МОДИФИЦИРУЮЩЕЕ ДЕЙСТВИЕ КЕТОРОЛАКА ТРОМЕТАМИНА НА МЕМБРАНЫ ЭРИТРОЦИТОВ

Д.Б. Холодов, В.А. Николаевский

Кафедра фармакологии Фармацевтический факультет ВГУ ул. Студенческая, 3, Воронеж, Россия, 394036 тел. +79114636467, эл. noчта: holodov@pharm.vsu.ru

В данной статье представлены результаты исследования влияния кеторолака трометамина на клетки организма с использованием модели лекарственный препарат — эритроцит. Авторами установлено, что кеторолака трометамин в различных концентрациях при контакте с клетками живого организма активно взаимодействует с белками мембраны, образуя комплексы лекарственный препарат — белок, тем самым лекарственный препарат вызывает изменение структуры мембраны эритроцитов. Также авторами показано значение времени контакта препарата с клетками.

Ключевые слова: кеторолака трометамин, эритроцит, клетка, мембрана, гемолиз.

Нестероидные противовоспалительные средства (НПВС) — одна из наиболее широко применяемых фармакологических групп [4]. В исследованиях, проведенных нами ранее, был установлен дозозависимый эффект повреждающего действия диклофенака натрия на мембраны эритроцитов, данный препарат обладает непосредственным повреждающим действием на биологические мембраны, механизмом которого является денатурация белковых глобул.

Цель исследования: изучить возможность формирования кеторолака трометамина скрытых дефектов в мембранах эритроцитов в концентрациях $4,98 \cdot 10^{-7}$, $9,96 \cdot 10^{-7}$; $19,92 \cdot 10^{-7}$ моль/л. Объектом исследования являлись эритроциты белых беспородных крыс массой 200—250 г. в количестве 30 голов.

Материалы и методы. В качестве модифицирующего агента мы использовали коммерческий препарат кеторол (кеторолак* — K-т) (Д-р Редди'с Лабораторис ЛТД) в концентрациях $4,98 \cdot 10^{-7}$ моль/л, $9,96 \cdot 10^{-7}$ моль/л; $19,92 \cdot 10^{-7}$ моль/л, что соответствует ED_{25} , ED_{50} , ED_{100} (C_1 , C_2 , C_3 соответственно). Суспензию эритроцитов получали по методу Л.А. Блюменфельда [2]. Содержание клеток в образцах контролировали спектрофотометрически [1, 3]. Кинетику индуцированного K-т гемолиза эритроцитов изучали с помощью прибора КФК-3 (ОАО Загорский оптико-механический завод. Загорск). Структурное состояние эритроцитов, модифицированных K-т, оценивали по изменению их осмотической резистентности в гипоосмотическом растворе NaCl. В качестве основных показателей, характеризующих осмотическую резистентность эритроцитов, использовали: константу максимальной скорости гемолиза (K_{max}), величину G_{120} %, характеризующую относительное количество гемолизированных эритроцитов [1, 3].

Результаты исследования приведены в табл. 1 и 2.

Таблица 1

Значение К _{тах} в зависимости от концентрации
и времени инкубации ($p < 0,05$)

n	Концент-	К _{тах} <i>t</i> , мин								
	рация									
		0	15	30	60	120	240			
10	C ₁	7,115	11,43	9,514	7,115	11,43	11,43			
10	C ₂	9,514	11,43	9,514	8,144	9,514	9,514			
10	C ₃	11,43	11,43	9,514	11,43	9,514	8,144			

Таблица 2

Значение G_{120} в зависимости от концентрации и времени инкубации (p < 0.05)

n	Концент-	G ₁₂₀ , %								
	рация	t,мин								
		0	15	30	60	120	240			
10	C ₁	24,43	29,77	27,02	21,75	22,82	25,14			
10	C ₂	29,66	38,37	34,56	32,38	26,9	30,98			
10	C ₃	39,4	37,5	37,27	35,46	31,37	31,25			

Анализ K_{max} показал, что при добавлении в рабочую суспензию эритроцитов K-т в концентрации C_1 и инкубации от 0 до 15 минут происходит увеличение данного показатель ($K_{\text{max }0} = 7,115; K_{\text{max }15} = 11,43$) (p < 0,05), что свидетельствует о увеличении относительной доли эритроцитов одновременно вступивших в стадию гемолиза, т.е. в данный период увеличивается проницаемость мембран эритроцитов вследствие снижения порога проницаемости мембран. Далее при инкубации суспензии эритроцитов с К-т в концентрации С1 от 15 до 60 минут происходит замедление процесса гемолиза ($K_{max15} = 11,43; K_{max30} = 9,514; K_{max60} =$ =7,115) (p<0,05), а затем последующее ускорение данного процесса от 60до 240-минутной инкубации ($K_{max60} = 7,115; K_{max120} = 11,43; K_{max240} = 11,43$) (p < 0.05). Таким образом, в интервале 15—60 минут происходит увеличение порога проницаемости мембран эритроцитов вследствие дифференцировки более стойких («среднестойких») эритроцитов и более ускоренный их переход к стадии собственно гемолиза при 60-240-минутной инкубации, что объясняется увеличением доли эритроцитов со сходными структурными изменениями и снижением порога проницаемости мембран.

При добавлении в рабочую суспензию эритроцитов K-т в концентрации C_2 распространение модифицирующего действия было сходно по сравнению с концентрацией C_1 . Однако при отсутствии инкубации нами зарегистрировано увели-

чение значения $K_{\rm max}$ относительно C_1 ($K_{\rm max0}C_1=7,115$; $K_{\rm max0}C_2=9,514$) (p<0,05). Это связано с увеличением доли эритроцитов, одновременно вступивших в стадию гемолиза в результате использования более высокой концентрации K-т. При инкубации от 15 до 240 минут аналогично C_1 в процесс гипоосмотическлго гемолиза вовлекается субпопуляция «среднестойких» эритроцитов, но с тенденцией к модификации более стойкой субпопуляции, о чем свидетельствуют изменения значения $K_{\rm max}$ ($K_{\rm max15}C_2=11,43$; $K_{\rm max30}C_2=9,514$; $K_{\rm max60}C_2=8,144$; $K_{\rm max120}C_2=9,514$; $K_{\rm max240}C_2=9,514$) (p<0,05).

При инкубации взвеси эритроцитов с K-т в концентрации C_3 нами установлено, что распространение модифицирующего действия и соответственно вовлечение в процесс гипоосмотического гемолиза «низко- и среднестойкой» субпопуляции эритроцитов происходит уже до 60-минутной инкубации. Однако от 60 до 240 минут нами зарегистрировано вовлечение в процесс гемолиза субпопуляции «высокостойких» эритроцитов, что отражается изменением значения $K_{\text{max}}(K_{\text{max}60}C_3=11,43;\,K_{\text{max}120}C_3=9,514;\,K_{\text{max}240}C_3=8,144)\,(p<0,05).$

При анализе показателя G_{120} , который отражает долю гемолизированных эритроцитов за 120 секунд и характеризует связь со спектрин-актиновым комплексом мембран эритроцитов [3], нами установлен дозозависимый эффект формирования скрытых дефектов в мембране более стойких в гипоосмотической среде эритроцитов, а также зарегистрировано распространение модифицирующего действия K-т в концентрации C_1 и C_2 на две субпопуляции и в концентрации C_3 на одну, но более резистентную в гипоосмотичесих условиях.

Таким образом, в ходе проведенных исследований, нами установлено, что кеторолака трометамин в концентрациях $4,98 \cdot 10^{-7}$ моль/л, $9,96 \cdot 10^{-7}$ моль/л; $19,92 \cdot 10^{-7}$ моль/л, соответствующих ED_{25} , ED_{50} , ED_{100} , вызывает формирование скрытых дефектов в мембране эритроцитов, а также выявлен дозозависимый эффект непосредственного повреждающего действия на клеточном уровне.

ЛИТЕРАТУРА

- [1] *Артюхов В.Г., Шмелёв В.П., Ковалёва Т.А.* Биофизика. Воронеж: Изд-во ВГУ, 1994. 327 с.
- [2] Блюменфельд Л.А. Биофизика. М.: Наука, 1972. 954 с.
- [3] *Резван С.Г., Вашанов Г.А., Лавриненко И.А. и др.* Молекулярные механизмы взаимодействия гемоглобина с серотонином // Рос. физиол. журн. им. И.М. Сеченова. 2004. Т. 90. № 8. С. 46—47.
- [4] Ушакова Е.А. Нестероидные противовоспалительные лекарственные средства новый взгляд на эффективность и безопасность // Фарматека. 2006. N 7. С. 31—36.

THE KETOROLAK TROMETAMINE'S MODIFICATING ACTION ON THE ERYTHROCYTE'S MEMBRANES

D.B. Holodov, V.A. Nikolaevsky

Pharmaceutical faculty
Department of pharmacology VSU
Studencheskaja str., 3, Voronezh, Russia, 394036
tel. +79114636467, email:holodov@pharm.vsu.ru

The article concerns the research's results, deals by the ketorolak trometamine's influence on the cells, using the model «drug — erythrocyte». Authors established that ketorolak trometamine in various concentrations during the contact by the live cells can interact with the membrane's proteins forming complexes «drug — protein». This drug can cause the membrane's structural changes. Also, it was determined the time value on the preparation's effects.

Key words: ketorolak trometamine, erythrocyte, cell, membrane, hemolysis.