.ﬁ BectHuk PY[QH. Cepus: MEAULIUHA 2023;27(4)
F' RUDN Journal of MEDICINE. ISSN 2313-0245 (Print). ISSN 2313-0261 (Online) http://journals.rudn.ru/medicine

DOI: 10.22363/2313-0245-2023-27-4-459-469
EDN: ITZWHG

REVIEW
OB30PHAA CTATbA

Experimental models of tumor growth in soft tissue sarcomas
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Abstract. Soft tissue sarcomas are rare tumors (about 1 % of all malignant neoplasms) and include more than 70 histological
subtypes, the pathogenetic features of which remain unclear. This is largely due to both quantity and volume of clinical material
and high heterogeneity of the disease. Given the rarity and heterogeneity of each individual subtype of soft tissue sarcoma, there
is an urgent need to develop universal model systems to understand the molecular changes that determine tumor biology. Such
systems include CDX models (cell line-derived xenograft), created from cell lines, PDX (patient-derived xenograft), obtained
from primary tumor/metastasis cells, both a whole fragment of surgical material and from a cell suspension; humanized animals
containing various human immune cells, and GEM (genetically engineered mouse) models, which are created through transfection
of genetic changes characteristic of different subtypes of soft tissue sarcomas. To create these systems, not only widely available
mouse models are used, but also other animals, such as fish (Danio rerio), rats, pigs, and dogs. Another important goal of using
animal models is to screen the effectiveness of modern drugs. To date, treatment of various subtypes of soft tissue sarcomas is
based on standard protocols of chemotherapy (doxorubicin, epirubicin, dacarbazine, ifosfamide) and surgical resection. In the
case of inoperable forms or late stages of soft tissue sarcomas, animal models are a potential tool in predicting the effectiveness
of therapy and personalized selection of treatment regimens. In this regard, studies of the mechanisms of targeted action on
specific molecules and the use of humanized animals for the development of new approaches to immunotherapy are of particular
relevance. The current review discusses animal model systems of the three most common types of soft tissue sarcomas:
liposarcomas, undifferentiated pleomorphic and synovial sarcomas, as well as the use of these models to find new therapeutic
solutions. Conclusion. Currently, PDX and GEM models are widely used to identify molecules and signaling pathways involved
in the development of sarcomas, identify tumor-initiating cells, and assess the chemoresistance of known drugs and new drugs
at the level of the entire tumor ecosystem. However, the key problems of animal models of soft tissue sarcomas remain changes
in their composition and phenotype compared to the original tumor, poor survival of surgical material, and lack of cellular
immunity in immunocompetent models, high cost, and the length of time it takes to create and maintain the model. A solution
to one of the problems may be the use of humanized animals with PDX, which implies the presence in the model of immune,
stromal and tumor components that are as close as possible to the human body.
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Introduction

Sarcoma is a rare tissue disease of mesenchymal
origin that forms in bones, adipose tissue, joints and
muscles and is divided into two main groups: soft
tissue sarcomas (STS) (more than 70 types) and bone
sarcomas (osteosarcoma, chondrosarcoma and Ewing
sarcoma) [1]. The biology of sarcomas remains poorly
understood due to high heterogeneity, different origins
and histology, but a common feature is a poor prognosis
in patients with advanced disease [2].

Given the rarity of each individual subtype of
STS and the heterogeneity of the disease, there is an
urgent need to develop model systems to understand
the molecular changes that determine tumor biology,
diagnosis, prognosis and the effectiveness of disease
therapy. However, the limited number of model systems
available in oncology makes the selection of suitable
models even more challenging. Well-known mouse
models are successfully used in preclinical studies of
new therapeutic agents and selection of therapy for
various oncological diseases [3—9]. Therefore, it is
advisable to use these models to study various subtypes
of sarcomas as well. In addition to the widely available
mouse models, other animals, such as Danio rerio
fish, rats, pigs and dogs, can serve as platforms for
testing hypotheses about genetic factors contributing
to the initiation and/or progression of cancer and, to
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a sufficient extent, reflect intertumor heterogeneity
[10—-13]. Thus, despite high heterogeneity and low
incidence of STS, in recent decades various biological
systems have been developed to model the disease in
order to identify pathogenetically significant signaling
pathways, mutations and markers and to develop new
methods of antitumor therapy.

STS in vivo models

Information on the population composition of
STS is mainly obtained from in vitro studies [14, 15],
which use various cell lines: primary, immortalized and
3D cultures [16—-18]. However, it is well known that
when cells adapt to artificial culture conditions, they
proliferate faster than parental tumor cells, acquiring
new phenotypic characteristics that change their
characteristics and therapeutic response [14]. Therefore,
it is more expedient to study tumor cells biology and
evaluate treatment effectiveness in a living organism.

Modeling a tumor disease in vivo involves methods
of engrafting tumor cells into laboratory animals. Such
models are divided into 2 types: «cell line-derived
xenograft» (CDX)— a xenograft obtained from a cell
line, and «patient-derived xenograft» (PDX) —a model
obtained from primary tumor/metastasis cells. Both
models are representative and predictive for basic and
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translational research [19, 20]. Although CDX is still the
most commonly used model due to its wide availability
and ease of use, PDX is the most effective in terms of
translational potential.

Another approach to modeling sarcomas in vivo,
when tumor cell transplantation is not necessary, is to
induce de novo sarcomagenesis in immunocompetent
mice. Such environmentally induced (EIM) and
genetically engineered mouse (GEM) models are
applicable to specific subtypes of STS, but their
development is complex and time-consuming. EIM
models are obtained by exposure to various physical
factors (for example, intramuscular injection of
cardiotoxin and barium chloride), while GEM models
are created through transfection of genetic changes
characteristic of sarcomas [21, 22]. These model
systems have made it possible to expand knowledge
about oncogenic, tumor suppressor and other signaling
pathways associated with the development of sarcomas.

Experimental models of liposarcomas

Liposarcomas are tumors of adipose tissue and are
divided into several subtypes, among which the common
ones are well-differentiated and dedifferentiated
liposarcomas. The diagnosis of each subtype is based
on anatomical location, clinical presentation and
histology, and is characterized by a distinctive set of
genetic features [23, 24]. However, well-differentiated
and dedifferentiated liposarcoma may represent the same
subtype, since both are associated with amplification
in the chromosomal region 12q13-15, which causes
overexpression of the MDM?2 and CDK4 genes [25].

A well-differentiated liposarcoma has a low
incidence of metastasis and indolent course and can be
considered a low-grade tumor, while other subtypes of
liposarcoma demonstrate a high metastatic potential [25].
Liposarcomas vary in location, but most often they are
observed in the retroperitoneum. This pattern facilitates
modeling in vivo, since the introduction of tumor cells into
the abdominal cavity is a routine method for obtaining
intraperitoneal tumors [26].

Typically, when modeling liposarcomas from
the primary tumor, samples are dissociated into
a homogeneous cell suspension for the purpose
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of injection into immunocompromised mice [27].
The immunocompetent mouse model (nonobese
diabetic/severe combined immunodeficiency,
NOD/SCID) has a weakened immune system and is
considered the most effective for xenotransplantation.
The tumor suspension can be administered
subcutaneously (ectopic xenograft) or into a specific
organ (heterotopic model). Several cases of obtaining
PDX models have been described, including for
selecting individual treatment for patients with
liposarcoma. The development of such models usually
takes a long time, up to six months, and up to 75 % of
implanted tumors successfully assimilate in animal
organisms [28]. PDX models of liposarcomas make
it possible to select personalized therapy, achieving
high efficiency [28]. In addition, there are works where
CDX models of liposarcomas were used to test the
effectiveness of doxorubicin and cisplatin to predict
therapeutic response in cancer patients [25].

However, the limited number of suitable animal
systems, high heterogeneity and low incidence of
liposarcomas are the main obstacles to obtaining highly
effective in vivo models of this disease.

Experimental models of undifferentiated
pleomorphic sarcomas

Undifferentiated pleomorphic sarcomas are the
most common type and are classified as tumors of
indeterminate differentiation, predominantly located
in the upper and lower extremities of the body [29].
Surgical intervention leading to disability remains
the only radical treatment method for this category
of patients due to low incidence of subtypes of
undifferentiated pleomorphic sarcoma and lack of large
clinical trials. However, disorders of the TP53, RB1,
PTEN, CDKN2A and ATRX genes have been described
as associated with the development of this type of
sarcoma and can be considered potential therapeutic
targets [30—-32].

The development of animal models of
undifferentiated pleomorphic sarcomas is complicated
by problems with the availability and quantity of
clinical material [33]. However, in recent decades,
primary undifferentiated pleomorphic sarcoma cell
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lines and corresponding ectopic mouse models
have been obtained [34, 35]. These model systems
allowed establishing differences in the effectiveness of
doxorubicin in vivo and in vitro, thereby emphasizing
the need to test chemotherapeutic agents not only in
cell lines, but also in laboratory animals [34].

Another study showed that models of
undifferentiated pleomorphic sarcoma obtained in
immunodeficient mice from primary lines were similar
in histological characteristics and protein expression
of Ki-67 and CD31 to patients’ tumor tissues [36].
However, the clonal composition of tumors in vivo and
patients, as well as their transcriptomic features were
different, which caused differences in the effectiveness
of doxorubicin, gemcitabine and cisplatin [36].

In addition to the use of tumor cells and primary cell
lines, there are examples of subcutaneous implantation
of an intact tumor fragment and the formation of viable
xenografts that are similar to the original tumors in
terms of the content of necrotic cells [37]. Such models
are easily reproducible, in contrast to injection of a cell
suspension of the primary tumor.

GEM models with pathogenetically significant
molecular abnormalities make it possible to evaluate
the growth and development of tumors under natural
conditions in the body of an experimental animal. For
instance, a model of undifferentiated pleomorphic
sarcoma using GEM (red fluorescent protein, RFP+)
and the introduction of a surgical tumor fragment has
become a platform for non-invasive imaging of tumor
growth, migration, cell invasion and screening of
drug efficacy [38]. A mouse model of undifferentiated
pleomorphic sarcoma has also been obtained using
the Cre-loxP and CRISPR-Cas9 genome editing
systems. The introduction of adenoviral vectors led
to the spontaneous formation of tumors similar in
histology, morphology and mutational profile [39]. The
development of such models is less expensive both time
and money-wise compared to traditional GEM models.

Thus, experimental models of undifferentiated
pleomorphic sarcoma, mainly GEM, have allowed the
development of new therapeutic strategies, including
organ-preserving treatments to improve the quality of
life of patients.
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Experimental models of synovial sarcoma

Synovial sarcoma accounts for 5 % to 10 %
of all STS, is characterized by aggressive growth
and is associated with the t(X,18) chromosomal
translocation encoding the chimeric SS18-SSX gene
[40, 41]. Although some synovial sarcomas develop
near joints, the tumor cells are morphologically
dissimilar to the synovium, and the tumor precursor
cell remains unknown to date [42]. Surgical resection
with or without radiation and/or doxorubicin-based
chemotherapy is the mainstay of treatment for patients
with synovial sarcoma [43]. The insufficiency of
treatment options justifies the relevance of studying
the molecular mechanisms of this type of sarcoma and
developing new therapeutic solutions.

Major studies of the pathogenesis of synovial
sarcoma, like most other tumors, are based on
the analysis of cell lines, primary tumor cells and
xenografts. A CDX model of synovial sarcoma has
been developed using the SW-982 cell line, which
is similar to the primary tumor in histological and
immunohistochemical terms [44]. There are PDX
models of synovial sarcoma, including those used to
test the effectiveness of new treatment methods [45—
47]. Recently developed GEM models have
significantly expanded the scope of preclinical studies
of synovial sarcoma (Fig.). Although labor-intensive
and expensive, GEM models based on site-specific
recombination technology are fundamental tools
for understanding the pathogenesis and molecular
biology of cancer [48]. Thus, it has been shown that
high expression of the chimeric gene SYT-SSX2 is
associated with the development of synovial sarcoma,
and myoblasts are potential precursors of tumor cells
[49, 50]. In another GEM model, after injection of
the TAT-CRE protein (Cre-loxP genetic engineering
system), the role of PTEN gene alterations in
enhancing tumor growth and metastasis of synovial
sarcoma was proven [51], which is associated with
low patient survival rates [52]. However, despite these
advances, the high heterogeneity of synovial sarcoma
is the main obstacle to the creation of a universal
model system (Fig.).
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Fig. Different methods for modeling synovial sarcoma in vivo

Application of in vivo models in therapy

One of the primary objectives of animal models
is to screen for the effectiveness of drugs. To date,
treatment of various subtypes of STS is based on
standard protocols of chemotherapy (doxorubicin,
epirubicin, dacarbazine, ifosfamide), a combination
of anthracyclines with ifosfamide and/or dacarbazine,
and surgical resection [53, 54].

Through in vivo models, drug efficacy is screened
and new therapeutic approaches are actively developed.
Among such approaches, targeted drugs occupy a special
place. PDX models of undifferentiated pleomorphic
sarcoma allow testing potential agents aimed at different
targets, as the xenograft mimics the disease pattern,
including invasive growth into surrounding tissues,
metastasis, and relapse formation after surgery [55]. The
targeted drug temozolomide demonstrated high efficacy in
orthotopic PDX models of undifferentiated pleomorphic
sarcoma. The combination of gemcitabine/docetaxel and
pazopanib was effective in three of the orthotopic PDX
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models. At the same time, the sensitivity of each subtype
of undifferentiated pleomorphic sarcoma to drugs was
individual for each of the models. In other words, each
subtype of sarcoma was characterized by its own pattern
of drug sensitivity [56, 57].

An orthotopic PDX model, derived from a primary
tumor in athymic nude mice and mimicking doxorubicin
resistance, has also been developed for dedifferentiated
liposarcoma. This model shows that metabolic exposure
to recombinant methioninase (rMETase) in combination
with palbociclib (a CDK4 inhibitor) leads to tumor
regression [57]. In addition, in synovial sarcoma,
palbociclib inhibits Rb phosphorylation, causing cell
cycle arrest in the G1 phase and blocking proliferation.
Targeting synovial sarcoma at molecular level is
especially relevant, since, unlike most sarcomas that
recur and metastasize to lymph nodes, synovial sarcomas
are characterized by early distant metastasis to the lungs
[58]. For instance, in models of synovial sarcoma, it
has been shown that deficiency of INI-1 (integrase
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interactor 1) causes the EZH2 protein (enhancer of zeste
homolog 2) to acquire oncogenic driver properties and
the ability to specifically bind to the chimeric gene SS18-
SSX1 [47]. Thus, targeting EZH2, for example with the
drug tazemetostat, is effective in treating patients with
synovial sarcoma and other types of cancer [47, 59].

The development of advanced humanized animal
models is necessary to study the cellular and molecular
factors involved in the immune antitumor response and
to develop new immunotherapeutic tools [60]. One of
the main directions in immunotherapy is the blockade
of immune checkpoints for programmed cell death:
PD-1 (programmed cell death protein 1) and PD-L1
(programmed cell death ligand 1) [61]. Dedifferentiated
liposarcoma xenografted NOD mice treated with
pembrolizumab (anti-PD-1) demonstrated immune
cell infiltration and subsequent tumor regression [60].
Pembrolizumab was also effective in clinical trials
in the treatment of synovial sarcoma, DDL and
undifferentiated pleomorphic sarcoma [62]. Another
example of immunotherapy for synovial sarcoma is the
use of ipilimumab, which targets the NY-ESO-1 protein
(CTAG1B, cancer/testis antigen 1B) [63]. However,
the immunological features of the microenvironment
of various types of STS remain poorly understood, and
further studies, including in vivo models, will identify
new immunotherapeutic targets.

When discussing the development of new
approaches to STS treatment, one cannot ignore
physical methods of influencing the tumor. One of
them is the ablation method, a non-invasive option
based on high-intensity focused ultrasound that allows
tissue to be destroyed thermally or mechanically into an
acellular homogenate [64]. The safety and effectiveness
of one ablative method (histotripsy) for the removal
of superficial STS tumors has been demonstrated in
large animal models including cats and dogs [64, 65].
Treatment and subsequent tumor resection showed that
histotripsy was well tolerated and very effective in dogs
with spontaneous STS. It is assumed that histotripsy, in
addition to physical destruction, can change the tumor
microenvironment, releasing tumor antigens and leading
to tumor infiltration by immune cells, thereby causing
a local and systemic immune response [65]. Another
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method is cryoablation, where the pain is reduced
through the use of low temperatures [66].

Despite the wide capabilities of in vivo models,
they have serious disadvantages, including difficulty of
obtaining, high cost, and the impossibility of recreating
the structure and cellular composition of the original
tumor. The latter likely explains the discrepancies in drug
efficacy obtained between in vivo models and patients.
For example, the drug olaratumab (a monoclonal antibody
against PDGF receptor alpha) showed antitumor activity
in PDX models, but was low effective in clinical trials
for metastatic sarcoma [67, 68].

Thus, studies of therapeutic approaches in in vivo
models expand the possibilities for finding new methods
of treating aggressive and heterogeneous forms of
STS. Given the low effectiveness of monochemotherapy
in cases of inoperable forms or late stages of STS,
animal models are a potential tool in predicting the
effectiveness of therapy and selecting other treatment
methods.

Conclusion

Various animal models are indispensable tools
in oncology, allowing for research to identify the
molecular and cellular mechanisms of the formation
and progression of malignancies, identify targets,
develop drugs and therapeutic tools and test their
effectiveness. Especially, these models are relevant
for STS, characterized by high aggressiveness and
heterogeneity, as well as low frequency of occurrence,
which complicates the collection of a representative
amount of clinical material. Currently, PDX and GEM
models are widely used to identify molecules and
signaling pathways involved in the development of
sarcomas, identify tumor-initiating cells, and assess
the chemoresistance of known drugs and new drugs at
the level of the entire tumor ecosystem. However, the
key problems of STS animal models remain changes
in their composition and phenotype compared to the
original tumor, poor survival of surgical material, lack
of cellular immunity in immunocompetent models,
high cost, and the length of time it takes to create and
maintain the model. A solution to one of the problems
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may be the use of humanized animals with PDX, which
implies the presence in the model of immune, stromal
and tumor components that are as close as possible to
the human body. However, developing such models
is an even more expensive and time-consuming task.
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3KCﬂepMMeHTaﬂbele MoAesin onyxosieBoro pocrta
npu cCapKoMax MArkux TKaHeM

M.C. TperbsikoBa®? g, Y.A. BokoBa®? ",

A.A. KopobeiinukoBa®? ', E.B. /leaucoB’?

! HayuHo-1cceioBaTeIbCKU MHCTUTYT MOJIEKYJISIPHON U KJIETOUHON Me/IUIMHBI, POCCUIICKUI yHUBEPCUTET APY>KObI
HapoJIoB, 2. Mockea, Pocculickas @edepayus
2 HayuHO-MCC/Ie/]OBaTeNbCKUI MHCTUTYT OHKOIOTMH, TOMCKHI HallMOHA/IbHBIN UCC/IeI0BATeIbCKUI METUIIMHCKHUIM TIEHTP,
2. Tomck, Poccutickas ®edepayus
P trremar@mail.ru

AnHoTtanusa. CapkoMbl MSTKHX TKaHeH MpeJiCTaB/sItoT coboit pekue oryxonu (0koso 1 % oT Bcex 3/10KaueCcTBeHHBIX
HOB00Opa30BaHuii) ¥ BK/IIOUalOT 6osiee 70 TMCTOIOTHUECKUX TIOTHUIIOB, TIATOTeHeTHUeCKHe 0COOEHHOCTH KOTOPBIX OCTAkOTCs
10 KOHIIa HEeBBISICHEHHBIMU. BO MHOTOM 3TO CBf13aHO Kak C KOJIMUeCTBOM M 00beMOM K/IMHUYECKOTO MaTepHara, Tak U C BbICOKOU
reTeporeHHOCThIO 3a00/1eBaHus. YUUTHIBAsK PEKOCTh K&XK/OTO OTAEILHOTO TIOATHIIA CAPKOM MSITKUX TKaHEeH U reTeporeHHOCTb,
OCTPO CTOWT BOTIPOC O HEOOXOAUMOCTH pa3pabOTKU YHUBePCATbHBIX MO/E/IbHBIX CHCTeM /IJIsl TOHUMaHUs MOJIEKY/ISIPHBIX
V3MeHeHUH, onpeessitoux ouonoruto onyxosnu. K rakum cucremam otHocsit CDX-mogenu (cell line-derived xenograft),
CO3/1aHHbBIe U3 KJ1eTouHbIX iMHUH, PDX (patient-derived xenograft), nmomyueHHble U3 KIIeTOK MEPBUYHON OMyXO0JIM/MeTacTasa Kak
Liesioro ¢parMeHTa OrepaLOHHOT0 MaTepyasa, Tak ¥ U3 KJIETOUHOM CyCIieH3UH; T'YMaHU3MPOBaHHbIe )KUBOTHbIE, COZlepiKalliyie
pas/iuuHble YeaoBeueckrie IMMYHHbIe K1eTKd, 1 GEM (reHHO-MoAW(HULIMPOBaHHbIE MOZeNN), KOTOphIe CO3[at0TCsl T0CPEeCTBOM
TpaHceKI[UU reHeTUYeCKUX U3MeHeHUH, XapaKTepHBIX /71 Pa3/IMUHbIX TIOATUIIOB CApKOM MSTKUX TKaHel. [l co3faHus Tect
CHCTEM HCIIONB3YIOTCS He TOJTBKO ITUPOKO/IOCTYTIHBIE MBILIMHBIE MOJIEJH, HO U /IPYTHe KUBOTHBIE, TaKWe Kak pbIObl Danio rerio,
KPBICBI, CBUHBY M cO0aKu. JIpyroii Ba)KHOU 3a/jaueii IpUMeHeHUs! )KUBOTHBIX MOJieJiel SIBJISIeTCsl CKPUHUHT 3 QeKTHBHOCTH
COBPEMEHHBIX JIeKapCTBEHHBIX NpernapaToB. Ha cerofHsAIHNI feHb JieueHre Pa3IUyHbIX MOATUIIOB CApKOM MSTKUX TKaHeu
OCHOBAaHO Ha CTaH/IapPTHBIX MMPOTOKOJIAX XMMHUOTeparuu (JoKcopyOuryH, srupyounvH, aakapbas3vH, udocdamu) u XUpypru-
YyecKol pe3ekiuu. B ciyuae HeorlepabenbHBIX YOPM UK TO3HUX CTa/IVH CAPKOM MSATKHMX TKaHel )KMBOTHbIE MO/Ie/! SIBJISTFOTCS
TOTeHLMaIbHbIM MHCTPYMEHTOM B TNpeZCcKa3aHry 3Q(eKTUBHOCTH Tepanuy U MepCoHaTU3UPOBaHHOTO TI0/100pa CXeM JIeueHusl.
B 3TOM 1/1aHe 0C00y10 aKTyaIbHOCTh MPE/ICTAB/ISIFOT UCC/Ie[OBAaHNST MEXaHU3MOB TapreTHOTO BO3/IECTBYS Ha CrieluduryecKue
MOJIeKy/ISIpHbIe MUILIEHU U MPUMeHeHHe T'YMaHW3MPOBAHHBIX KMBOTHBIX [171s1 Pa3pabOTKH HOBBIX TIOZIX0/J0B UMMYHOTEDAITHH.
B manHOM 0030pe 00Cy/[af0TCsl )KUBOTHBIE MOZIe/TbHbIe CHCTEMBI TPeX Harboree pacripoCTpaHeHHBIX TUIIOB CAaPKOM MSTKHX
TKaHel: IUII0CapKoM, He/iu(epeHL[POBaHHBIX [71eOMOP(HBIX ¥ CHHOBUAIBHBIX CAPKOM, a TaK)Ke IIpUMeHeHNe JaHHbIX Mofernei
JIJIs1 TIOMCKa HOBBIX TepareBTUUeCKUX pellieHui. Bbigoobl. B HacTosiilee BpeMsi HaxoAsT 1iMpokoe npuMeHeHre PDX u GEM
MOZIeJH, TI03BOJISIIOLIME H/IeHTU(ULIPOBaTh MOIEKY/Ibl M CUTHa/bHbIe Iy TH, BOB/IEYeHHbIe B Pa3BUTHE CApPKOM, BBISB/ISITh OITyXO0/Ib-
VHULIMMPYIOLIME K/IeTKH, OL|eHUBAaTh XMMHOPE3UCTEHTHOCTh M3BECTHBIX IpPerapaTtoB U HOBBIX JIeKapCTBEHHBIX CPe/ICTB Ha YPOBHE
L[eJIOCTHOH OIyX0JIeBOH SKocucTeMbl. TeM He MeHee, K/TFOUeBBIMU TIPO0JIeMaMU >)KUBOTHBIX MO/ie/iell CapKOMbl MATKUX TKaHel
OCTal0TCs U3MEeHeHHe UX COCTaBa M (heHOTHIIA 110 CPABHEHUIO C UCXOHOW OIMYyX0JIbI0, T/I0Xast IPM)KMBAaeMOCThb OIepaLjiOHHOTO
Marepuasa, OTCyTCTBHE KJIeTOYHOT0O UIMMYHUTETa B IMMYHOKOMIIETeHTHBIX MOJIe/IsIX, IOPOrOBU3HA, J/IUTEIbHOCTb CO3/laHus
Y Toj/iepyKaHus Mogiey. PelieHrieM ofHOM 13 Ipo6/1eM MOKeT CTaTh UCIO/Ib30BaHHE I'YMaHU3UPOBaHHBIX XKUBOTHBIX € PDX,
YTO M0ZIpa3yMeBaeT HaJIM4Ye B MO/Ie/T IMMYHHOT'O, CTPOMAJIbHOTO U OITyXO0JIEBOTO KOMITOHEHTOB, MAKCUMaJIbHO TIPUO/IM)KEHHBIX
K Ye/IoBeyeCKOMY OpraHU3My.

KiroueBble c/10Ba: CapKOMbI MITKUX TKaHew, in vivo Mofieny, Tepanus

HNudopmanus o puHancupoBaHuu. Pabota BbinosiHeHa npyu pUHAHCOBOM ropep>kke Poccubickoro HayuHoro (oHza (MpoekT
Ne 23-65-00003)
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