ОЦЕНКА ЭФФЕКТИВНОСТИ СОЛЬВЕНТ-ДЕТЕРГЕНТНОЙ СТАДИИ ИНАКТИВАЦИИ ВИРУСОВ ПРИ ПРОИЗВОДСТВЕ ВНУТРИВЕННОГО ИММУНОГЛОБУЛИНА G ЧЕЛОВЕКА НА МОДЕЛЬНОМ ВИРУСЕ ДИАРЕИ — БОЛЕЗНИ СЛИЗИСТЫХ КРУПНОГО РОГАТОГО СКОТА

А.В. Казьянин

Кафедра промышленной технологии лекарств с курсом биотехнологии Пермская государственная фармацевтическая академия ул. Полевая, 2, Пермь, Россия, 614990

Н.В. Зубкова

Цех диагностических препаратов Нижегородский филиал «НПО «Микроген» Минздравсоцразвития России ул. Грузинская, 44, Нижний Новгород, Россия, 603000

И.В. Красильников, А.К. Лобастова

ФГУП «НПО «Микроген» Минздравсоцразвития России Управление науки и инновационного развития 2-й Волконский переулок, 10, Москва, Россия, 127473

В.В. Анастасиев

ФГУП «НПО «Микроген» Минздравсоцразвития России, Нижегородский филиал ул. Грузинская, 44, Нижний Новгород, Россия, 603000

А.М. Николаева

ФГУП «НПО «Микроген» Минздравсоцразвития России Пермский филиал ул. Братская, 177, Пермь, Россия, 614089

Т.И. Глотова, О.В. Кунгурцева, А.Г. Глотов

ГНУ Институт экспериментальной ветеринарии Сибири и Дальнего Востока Россельхозакадемии раб. пос. Краснообск, Новосибирский район, Новосибирская область, 630501

В модельных опытах *in vitro* с использованием вируса диареи — болезни слизистых крупного рогатого скота (ВД-БС КРС) изучена эффективность сольвент-детергентной (СД) стадии инактивации вирусов, используемой в производстве внутривенного иммуноглобулина G (IgG) человека. Оптимизированы условия СД-обработки раствора иммуноглобулина: конечная концентрация трибутилфосфата (ТБФ) 0,3%, натрия холата 0,2%, температура процесса от 30 ± 1 °C до 36 ± 1 °C, время инкубации 6 часов. Уровень редукции ВД-БС КРС при обработке препарата в этих условиях составил более $6 \log_{10}$ ТЦД 50/мл.

Ключевые слова: иммуноглобулин, вирусная безопасность, сольвент-детергентная (СД) обработка, редукция вирусов, валидация, вирус диареи — болезни слизистых крупного рогатого скота (ВД-БС КРС).

Риск вирусных трансмиссий не равнозначен для всех препаратов крови. Иммуноглобулины по сравнению, например, с факторами свертывания, имеют хоро-

шую репутацию относительно вирусной безопасности. Известно, что препараты для внутримышечного введения, полученные с помощью метода спиртового фракционирования по Кону, никогда не передавали вирусы гепатитов. Препараты для внутривенного введения представляют несколько больший риск для реципиентов, главным образом из-за большой дозы, попадающей непосредственно в кровяное русло. При использования этих препаратов в клинической практике в середине 90-х годов прошлого века в мире были зарегистрированы неоднократные случаи инфицирования пациентов гемотрансмиссивными вирусами, в частности, вирусом гепатита С (ВГС) [5].

Поэтому наличие стадий вирусоинактивирующей обработки является главным критерием безопасности препаратов иммуноглобулинов, при этом технологический процесс должен быть эффективным в отношении вирусов и не должен ухудшать клиническую эффективность и переносимость препаратов. Обработка растворителем и детергентом в этом аспекте является «золотым стандартом». Сольвент-детергентную (СД) обработку более 20 лет применяют большинство ведущих мировых производителей иммуноглобулинов. Преимущество варианта СД-обработки с использованием трибутилфосфата (ТБФ) и ионного детергента натрия холата состоит в высокой технологичности метода и мягком воздействии его на белки [3].

Однако любое исследование, посвященное вирусной безопасности и ориентированное на промышленное производство, должно быть четко документировано по показателям уменьшения содержания количества вирусов (вирусной редукции), выраженным в логарифмах или в степени снижения титров. В соответствии с рекомендациями ВОЗ эти работы необходимо выполнять не в условиях производства, а в лаборатории на уменьшенной копии технологического процесса [7, 8].

Целью настоящей работы была оценка эффективности и оптимизация условий СД-обработки растворов иммуноглобулина G (IgG) человека ТБФ и натрия холатом на модельном вирусе диареи — болезни слизистых крупного рогатого скота (ВД-БС КРС).

Материалы и методы. Раствор IgG получали на Нижегородском филиале ФГУП «НПО «Микроген» Минздрава России из плазмы крови здоровых доноров методом многоступенчатого осаждения этанолом. Для исследования использовали две серии раствора IgG: № 1 (рН 4,5 + 0,1, белок 4,5 + 0,5%) и № 2 (рН 7,0 + 0,1, белок 6,5 + 0,5%).

Сольвент-детергентную смесь готовили, используя ТБФ (Sigma-Aldrich, кат. номер № 90820), натрия холат (Sigma-Aldrich, кат. номер C6445) и дистиллированную апирогенную воду. Указанные компоненты брали в таких соотношениях, чтобы получить концентрацию ТБФ и натрия холата в смеси в следующих соотношениях: 3, 15, 30, 60 мг/мл ТБФ и 2, 10, 20, 40 мг/мл натрия холата соответственно.

Тест-вирус (ТВ) — российский референтный цитопатогенный штамм ВК-1 ВД-БС КРС. Культивирование и заражение клеток ВД-БС КРС проводили на перевиваемой линии культуры клеток коронарных сосудов теленка (КСТ). Клетки выращивали в среде Игла МЕМ с добавлением 5—10% эмбриональной сыворотки

крови теленка, тестированной на наличие ВД-БС КРС и антител к нему. Концентрация ТВ-суспензии для модельных опытов составляла не менее $6,5 \log_{10} \text{ТЦД}_{50/\text{MII}}$.

Моделирование технологического процесса осуществляли следующим образом: в растворы иммуноглобулина (ИГ), а также в положительные контрольные образцы (ПКО) перед процедурой СД-обработки добавляли ТВ для создания концентрации ВД-БС КРС в растворе не менее $6\log_{10}$ ТЦД $_{50/мл}$. Затем добавляли СД-смеси для создания соответствующей концентрации реагентов в растворе. Конечная концентрация вирусинактивирующих реагентов ТБФ/натрия холата в исследуемых образцах составляла: 0.03%/0.02%, 0.15%/0.1%, 0.3%/0.2%, 0.6%/0.4% соответственно. Состав испытуемых и контрольных образцов указан в табл. 1.

Состав испытуемых и контрольных образцов

Таблица 1

Испытуемые образцы	Положительные контрольные образцы (ПКО)	Отрицательные контрольные образцы (ОКО)	
8 мл ИГ + 1 мл ТВ + 1 мл СД	8 мл ИГ + 1 мл ПС + 1 мл ТВ	8 мл ИГ + 1 мл ПС + 1 мл СД	
	9 мл ПС + 1 мл TB	9 мл ИГ + 1 мл ПС	

Инкубацию смесей, включая отрицательные и положительные контроли, проводили при постоянном перемешивании при температуре 30 ± 1 °C и 36 ± 1 °C в течение 6 часов. В контрольных точках процесса через 1, 3 и 6 часов отбирали пробы и определяли биоконцентрацию вируса. Для каждого варианта обработки исследование проводили не менее чем в 3 повторах.

Методы. Биоконцентрацию (инфекционный титр) ВД-БС КРС определяли титрованием в 96-луночных планшетах на двухсуточном монослое клеток КСТ. Титр вируса рассчитывали по методу Рида и Менча в \log_{10} ТЦД $_{50/м\pi}$ [1, 4].

Для расчета вирусной редукции использовали формулу:

$$R = (\log_{10} A_0) - (\log_{10} A_n),$$

где A_0 — титр вируса/мл в ПКО (без СД-обработки); A_n — титр вируса/мл в исследуемом образце после СД-обработки.

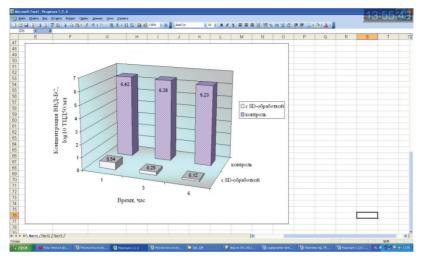
Статистическую обработку данных проводили в соответствии с общепринятыми методами.

Результаты и обсуждение. ВД-БС КРС относится к семейству Flaviviridae и является удобной моделью для изучения эффективности вирусинактивирующих технологий в условиях in vitro. Преимуществом использования ВД-БС КРС является способность его цитопатогенных штаммов реплицироваться в чувствительных культурах клеток, обеспечивая высокие исходные концентрации тест-вируса (более $5 \log_{10} \text{ТЦД}_{50/мл}$), необходимые для исследований [2, 6, 7].

Перед началом работы оценивали цитотоксичность СД-смесей на монослое перевиваемой культуры клеток КСТ. Для этого СД-смеси, разбавленные в питательной среде Игла МЕМ до конечных концентраций в диапазоне от 0,03% до 0,6% ТБФ и от 0,02% до 0,4% натрия холата, добавляли в лунки 96-луночного планшета с последующим культивированием при $36 \pm 1,0$ °C в CO₂-инкубаторе в течение 3 суток. Оценку результатов проводили общепринятым методом [2, 4].

В результате проведенных исследований было установлено отсутствие токсичности СД-смесей для культуры клеток КСТ во всех исследованных концентрациях.

На следующем этапе в модельных опытах, как указано в разделе материалы и методы, определяли эффективность СД-обработки при разной концентрации ТБФ и натрия холата. Уровень редукции определяли после 6 часов инкубации смесей. Результаты представлены в табл. 2.


Таблица 2
Уровень редукции ВД-БС КРС при СД-обработке раствора иммуноглобулина
(концентрация ТБФ от 0,03% до 0,6% ТБФ, натрия холата от 0,02% до 0,4%,
инкубация 6 часов)

Условия обработки			Количе-	Уровень редукции,
физико- химические свойства lgG	температура инкубации	концентрация СД-смеси в растворе IgG (ТБФ/ натрия холата), % / %	ство опытов, <i>п</i>	log ₁₀ ТЦД _{50/мл} $M \pm m$
pH 4,5 ± 0,1,	30,0 ± 1,0 °C	0,03 / 0,02	3	5,25 ± 0,12
белок 4,5 ± 0,5%		0,15 / 0,1	3	$6,28 \pm 0,07$
		0,3 / 0,2	3	$6,15 \pm 0,07$
		0,6 / 0,4	3	$6,28 \pm 0,07$
pH 7,0 ± 0,1,	36,0 ± 1,0 °C	0,03 / 0,02	3	$5,33 \pm 0,18$
белок 6,5 ± 0,5%		0,15 / 0,1	3	$6,00 \pm 0,07$
		0,3 / 0,2	3	$6,00 \pm 0,07$
		0,6 / 0,4	3	$6,00 \pm 0,07$

Было показано, что уровень редукции ВД-БС КРС зависел, главным образом, от концентрации вирусинактивирующих реагентов, а условия обработки, включая концентрацию белка от 4 до 7%, рН от 4,4 до 7,1, температуру инкубации от 29°С до 37°С, практически не оказывали на него влияния. Однако даже при минимальной концентрации ТБФ и натрия холата (0,03% и 0,02% соответственно) было выявлено снижение титра ВД-БС КРС более чем в 10⁴ раз, что, в соответствии с критериями ВОЗ, считается достаточным, чтобы признать стадию обработки эффективной [8].

С учетом полученных данных, а также, руководствуясь рекомендациями ВОЗ, для внедрения в технологию производства был рекомендован вариант обработки с конечной концентрацией ТБФ 0.3%, натрия холата 0.2% при следующих условиях: рН 4.4—7.1, концентрация белка в растворе 4—7%, температура инкубации от 29 °C до 37 °C. Для этого варианта вирусной инактивации была изучена динамика редукции ВД-БС КРС в контрольных точках процесса через 1,3 и 6 часов инкубации. Результаты представлены на рис. 1.

Выявлено, что вирусинактивирующий эффект наблюдался уже после первого часа инкубации с СД-смесью. В среднем уровень вирусной редукции в этой точке составил 5,88 \log_{10} ТЦД $_{50/мл}$. Увеличение длительности инкубации лишь незначительно усиливало эффективность процедуры, и после трех часов редукция ВВД-БС КРС достигала максимального уровня и составляла более 6,00 \log_{10} ТЦД $_{50/мп}$.

Рис. 1. Динамика редукции ВВД-БС КРС при обработке раствора иммуноглобулина смесью ТБФ и натрия холата в концентрации 0,3% и 0,2% соответственно

Заключение.

Полученные результаты по изучению инактивации ВД-БС КРС под действием ТБФ и натрия холата могут быть использованы при внедрении сольвент-детергентного метода инактивации вирусов в технологию производства препаратов иммуноглобулинов. Экспериментально подтверждено, что при обработке раствора иммуноглобулина G (белок от 4,5 \pm 0,5% до 6,5 \pm 0,5%, pH от 4,5 \pm 0,1 до 7,0 \pm 0,1) сольвент-детергентной смесью в конечной концентрации ТБФ 0,3% и натрия холата 0,2%, инкубации при температуре от 30 ± 1 °C до 36 ± 1 °C в течение 6 часов происходит эффективное снижение инфекционных свойств модельного вируса ВД-БС КРС, а уровень его редукции составляет более 6 \log_{10} ТЦД $_{50/MЛ}$. Учитывая, что более 95% ТВ было инактивировано уже после первого часа инкубации смесей, в соответствии с правилами хорошей производственной практики (Good Manufacture Practic — GMP) такой препарат можно считать вирусинактивированным и перемещать в так называемую «безопасную зону», свободную от вирусов. Дальнейшая инкубация раствора с СД-смесью только закрепляет эффект и гарантирует безопасность полученных препаратов, по крайней мере, в отношении вируса гепатита С.

В целом валидация вирусинактивирующих технологий — это неотъемлемая часть любого производственного процесса. Она оправдывает и подтверждает выбранные режимы и их адекватность в достижении ожидаемого результата [8]. Разработка и внедрение в РФ алгоритмов по оценке эффективности процессов удаления и инактивации вирусов, гармонизированных с международными директивами, позволит повысить уровень вирусной безопасности отечественных препаратов из плазмы крови человека.

ЛИТЕРАТУРА

[1] Медицинская вирусология: Руководство / Под ред. Д.К. Львова. — М.: ООО «Медицинское информационное агентство», 2008. — С. 228—335.

- [2] Buckwold V.E., Beer B.E., Donis R.O. Bovine viral diarrhea virus as a surrogate model of hepatitis C virus for the evaluation of antiviral agents // Antiviral Res. 2003. V. 60(1). P. 1—15.
- [3] Dichtelmüller H.O., Biesert L., Fabbrizzi F. Robustness of solvent/detergent treatment of plasma derivatives: a data collection from Plasma Protein Therapeutics Association member companies // Transfusion. 2009. № 49(9). P. 1931—1943.
- [4] Reed L., Muench H. A simple method of estimating 50% endpoints // Amer. J. Hygiene. 1938. V. 27. P. 493—497.
- [5] *Tabor E.* The epidemiology of virus transmission by plasma derivatives: clinical studies verifying the lack of transmission of hepatitis B and C virus and HIV type 1 // Transfusion. 1999. V. 39(11—12). P. 1160—1168.
- [6] Viet A.F., Fourichon C., Seegers H. Review and critical discussion of assumptions and modelling options to study the spread of the bovine viral diarrhoea virus (BVDV) within a cattle herd // Epidemiol Infect. 2007. V. 135 (5). P. 706—721.
- [7] Virus Validation Studies: the design contribution and interpretation of studies validating the inactivation and removal of viruses [Electronic resource] European Medicines Agency. Publication date: 02.1996 / CPMP/BWP/268/95 Электрон. дан. URL: http://www.emea.europa.eu
- [8] WHO Guidance document on viral inactivation and removal procedure intended to assure the viral safety of blood plasma products [Electronic resource] / WHO Technical Report, Series № 924, Annex 4. 2004 Электрон. дан. URL: http://www.who.int/bloodproducts/publications/WHO TRS 924 A4.pdf.

LITERATURE

- Health Protection Guide / Ed. D.K. Lviv. M.: LLC «Medical Information Agency», 2008. P. 228—335.
- [2] *Buckwold V.E., Beer B.E., Donis R.O.* Bovine viral diarrhea virus as a surrogate model of hepatitis C virus for the evaluation of antiviral agents // Antiviral Res. 2003. V. 60 (1). P. 1—15.
- [3] *Dichtelmüller H.O., Biesert L., Fabbrizzi F.* Robustness of solvent/detergent treatment of plasma derivatives: a data collection from Plasma Protein Therapeutics Association member companies // Transfusion. 2009. № 49 (9.) P. 1931—1943.
- [4] Reed L., Muench H. A simple method of estimating 50% endpoints // Amer. J. Hygiene. 1938. V. 27. P. 493—497.
- [5] *Tabor E.* The epidemiology of virus transmission by plasma derivatives: clinical studies verifying the lack of transmission of hepatitis B and C virus and HIV type 1 // Transfusion. 1999. V. 39 (11—12). R. 1160—1168.
- [6] Viet A.F., Fourichon C., Seegers H. Review and critical discussion of assumptions and modelling options to study the spread of the bovine viral diarrhoea virus (BVDV) within a cattle herd // Epidemiol Infect. 2007. V. 135 (5). P. 706—721.
- [7] Virus Validation Studies: the design contribution and interpretation of studies validating the inactivation and removal of viruses [Electronic resource] European Medicines Agency. Publication date: 02.1996 / CPMP/BWP/268/95 Electron. dan. URL: http://www.emea.europa.eu
- [8] WHO Guidance document on viral inactivation and removal procedure intended to assure the viral safety of blood plasma products [Electronic resource] / WHO Technical Report, Series № 924, Annex 4. 2004 Electron. dan. URL: http://www.who.int/bloodproducts/publications/WHO_TRS_924_A4.pdf.

EVALUATION OF EFFECTIVENESS OF SOLVENT-DETERGENT VIRAL IN ACTIVATION IN THE MANUFACTURE OF INTRAVENOUS HUMAN IMMUNOGLOBULIN G IN A MODEL OF VIRUS DIARRHEA — MUCOSAL DISEASE OF CATTLE

A.V. Kaz'yanin

Federal budgetary institute "Perm State Pharmaceutical Academy" 2 Polevaya str., Perm, Russia, 614990

N.V. Zubkova, V.V. Anastasiev

FSUC "SIC Microgen" of MH RF Nizhniy-Novgorod Affiliate "ImBio" Gruzinskaya str., 44, Nizhniy Novgorod, Russia, 603000

I.V. Krasilnikov, A.K. Lobastova

FSUC "SIC Microgen" of MH RF 2nd Volkonskiy lane, 10, Moscow, Russia, 127473

A.M. Nikolaeva

FSUC "SIC Microgen" of MH RF Perm Affiliate «Biomed» Bratskaya str., 177, Perm, Russia, 614089

T.I. Glotova, O.V. Kungurtseva, A.G. Glotov

Institute of Experimentally Veterinary Medicine of Siberia and Far East Russian Academy of Agricultural Science Krasnoobsk, 8 p/o box, Novosibirsk region, Russia, 630501

In model experiments using in vitro virus diarrhea — mucosal disease in cattle (bovine VD-MDC) studied the effectiveness of solvent-detergent (SD) virus inactivation used in the production of intravenous human immunoglobulin G (IgG). Optimized conditions for SD processing of immunoglobulin: the final concentration of tributylphosphate (TBP) 0.3% 0.2% sodium cholate, process temperature of 30 ± 1 °C to 36 ± 1 °C, incubation time 6 hours. The level of reduction of VD-MDC in the processing of the drug in these conditions was more than 6 log₁₀ TCD 50/ml.

Key words: immunoglobulin, viral safety, solvent-detergent (SD) treatment, reduction of viruses, validation, virus diarrhea-mucosal disease in cattle (bovine VD-MBC).