ГХ/МС ОПРЕДЕЛЕНИЕ ЗОЛПИДЕМА В КРОВИ

Е.А. Крылова, Ю.А. Хомов

Кафедра фармацевтической химии ФДПО и ФЗО Пермская государственная фармацевтическая академия ул. Полевая, 2, Пермь, Россия, 614081

С.С. Катаев

ГУЗОТ «Пермское краевое бюро судебно-медицинской экспертизы» ул. Фонтанная, 12, Пермь, Россия, 614002

Разработана методика количественного определения золпидема в образцах цельной крови с применением современных аналитических методов — твердофазной экстракции и газовой хроматографии — масс-спектрометрии. Методика успешно применена в случае реального несмертельного отравления золпидемом.

Ключевые слова: золпидем, твердофазная экстракция, газовая хроматография — масс-спектрометрия.

Золпидема тартрат (синонимы: SL-80.0750-23N, Zolpidem Hemitartrate; торговые наименования: Ивадал, Сновител, Санвал, Ambien) является снотворным препаратом, который применяется во многих странах мира с восьмидесятых годов ХХ века для лечения инсомнии и который сравнительно недавно нашел клиническое применение и в России. В основе структуры золпидема находится бициклическая конденсированная система имидазопиридина. В зарубежной литературе описаны случаи передозировки золпидемом как с несмертельным [1], так и с летальным исходом [2]. Известны примеры использования препарата для злонамеренного приведения человека в бессознательное состояние для совершения насильственных действий [3]. Отмечена способность золпидема вызывать явления привыкания и формирования психической и физической зависимости при постоянном приеме. По данным литературы, для количественного определения золпидема в плазме, сыворотке и в цельной крови используются методы высокоэффективной жидкостной хроматографии с УФ- и флуоресцентным детектированием [4, 5], газовая хроматография с электронозахватным, азотно-фосфорным типами детекторов [6].

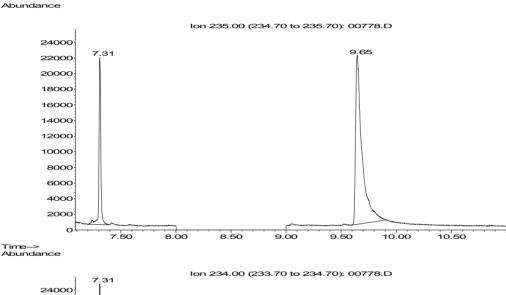
Целью настоящей работы явилась разработка методики количественного определения золпидема методом газовой хроматографии — масс-спектрометрии $(\Gamma X/MC)$ в образцах цельной крови.

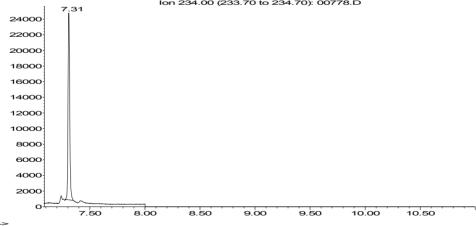
Экспериментальная часть

Оборудование. Для извлечения аналитов использовали систему для твердофазной экстракции (ТФЭ) с вакуумной камерой (манифолд) на 12 позиций (Supelico). Исследования проводили на газовом хроматографе Agilent 6850, оснащенном капиллярной кварцевой колонкой HP-5MS длиной 30 м с внутренним диаметром

0,25 мм и толщиной пленки 0,25 мкм. Газовый хроматограф сопряжен с массселективным детектором Agilent 5973N (Agilent, США). Так же применяли термоблок ПЭ-4030, микровстряхиватель ПЭ-2 (ОАО «Экрос», Россия).

Материалы и методы. Применяли патроны для ТФЭ AccuBond II EVIDEX 200 мг/3 мл (Agilent); золпидема тартрат (порошок-субстанция, НД 42-13447-05); мелипрамин (ампулы, с содержанием имипрамина гидрохлорида 12,5 мг/мл, EGIS PHARMACEUTICALS). Все используемые растворители и реактивы имели чистоту х.ч.


Пробоподготовка крови по методике скрининга на наркотические и лекарственные вещества: к 2 мл крови прибавляли 20 мкл этилморфина гидрохлорида в концентрации 0,02 мг/мл (внутренний стандарт), 1 мл насыщенного раствора аммония хлорида, 25% раствора аммиака до рН 9 по универсальному индикатору и экстрагировали дважды по 5 мл смеси хлороформ—бутанол-1 (6:1). Объединенные органические экстракты фильтровали через бумажный фильтр с безводным натрия сульфатом во флакон с 10 мкл уксусной кислоты ледяной. Полученный экстракт испаряли досуха. К сухому остатку прибавляли 40 мкл пиридина и 60 мкл уксусного ангидрида, герметично закрывали и нагревали 25 минут при 80 °С. После охлаждения флакон вскрывали, его содержимое испаряли досуха. Сухой остаток растворяли в 200 мкл безводного этилацетата и 1 мкл вводили в инжектор хроматографа.


Пробоподготовка крови для количественного определения золпидема: к образцам крови объемом 500 мкл прибавляли по 3 мл 1/15 М фосфатного буфера рН 6,0 и центрифугировали при 3000 об/мин в течение 10 минут. Далее проводили ТФЭ по схеме: кондиционирование сорбента осуществляли последовательным промыванием 2 мл 95% этанола и 2 мл 1/15 М фосфатного буфера рН 6,0. Загрузку анализируемого образца крови осуществляли со скоростью 1,0 мл/мин., после чего промывали сорбент последовательным пропусканием через него растворов объемами по 1 мл: 1/15 М фосфатного буфера рН 6,0; 0,1 М раствора уксусной кислоты и 10% этанола. Элюирование первоначально осуществляли смесью этилацетат—н-гексан (1 : 3) дважды порциями по 2 мл (элюат I) и далее промывали патрон 2 мл метанола. Последующее элюирование проводили в отдельный флакон со скоростью 1,0 мл/мин. смесью дихлорметан-пропанол-2-25% раствор аммиака (4 : 1 : 0,1) дважды порциями по 2 мл (элюат II). Элюат II испаряли досуха в токе азота при 60 °C.

Условия хроматографического разделения: хроматограф Agilent 6850, МСД Agilent 5973N, колонка капиллярная HP-5MS, внутренний диаметр 0,25 мм, длина 30 м, газ-носитель гелий, скорость — 1,5 мл/мин. Режим работы split/splitless (деление потока 15 : 1 с задержкой включения 1 мин. после ввода пробы).

Режим работы ГХ/МС для проб крови в условиях скрининга: температура инжектора и интерфейса 250 и 280 °C, температура колонки — градиент 70 (2 мин.) — 280 °C, скорость программирования 20° в минуту. Ввод пробы ручной, без деления потока газа-носителя. Регистрация масс-спектров в режиме полного сканирования масс 45—450 a.e.

Режим работы ГХ/МС для проб крови при количественном анализе: температура испарителя хроматографа и интерфейса детектора — 300 и 280 °C. Температура колонки: начальная 70 °C в течение 1 мин. и прогрев до 230 °C со скоростью программирования 40 град/мин.; затем прогрев до 300 °C со скоростью программирования 20 град/мин.; выдержка при конечной температуре 2,5 мин. Регистрация масс-спектров проводилась в режиме селективного ионного мониторинга (SIM) по ионам с величинами m/z для золпидема — 235, 307, 219; для имипрамина — 234, 235, 280. Для количественного определения были использованы величины площадей пиков ионных фрагментов со 100% интенсивностью в спектре (234 — для имипрамина и 235 — для золпидема) (рис. 1).

Рис. 1. Фрагмент экстракционной хроматограммы по ионам, характерным для масс-спектров золпидема — 9,65 мин. и имипрамина — 7,31 мин.

Расчет концентрации осуществляли с применением программы сбора и обработки данных ChemStation G1701DA. Калибровочный график строили методом внутреннего стандарта (рис. 2). Готовили серии калибровочных растворов по крови

с концентрациями золпидема 0,1 мг/л; 0,25 мг/л; 1,0 мг/л; 2,5 мг/л. В качестве внутреннего стандарта в образцы крови добавляли раствор имипрамина гидрохлорида в количестве 500 нг в пробу. На рис. 1 представлен ионный профиль золпидема (m/z 235) и внутреннего стандарта (имипрамин, m/z 234) при исследовании экстракта из крови, содержащего 1 мкг/мл каждого компонента. Следует отметить, что пики имеют хорошее разрешение и отсутствует интерференция со стороны компонентов матрицы.

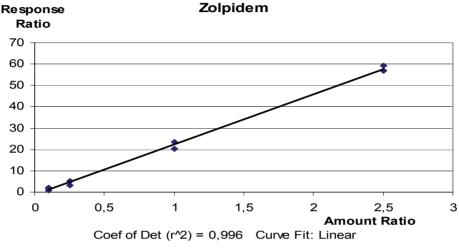


Рис. 2. Калибровочный график

График линеен в диапазоне концентраций 0,1—2,5 мг/л. Коэффициент корреляции равен r^2 — 0,996. Расчет концентрации золпидема проводили по формуле

$$C_x = \frac{Q \cdot 1000}{a \cdot 1000 \cdot 1000},$$

где C_x — концентрация золпидема в крови, мг/л; Q — количество золпидема, найденное по графику, нг; a — объем крови, взятый на исследование, мл.

В нашей практике имел место случай, впервые зафиксированный в Пермском крае, острого комбинированного перорального отравления снотворным препаратом золпидемом и этиловым алкоголем.

Пострадавшая *С.*, 47 лет, в феврале 2010 г. экстренно была доставлена в реанимационное отделение одной из больниц Пермского края с симптомами интоксикации и указанием на возможное отравление таблетками «Санвал». Для проведения химико-токсикологического исследования был произведен отбор образца крови. Пробоподготовка крови осуществлялась по методике скрининга на наркотические и лекарственные вещества, применяемой в судебно-химическом отделении Пермского краевого бюро СМЭ (см. выше). При исследовании образца крови на хроматограмме был идентифицирован пик вещества, по времени удерживания и масс-спектру соответствующий золпидему. Для его количественного определения была применена выше описанная методика, в результате было выявлено, что концентрация золпидема в цельной крови составила 0,22 мг/л. Кроме того, в крови пострадавшей *С*. был обнаружен этиловый алкоголь в концентрации 2,55 г/л.

Согласно литературным данным [7], терапевтическая концентрация золпидема в крови составляет 0.08-0.15 мг/л; токсическая -0.5 мг/л; летальная -2-4 мг/л).

Таким образом, разработана методика, позволяющая проводить количественное определение золпидема в цельной крови в широком диапазоне концентраций с применением современных аналитических методов — ТФЭ и ГХ/МС. Методика нашла свое практическое применение при проведении химико-токсикологического анализа.

ЛИТЕРАТУРА

- [1] Wyss P.A., Radovanovic D., Meier-Abt P.J. Acute overdose of Zolpidem // Schweiz. Med. Wochenschr. 1996. V. 126. № 18. P. 750—756.
- [2] Lichtenwalner M., Tully R. A fatality involving zolpidem // J. Anal. Toxicol. 1997. V. $21. N_{\odot} 7. P. 567 569.$
- [3] Levine B., Wu S.C., Smialek J.E. Zolpidem distribution in postmortem cases // J. Forensic Sci. 1999. V. 44. № 2. P. 369—371.
- [4] de Castro A., Quintela O., Concheiro M. Determinacion de zolpidem plasma por cromatografia Liquida de alta resolucion y deteccion de fluorescencia // Rev. Toxicol. 2003. V. 20. P. 146.
- [5] Olubodun J.O., Ochs H.R., von Moltke L.L. et al. Pharmacokinenic propeties of Zolpidem in elderly and young adult: possible modulation by testosterone in men // J. Clin. Pharmacol. 2003. V. 56. P. 297—304.
- [6] Gaillard Y., Gay-Montchamp J.P., Ollagnier M. Simultaneous screening and quantitation of alpidem, zolpidem, buspirone and benzodiazepines by dual-channel gas chromatography using electron-capture and nitrogen-phosporus detection after solid-phase extraction // J. Chromatogr. 1993. V. 622. P. 197—208.
- [7] Терапевтические, токсические, летальные концентрации лекарственных и других химических веществ; по данным Международной Ассоциации судебных токсикологов / Под ред. D.R.A. Uges, University Hospital Groningen, The Netherlands. 1996. Т. 26. № 1. 16 с.

DETERMINATION OF ZOLPIDEM IN BLOOD BY GC/MS

E.A. Krylova, Y.A. Khomov

Department of Pharmaceutical Chemistry FDPO PSPA Pharmaceutical academy Polevaya str., 2, Perm, Russia, 614081

S.S. Kataev

Department of forensic chemistry Perm Kray Bureau of Forensic Medicine Fontannaya str., 12, Perm, Russia, 614002

The solid-phase extraction (SPE) and gas chromatography — mass-spectrometry (GC/MS) methods have developed for the quantitative determination of zolpidem in whole blood specimens. The procedure has successfully applied in case of non-mortal poisoning.

Key words: zolpidem, solid-phase extraction, gas chromatography — mass-spectrometry.