ON EXTERNAL INFLUENCES ON THE RADIOACTIVE DECAY RATE

Cover Page

Cite item

Abstract

The subject of this work is periods in time series of the radioactive decay fluctuations. The presence of such periods suggests the possibility of a certain external influence on the parameters of radioactive decay. The evolution of views on the possibility of such an influences are briefly reviewed. A number of stages are considered, each of which expresses a certain circle of ideas, which is realized in it. Experimental works typical for each such stage are considered. The article does not aim to review all works related to the issues discussed in it. This is, first of all, a presentation of ideas that reflect the author's views on the possible mechanisms of the occurrence of periods in the time series of the radioactive decay rate. The links provided in the work are rather illustrative.

About the authors

V. A Panchelyuga

Institute of Theoretical and Experimental Biophysics of RAS

Email: victor.panchelyuga@gmail.com
3 Institutskaya St., Pushchino, Moscow Region, 142290, Russian Federation

References

  1. Rutherford E. Radioactive Substances and Their Radiations. New York: Cambridge University Press, 1913.
  2. Rutherford S.E., Chadwick J., Ellis C. Radiations from Radioactive Substances. Cambridge University Press, 1930.
  3. Мухин К.Н. Экспериментальная ядерная физика. Кн. 1: Физика атомного ядра. Ч. 1: Свойства нуклонов, ядер и радиоактивных излучений. М.: Энергоатомиздат, 1993.
  4. Широков Ю.М., Юдин Н.П. Ядерная физика. М.: Наука, 1980.
  5. Ракобольская И.В. Ядерная физика. М.: МГУ, 1971.
  6. Methods of experimental physics: Nuclear physics. V. 8, Part B, Ed. by Luke C. L. Yuan and Chien-Shiung Wu. N.-Y. and London: Academic Press, 1963.
  7. Вентцель Е.С., Овчаров Л.А. Теория вероятностей и ее инженерные приложения. М.: Высшая школа, 2000.
  8. Либби В.Ф. Определение возраста по радиоуглероду // Изотопы в геологии. М., 1954.
  9. Титаева Н.А. Ядерная геохимия. М.: МГУ, 2000.
  10. Ишханов Б.С. Радиоактивность. М.: Университетская книга, 2011.
  11. Hensley W.K., Basset W.A., Huizenga J.R. Pressure Dependence of the Radioactive Decay Constant of Beryllium-7 // Science. 1973. 181. P. 1164-1165.
  12. Lin-gun Liu, Chih-An Huh. Effect of pressure on the decay rate of 7Be // Earth and Planetary Science Letters. 2000. 180. P. 163-167.
  13. Bainbridge Kenneth T., Goldhaber M., Wilson Elizabeth. Influence of the Chemical State on the Lifetime of a Nuclear Isomer, Tc99m // Physical Review. 1953. Vol. 90. No. 3. P. 430-439.
  14. Malliaris A.C., Kenneth T. Bainbridge Alteration of the Decay Constant of Te125m by Chemical Means // Physical Review. 1966. Vol. 149. No. 3. P. 958-964.
  15. Verma R.N., Emery G.T. Chemically induced change in nuclear decay rate as a tool for calibrating Fe57 isomer shifts // Physical Review B. 1974. Vol. 9. No. 9. P. 3666-3669.
  16. Bosch F., Faestermann T., Friese J. et al. Observation of bound-state b--decay of fully ionized 187Re: 187Re - 187Os cosmochronometry // Phys. Rev. Lett. 1996. V. 77. No. 26. P. 5190-5193.
  17. Don H. Byers, Robert Stump. Low-Temperature Influence on the Technetium-99m Lifetime // Physical Review. 1958. Vol. 112. No. 1. P. 77-79.
  18. Ohtsuki T., Ohno K., Morisato T., Mitsugashira T., Hirose K., Yuki H., Kasagi J. Radioactive Decay Speedup at T = 5 K: Electron-Capture Decay Rate of 7Be Encapsulated in C60 // Physical Review Letters. 2007. 98. 252501.
  19. Victor A. Erma Electron effects on barrier penetration // Phys. Rev. 1957. V. 105. No. 6. P. 1784-1787.
  20. Авдонина Е.Н., Лукьянов В.Б. Гелиогеофизические эффекты в результатах измерения радиоактивности методами жидкостного сцинтилляционного счета и статистика радиоактивного распада // Биофизика. 1995. Т. 40. Вып. 4. С. 876-881.
  21. Авдонина Е.Н., Лукьянов В.Б. // Деп. ВИНИТИ. № 2492-889 от 18.04.1989.
  22. Пархомов А.Г., Макляев Е.Ф. Исследование ритмов и флуктуаций при длительных измерениях радиоактивности, частоты кварцевых резонаторов, шума полупроводников, температуры и атмосферного давления // Физическая мысль России. 2004. № 1. С. 1-12.
  23. Пархомов А.Г. Космос. Земля. Человек. Новые грани науки. М.: Наука, 2009.
  24. Parkhomov A.G. Researches of alpha and beta radioactivity at long-term observations. URL: arXiv:1004.1761v1 [physics.gen-ph] (2010).
  25. Parkhomov A.G. Deviations from beta radioactivity exponential drop // J. Mod. Phys. 2011. 2:1310-1317.
  26. Sturrock P.A., Parkhomov A.G., Fischbach E., Jenkins J.H. Power Spectrum Analysis of LMSU Nuclear Decay-Rate Data // Astropart. Phys. 2012. 35. P. 755-758.
  27. Jenkins J.H. et al. Evidence for Correlations between Nuclear Decay Rates and Earth-Sun Distance. URL: arXiv:0808.3283v1 [astroph] (2008).
  28. Jenkins J.H., Fischbach E., Buncher J.B. et al. Evidence of correlations between nuclear decay rates and Earth-Sun distance // Astropart. Phys. 2009. 32. P. 42-46.
  29. Norman E.B., Browne E., Shugart H.A., Joshi T.H., Firestone R.B. Evidence against correlations between nuclear decay rates and Earth-Sun distance // Astropart. Phys. 2009. 31. P. 135-137.
  30. Pomme S., Stroh H., Paepen J. at al. Evidence against solar influence on nuclear decay constants // Physics Letters B. 2016. 761. P. 281-286.
  31. Шноль С.Э., Панчелюга В.А. Феномен макроскопических флуктуаций. Методика измерений и обработки экспериментальных данных // Мир измерений. 2007. № 6. С. 49-55.
  32. Панчелюга В.А., Панчелюга М.С. Фрактальная размерность и гистограммный метод: методика и некоторые предварительные результаты анализа шумоподобных временных рядов // Биофизика. 2013. Т. 58. Вып. 2. С. 377-384.
  33. Панчелюга В.А., Панчелюга М.С. Локальный фрактальный анализ шумоподобных временных рядов методом всех сочетаний // Гиперкомплексные числа в геометрии и физике. 2014. Т. 11. Вып. 1. № 21. С. 107-133.
  34. Шноль С.Э. О самопроизвольных синхронных переходах молекул актомиозина в растворе из одного состояния в другое // Вопр. мед. химии. 1958. Т. 4. Вып. 6. С. 443-454.
  35. Шноль С.Э. Синхронные обратимые изменения («конформационные колебания») препаратов мышечных белков: дис. … д.б.н. Пущино, 1969.
  36. Шноль С.Э. Синхронные в макрообъеме колебания АТФ-азной активности в концентрированных препаратах атомиозина // Колебательные процессы в биологических и химических системах. Пущино, 1971. С. 20-24.
  37. Белоусов Б.П. Периодически действующая реакция и ее механизм // Сб. рефератов по радиационной медицине за 1958 год. М.: Медгиз, 1959. С. 145-147.
  38. Жаботинский А.М. Периодический ход окисления малоновой кислоты в растворе (исследование кинетики реакции Белоусова) // Биофизика. 1964. Т. 9. С. 306-311.
  39. Шноль С.Э., Смирнова Н.А. Колебания концентрации SH-групп в растворах актомиозина, актина и миозина // Биофизика. 1964. Т. 9. Вып. 4. С. 532-534.
  40. Шноль С.Э., Четверикова Е.П., Рыбина В.В. Синхронные в макрообъеме конформационные колебания в препаратах белков актомиозинового комплекса и в растворах креатинкиназы // Молекулярная и клеточная биофизика: сб. М.: Наука, 1977. C. 79-92.
  41. Шноль С.Э., Намиот В.А., Жвирблис В.Е., Морозов В.Н., Темнов А.В., Морозова Т.Я. Возможная общность макроскопических флуктуаций скоростей биохимических и химических реакций, электрофоретической подвижности клеток и флуктуаций при измерениях радиоактивности, оптической активности и фликкерных шумов // Биофизика. 1983. Т. 28. Вып. 1. С. 153-157.
  42. Victor A. Panchelyuga, Valery A. Kolombet, Maria S. Panchelyuga and Simon E. Shnoll Experimental Investigations of the Existence of Local-Time effect on the Laboratory Scale and the Heterogeneity of Space-Time // Progress in Physics. V. 1. January. 2007. P. 64-69.
  43. Шноль С.Э. Космофизические факторы в случайных процессах. Стокгольм. Шведский физический архив, 2009.
  44. Dubovikov M.M., Starchenko N.V., Dubovikov M.S. Dimension of minimal cover and fractal analysis of time series // Physica A. 339. 2004. Р. 591-608.
  45. Панчелюга В.А., Панчелюга М.С. Локальный фрактальный анализ шумоподобных временных рядов методом всех сочетаний в диапазоне периодов 1-115 мин // Биофизика. 2015. Т. 60. Вып. 2. С. 395-410.
  46. Панчелюга В.А., Панчелюга М.С. Некоторые предварительные результаты локального фрактального анализа шумоподобных временных рядов методом всех сочетаний // Гиперкомплексные числа в геометрии и физике. 2014. Т. 11. Вып. 1. № 21. С. 134-156.
  47. Панчелюга В.А., Владимирский Б.М., Панчелюга М.С., Серая О.Ю. Исследование связи периодов минутного и часового диапазонов найденных в флуктуациях различных природных процессов с собственными колебаниями Земли и Солнца // Сборник трудов XX Всероссийской конференции «Солнечная и солнечно-земная физика - 2016». СанктПетербург. Пулково. 10-14 октября 2016 г. С. 247-250.
  48. Панчелюга В.А., Панчелюга М.С., Серая О.Ю. Предварительные результаты исследования внутрисуточных периодов во временных рядах флуктуаций скорости альфа-распада // Гиперкомплексные числа в геометрии и физике. 2016. Т. 13. Вып. 2. № 25. С. 211-216.
  49. Панчелюга В.А., Владимирский Б.М., Панчелюга М.С., Серая О.Ю., Панихин В.А. Выраженность периодов 50, 80 и 160 мин во временных рядах флуктуаций скорости альфараспада // Сборник трудов XXI Всероссийской конференции «Солнечная и солнечноземная физика - 2017». Санкт-Петербург. Пулково. 10-14 октября 2017 г. С. 261-264.
  50. Siparov S., Samodurov V., Laptev V. Origin of observed periodic components in astrophysical maser’s spectra // Monthly Notices of the Royal Astronomical Society. 2017. 467. P. 2813- 2819.
  51. Шноль С.Э., Коломбет В.А., Пожарский Э.В., Зенченко Т.А., Зверева И.М., Конрадов А.А. О реализации дискретных состояний в ходе флуктуаций в макроскопических процессах // УФН. 1998. 168 (10). С. 1129-1140.
  52. Masters T.G., Widmer R. Free oscillations: frequencies and attenuations. In Global Earth physics: a handbook of physical constants / Ed. by Thomas J. Ahrens. American Geophysical Union. 1995. P. 104-125.
  53. Петрова Л.Н. Сейсмогравитационные колебания Земли и возможный механизм из образования // Биофизика. 1992. Т. 37. Вып. 3. С. 508-516.
  54. Баркин Ю.В. Свободные трансляционные колебания системы «ядро-мантия» Земли и вариации природных процессов с часовыми периодами // Нелинейный мир. 2007. Т. 5. № 1-2. С.101-109.
  55. Панчелюга В.А., Тирас Х.П., Новиков К.Н., Панчелюга М.С., Нефёдова С.Е. О совпадении спектра периодов во временных рядах хемолюминесценции планарий со спектром периодов, найденным во временных рядах флуктуаций скорости альфа-распада // Материалы XV Международной конференции «Финслеровы обобщения теории относительности» (FERT-2019) / ред. Д.Г. Павлов, В.А. Панчелюга. Москва. 11-й формат. 2019. С. 36-41.
  56. Диатроптов М.Е., Панчелюга В.А., Панчелюга М.С. Динамика температуры тела у мелких млекопитающих и птиц в 10-120-минутном диапазоне периодов // Бюллетень экспериментальной биологии и медицины. 2020. Т. 169. № 6. С. 706-711.
  57. Диатроптов М.Е., Панчелюга В.А., Панчелюга М.С., Суров А. В. Околочасовые ритмы температуры тела у млекопитающих и птиц с разным уровнем обмена веществ // Доклады российской академии наук. Науки о жизни. 2020. Т. 494. № 1. C. 472-476.
  58. Ultradian rhythms in life processes / David Lloyd, Ernest L. Rossi (Eds.). Springer-Verlag. 1992.
  59. Панкратов А.К., Нарманский В.Я., Владимирский Б.М. Резонансные свойства Солнечной системы, солнечная активность и вопросы солнечно-земных связей. Симферополь: Гелиоритм, 1996.
  60. Панчелюга В.А., Панчелюга М.С. О совпадении спектра периодов в флуктуациях скорости альфа-распада со спектром вращательных периодов астероидов // Материалы XV Международной конференции «Финслеровы обобщения теории относительности» (FERT-2019) / ред. Д.Г. Павлов, В.А. Панчелюга. Москва. 11-й формат. 2019. C. 27-29.
  61. Молчанов А.М. О резонансной структуре солнечной системы // Современные проблемы небесной механики и астродинамики. М., 1973. C. 32-42.
  62. Пархомов А.Г. Ритмические и спорадические изменения скорости бета-распадов. Возможные причины // Журнал Формирующихся Направлений Науки. 2018. № 21-22 (6). C. 86-96.
  63. Пархомов А.Г. LENR как проявление слабых ядерных взаимодействий // Журнал формирующихся направлений науки. 2019. № 23-24(7). C. 6-8.
  64. Thomas S.A., Abdalla F.B., Lahav O. Upper Bound of 0.28eV on Neutrino Masses from the Largest Photometric Redshift Survey // Phys. Rev. Lett. 2010. 105(3):031301.
  65. Parkhomov A.G. Bursts of Count Rate of Beta-Radioactive Sources during Long-Term Measurement // International Journal of Pure and Applied Physics. 2005. 1(2):119-128.
  66. Козырев Н.А. Избранные труды. Л.: ЛГУ, 1991.
  67. Панчелюга В.А. Отзыв на статью А.Г. Пархомова «Ритмические и спорадические изменения скорости бета-распадов. Возможные причины» // Журнал формирующихся направлений науки. 2018. 21-22 (6). C. 99-106.
  68. Vysotskii V.I. Controlled spontaneous nuclear gamma-decay: Theory of controlled excited and radioactive nuclei gamma-decay // Physical Review C. 1998. 58 (1). P. 337-350.
  69. Vysotskii V.I., Kornilova A.A., Sorokin A.A., Komisarova V.A., Reiman S.I., Riasnii G.K. Direct Observation and Experimental Investigation of Controlled Gamma-Decay of Mössbauer Radioactive Isotopes by the Method of Delayed Gamma-Gamma Coincidence // Laser Physics. 2001. Vol. 11. No. 3. P. 1-6.
  70. Vysotskii V. I., Bugrov V. P., Kornilova A. A., Kuz’min R. N., Reiman S. I. The problem of gamma-laser and controlling of Mössbauer nuclei decay (theory and practice) // Hyperfine Interaction. 1997. 107. P. 277-281.
  71. Высоцкий В.И. О связи космологии и прикладной ядерной физики (Рецензия на статью А.Г. Пархомова «Ритмические и спорадические изменения скорости бета-распадов. Возможные причины») // Журнал Формирующихся Направлений Науки. 2018. № 21-22 (6). С. 97-98.
  72. Milián-Sánchez V., Scholkmann F., Fernández de Córdoba P., Mocholí-Salcedo A., Mocholí F., Iglesias-Martínez M.E., Castro-Palacio J.C., Kolombet V.A., Panchelyuga V.A., and Verdú G. Fluctuations in measured radioactive decay rates inside a modified Faraday cage: Correlations with space weather // Scientific Reports. 2020. 10. 8525. https://doi.org/10.1038/s41598-020-64497-0
  73. Shnoll S.E., Panchelyuga V.A. On the characteristic form of histograms appearing at the culmination of solar eclipse. URL: physics/0603029, 2006. 11 p.
  74. Shu Wen Zhou. Abnormal physical phenomena observed when the Sun, Moon and Earth are alined // 21st Century. Fall 1999. P. 55-61.
  75. Maurice Allais AeroSpace Eng. Sept.-Oct. L'Anisotropie de I'Espace (Paris: Editions Clement Juglar). 1959. 18. P. 46.
  76. Saxl E.W., Allen M. Solar Eclipse as “Seen” by a Torsional Pendulum // Phys. Rev. 1971. D3. 823.
  77. Zhou S.W., Huang B.J. Abnormalities of the Time Comparisons of Atomic Clocks during the Solar Eclipses // Il Nuovo Cimento. 1992. 15C. No 2. 133.
  78. Уруцкоев Л.И., Ликсонов В.И., Циноев В.Г. Экспериментальное обнаружение “странного” излучения и трансформации химических элементов // Прикладная физика. 2000. № 4. С. 83-100.
  79. Ивойлов Н.Г., Уруцкоев Л.И. Влияние «странного» излучения на мессбауэровские спектры Fe57 в металлических фольгах // Прикладная физика. 2004. № 5. С. 20-25.
  80. Ивойлов Н.Г., Бикчантаев М.М., Стребков О.А. Магнитно-стимулированный скачок активности b-распада Со57 // Прикладная физика. 2009. № 1. С. 36-40.
  81. Adamenko S.V., Selleri F., A. van der Merve. Controlled nucleosynthesis. Breakthroughs in experiment and theory. Springer Netherlands, 2007.
  82. Лошак Ж. О возможности легкого, лептонного магнитного монополя, способного влиять на слабые взаимодействия // Прикладная физика. 2003. № 3. С. 10-13.
  83. Лошак Ж. Теория легкого монополя: наблюдение производимых им эффектов в физике, химии, биологии и ядерной физике (слабые взаимодействия) // Прикладная физика. 2006. № 2. С. 5-10.
  84. Пархомов А.Г. LENR как проявление слабых ядерных взаимодействий // Журнал формирующихся направлений науки. 2019. № 23-24 (7). С. 6-8.
  85. Пархомов А.Г. Нейтрино малых энергий как причина аномалий в бета-распадах и холодных ядерных трансмутаций // Метафизика. 2020. № 4. С. 16-66.
  86. Панчелюга В.А. Детектор Смирнова: регистрация воздействий от удаленных астрофизических объектов // Метафизика. 2012. № 2 (4). С. 67-80.
  87. Panchelyuga V.A., Shnoll S.E. Experimental investigation of spinning massive body influence on fine structure of distribution functions of alpha-decay rate fluctuations // physics/0606173. 2006. 16 p.
  88. Панчелюга В.А., Шноль С.Э. Экспериментальное исследование влияния быстро вращающегося массивного тела на форму функций распределения амплитуд флуктуаций скорости a-распада // Гиперкомплексные числа в геометрии и физике. 2006. 1 (5). Vol. 3. С. 102-115.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies