: 0 +k:;£0
1
=Ciln— 4w (s),
Ts
where

wo
Om k. = /Pm (COS Sosp) Py (COS (Psp) d(Ppa
0

C is a constant, and wy (s) is a bounded function. Thus, the validity of expression (8)
is ascertained.

6. Method of Mesh Condensing in the Corner Domain

In [4,5] there are examples of constructing a differential mesh for some boundary value
problems in corner domains. The main idea is to condense the differential mesh or finite
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elements for obtaining an admissible problem approximation error. This error involves
integrals over elementary domains estimated by the quantities of the form C’hf l|lwll, >

where h; is the diameter of the i elementary domain or mesh cell; 5 is a positive number;
[ull ; is the norm of the function with the kth derivative in this domain; and C' is

a constant independent of all these factors. Then we can require, for example, that
quantities C’h;8 [ull) ; be identical in the domain under consideration. To this end, hf
can be decreased in inverse proportion to ||ul| r.; o1 approach to the singular points. We
demonstrate the validity of the following statement.

Let V (s) be the solution of the magnetostatic problem in the integral formulation
found by a numerical method and H (s) be the exact solution. Then the following
estimate is valid:

<k (crln®h+colnh+cs), (10)

-1,

where ¢, ¢o, and c3 are positive constants and A is the diameter of the domain D, which
is a differential grid cell containing the ferromagnetic corner.

By virtue of (9), the following expression for V (s) holds:

Vi(s)= Hc<s—VZ/< i )d (11)

SPJ'

. N
where Hj is the field in the cell Q;, j = 1...N; |J Q; = Qy; and Tsp; 18 the distance
j=1

from the point s to the point p; € €2;. We consider the difference

V- i) = 5.y <M (1)) i (). ) 0.
jlej

sp;

Since the quantity ’M’ < My is limited, it follows that ‘M (ﬁ]) - M (ﬁ (pﬂ)’ <
2My for 5 = 1...N. Thus, we obtain

N N
— = 8M0 8M0 8MO dv
V()= A s z / =Y [ o
=lo,05@) =!
As a result, using the estimate obtained above, we arrive at the expression

V(s)—ﬁ(s)]<021ni+w2(s). (12)

S

It remains to estimate Dy’ where the domain D is the S5 (@) — d-domain

of the corner point Q. Using (12), we obtain

. L2
L(D):/‘V(s)—H(S)‘ dv < h? (1 In®h+ coInh+c3) ,

N 112
|7 -4
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where h = 20, and ¢;, ¢g, and c3 are constants. The result corresponds to (10). Based
on the aforesaid and inequality (10), we propose a differential mesh condensing method

h1 Tm 2

1
n— dl’:do, /
X

Tm—1

In—| de =dy, zp—Tm_1="hm, m=12..., M.

Here dj is a constant; M is the number of partitions along the coordinate axis (OX
or OY) in the corner domain; h,, is the grid spacing; and z,, is the coordinate of the
grid node along the OX or OY axis (the origin of the coordinates is at the corner point),
lz| < 1.

7. Calculation of the Magnetic Field in the Corner Domain

In Section 5 we gave the upper estimate of the admissible magnetic field growth in
the corner domain of a ferromagnetic. In Section 6, based on this estimate, we proposed
a method of condensing the differential mesh in the corner domain. In this section we
present numerical calculations of a magnetic system using this method. It is evident
from the calculations that the above mesh condensing method substantially improves
the accuracy of the calculated magnetic field distribution. We considered a magnetic
system depicted in Fig. 2. The domain €2, corresponds to the vacuum, and the domain
Qy is filled with a ferromagnetic. A boundary value problem

0 0A, 0 O0A

9 9,92 _ Q;UQ, =0
0z Ox +8yv Oy 0. pelyu ’
0A 0A
Az = Az ) — - - )
o= Al v T B (13)
A,
Alyg=C, A, =—C, aa 0,
T ly=0,y1

corresponding to the formulation of the magnetostatic problem with respect to the vector
potential A, was solved in the domain under consideration. The function ¢ is defined
as ¥ = 1/u (B), where u (B) is the permeablhty of the ferromagnetic; B is the modulus

of the magnetic induction vector B = rot A; I'y is the interface; and C is a constant.
The efficiency of the differential mesh condensmg method described in Section 6 was
estimated by the following calculations:

Variant 1. The solution to problem (13) was found on a sequence of (10k) x (10k)
meshes, where k = 1,2,4,8,10,20,40; that is, 10 x 10, 20 x 20, ..., 400 x 400 meshes
were obtained. The mesh spacing in the corner domain Il was uniform.

Variant 2. Problem (13) was calculated on the same sequence of meshes at k =
1,2,4,8, but the mesh spacing in the domain IIy was chosen using the differential mesh
condensing method described in Section 6. In the domain Q /Il the mesh spacing was
not changed as compared with the previous variant. The number of node points in the
domain ITg was the same, and only their distribution was changed.

The results of the variant 1 calculations were taken to be a sort of reference because
the accuracy of the calculated solution was assumed to increase with increasing num-
ber of partitions, except probably for a particular corner domain. Then the results of
the variant 2 calculations were compared with the results of the variant 1 calculations.
Figures 3-6 shows distributions B, (z) at y = y; for different meshes. In all figures the
reference distribution B, (x) calculated on the 400 x 400 mesh is designated as trace 1.
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The plots of traces 2 and 3 are the distributions B,, (z) calculated by variants 1 and 2, re-
spectively. The distributions in Figs. 3-6 are calculated on the 10 x 10, 20 x 20, 400 x 400,
and 80 x 80 meshes, respectively. It is evident from Figs. 3 that the accuracy of the vari-
ant 2 calculations (nonuniform mesh) is substantially higher than that of the variant 1
calculations (uniform mesh). Thus, it follows that the proposed method of constructing
a differential mesh in the corner domain is worth using and yields results comparable in
accuracy with the results obtained only on meshes with the number of nodes in each axis
four to five times greater than in the initial mesh.An algorithm of thickening differen-
tial mesh near the corner point has been developed. It allows one to significantly reduce
the computation time and simultaneously to increase the accuracy of the solution of the
boundary value problem. Variant 1 — maximum of relative error is 11.085%; variant 2
— maximum of relative error is 1.091%.

B
“Br—_—
4+ - Trace 1l |
—— Trace 2
3.5 F Trace 3 -

S ———————
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 0.7 08 09 Y0 01 02 03 04 05 06 07 08 0.9
Figure 3. Distributions B, (z) at Figure 4. Distributions B, (z) at
y =y1. Mesh 10x10 y =y1. Mesh 20x20
e
4.5 - Tracel A
y —+ Trace 2
i 4r Trace 3 7
3.5
3
| 2.5 |
) 2
15
101 02 03 04 05 06 07 08 09 Y001 02 03 04 05 06 07 ol.gl 0.9
xr 4
Figure 5. Distributions By (z) at Figure 6. Distributions B, (z) at
y =1y1. Mesh 400x400 y = y1. Mesh 80x80

8. Results of Modeling of Some Magnetic Systems

The significance of numerical modeling at the investigating of magnetic systems is
defined by not only known dignities of computational experiment but also that the mea-
surement of magnetic field is labor-intensive and expensive problem. The process of the
mathematical modeling of magnetic systems (see Figs. 7 and 8), as the authors of this
work have presented, should be divided into two large stages.
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Figure 7. General view of
spectrometric magnet 1SP-40-4B Figure 8. Type of solenoidal magnet

8.1. Results of modeling magnetic systems SP-94 and 1SP-40-4B

In the experiment performed at the Veksler and Baldin Laboratory of High Energy
Physics, JINR, the SP-94 [6] magnet is used. It was necessary to select the configura-

+o0
tion of the core and the current coils such that the quantity [ B, (0,0,z)dz had the
maximum value. Fig. 9a presents the distribution of B, in the XOZ plane for this con-
figuration of the magnet SP = 94 (variant 1). First, the initial configuration (variant 1)

L
was calculated. Here [ B, (0,0,z)dz = 2.314, where L = 1.5 m is the dimension along
-L

the OZ axis of the region where the magnetic field was calculated for variant 1. Second,
the initial configuration (variant 2) was calculated. Fig. 9b presents the distribution
of B, in the XOZ plane for configuration of the magnet SP = 94 (variant 2). Here

L
f B, (0,0, z) dz = 2.987, which is 1.291 times greater than for the initial configuration
-L

in variant 1.

b L764 || 2.154

l\\\\\

|

175

0y

=
/I//// =

BY0 BY0 BY0

Figure 9. Distribution of B, for three configurations of the magnet SP-94

Two configurations of the magnet 1SP-40-4B NIS (variant 1, 2, respectively) for which
the numerical computations of the magnetic fields were performed, i.e., in fact, a nonlin-
ear inverse problem of magnetostatics were solved. The purpose of the simulation is to
find by a calculation method such a magnet geometry that the region of the homogene-
ity of the magnetic field would be essentially larger as compared to the existing magnet
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configuration. Fig. 10 present distributions of the components of the magnetic field for
our two variants of configurations of the magnet 1SP-40-4B in a 3D case. Clearly, for
variant 2 the distributions of the components got more smooth.

!;w ‘

J

i

f
I\
| ‘xﬂ,. i

Figure 10. Dependences By(z,0.3,z) for two configurations of the magnet,
current 1100 A

8.2. The Solenoid Type Magnetic Field Detector Modeling

Magnetic systems are very important parts [7,8]. To create the necessary configu-
ration of magnetic field, the repeated solution of nonlinear boundary value problem of
magnetostatics is needed. In the present work, we consider the problem of creation of
homogeneous map of magnetic system of solenoidal type (see Fig. 8). As a result of op-
timization, the geometric parameters of magnetic system were chosen in such a way so
as to get maximal size of the domain of homogeneity of the magnetic field.

Due to symmetry, only 1/24 part of the geometry with corresponding boundary condi-
tions is modeled. The calculations were performed (using two software products: TOSCA
and native MFC) by the method of finite elements on tetrahedral mesh with 5000000
elements.

In Figs. 11 and 12 the domains with the degrees of homogeneity of magnetic field are
of 0.1% and 0.5%, respectively. The black continuous line shows that the homogeneity
of 0.1% is needed. In Fig. 11, the scale of magnetic field has site from 0.99-1.001 T, in
Fig.12 from 0.998-1.002 T.

Map contours: 7495 Map contours: gi Z495
4 X

BMOD/0.499994 1~ BMOD),0.4999
1.001000E+000 1.005000E-+000, /
\/ i L
J i 1.5 2 2.5 0 0.5 1 1.5 2 2.5
-1 X T T -1 T T ‘XI

40. 0.5

' 0 0

9.990000E-001 9.950000E-001

Figure 11. Field homogeneity is +0.1% Figure 12. Field homogeneity is +0.5%
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9. Conclusions

1. The upper estimate for the admissible growth of the magnetic field H (p) in the
corner domain

1
H(p)<Coln7+w(p),
p

where Cj is a constant, w (p) is a bounded function, and 7, is the distance to the corner,
is asymptotically obtained for the case of u (H) — 1 when H — oc.

2. A method of condensing the differential mesh in the corner domain is proposed,
which appreciably improves the accuracy of the calculated solution.

3. The numerical modeling results are presented for the SP-94 magnet system in the
Delta—Sigma experiment performed within the Topical Plan of JINR on international
collaboration. Two-dimensional and three-dimensional modeling of the configuration of
the magnet core and current coils was performed to obtain the maximum value of the
integral

L
/ By (0,0,2)dz.
-L

4. By a numerical method a configuration of the magnet 1SP-40-4B VBLHEP, JINR
has been selected for which the width of the domain of the homogeneity of the magnetic
field has grown up from 0.5 m to 1.0 m, i.e., twice. This growth considerably increases
the accuracy of regenerating the pulses of decay particles in the physical reaction under
study (search for pentaquarks).

5. As a result of optimization, the geometric parameters of the solenoid type magnetic
field detector were chosen in such a way so as to get maximal size of the domain of
homogeneity of the magnetic field.
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CoBpeMeHHbIE YyCKOPUTEJIbHBIE CHCTEMbBI U JIETEKTOPHI COJAEPXKAT MATHUTHBIE CUCTEMBI CJIOXK-
HOI reoMeTpu4iecKoil KoHdurypamuu. [IpoekTupoBanue n onTuMu3anus MarHuTHBIX CUCTEM TPe-
OyeT pellleHrs HeJTMHEWHOM KPaeBoi 3a/1a9i MAarHUTOCTATUKH.

Ob6utacTb, B KOTOPO# pelraeTcs: Kpaepas 3a/1a9a, COCTOUT U3 JABYX 110/1001acTeil: 06/1acTh BaKy-
yMa u 06acTh peppoMarneTuka. V3-3a CIO2KHON T€OMETPUTIECKONH KOH(MUTYPAIINA MATHUTHBIX
CHCTEM TIpaHUIla paszesa cpell peppoMarHeTrK /BaKyyM MOXKET siBJISATbCS HEMVIAJKON, TO eCTh
COJIEPKATH YIVIOBYIO TOUKY, B OKPDECTHOCTH KOTOPOH I'DaHuIla 00pa3oBaHa JBYMs ITIAJKIMU KPU-
BBbIMH, IIE€PECEKAIOIUMUCA B YIVIOBOM TOYKE IIOJ HEKOTOPBIM YIJIOM.

B cBs13u ¢ Tem, uTO pereHure KpaeBoil 3aadH IIPUXOINTCH MCKATH UUCJICHHBIMU METOAMH,
BCTaeT BOIIPOC O IIOBEJEHUU PEIIEeHUs] B OKPECTHOCTH YIJIOBOII Touku deppomarnerura. [loka-
3aHO, 9TO €CJin (DYHKITHST MATHUTHON TPOHUIIAEMOCTH Y/IOBIETBOPSIET OMPEIECTEHHBIM YCIOBUIM,
TO COOTBETCTBYIOIIEE PeIlleHne KPaeBoil 3a/1a4u OYJeT UMeTh OrPAHUYIEHHBIN I'Da/INEHT.

JaeTcst BepXHsis OlleHKa JIOIMyCTUMOTO POCTA MATHUTHOT'O TOJIsi B OKPECTHOCTU YTIJIOBON TOYKH.
Ha ocHoBaHnM mOJTy<I€HHOM OIEHKM TPEJJIAraeTCsl METOJ, CTYIEHUsI PA3HOCTHON CETKHU BOIN3U
YIJIOBOW TOYKH, yIUTHIBAIOIINI XapaKTep IIOBEJEHUs PellleHus KpaeBoil 3amaun. [IpuBonarca
IIPUMEPHI PacdeTa MArHUTHBIX CUCTEM B OOJIACTU, COMEPIKAIIEN «YTJIOBYIO TOYKY ».

KiroueBble cjoBa: MarHuTHBIC CHUCTEMBbI, MaTeMaTUIeCKOEe MOJe/INpOBaHNEe, KpaeBasd 3a-
Ja4va, JIJTUINTUICCKUEe YPaBHEHNUA, IIOBEICHNE PDCIICHUA B yI‘J’IOBOfI TOYKEe
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