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Abstract

This paper introduces an adaptation of the open source ReaderBench framework that now supports
Russian multilevel analyses of text characteristics, while integrating both textual complexity indices
and state-of-the-art language models, namely Bidirectional Encoder Representations from
Transformers (BERT). The evaluation of the proposed processing pipeline was conducted on a
dataset containing Russian texts from two language levels for foreign learners (A — Basic user and
B — Independent user). Our experiments showed that the ReaderBench complexity indices are
statistically significant in differentiating between the two classes of language level, both from: a) a
statistical perspective, where a Kruskal-Wallis analysis was performed and features such as the
“nmod” dependency tag or the number of nouns at the sentence level proved the be the most
predictive; and b) a neural network perspective, where our model combining textual complexity
indices and contextualized embeddings obtained an accuracy of 92.36% in a leave one text out cross-
validation, outperforming the BERT baseline. ReaderBench can be employed by designers and
developers of educational materials to evaluate and rank materials based on their difficulty, as well
as by a larger audience for assessing text complexity in different domains, including law, science,
or politics.
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Hayynas craTbsa

ReaderBench:
MHOTOYPOBHEBBII aHA/IM3 XapaKTEePUCTHK TEKCTa
Ha PYCCKOM fI3bIKE

Nparom KOPJIATECKY' 204, tepan PYCETHU' Y, Muxaii JACKAJIY!?2

! Monumexnuueckuil ynusepcumem Byxapecma, Byxapecm, Pymoirus
! YHueep yxap yxap V.
Axademus pymwinckux yyenvix, byxapecm, Pymovinus

D<dragos.corlatescu@upb.ro

AHHOTAINA

B cratse npexactasiena HoBas Bepcus iatgopmbl ReaderBench ¢ OTKPBITBIM HCXOZHBIM KOZOM.
B nacrosiee Bpemst Readerbench nopajep:xuBaeT MHOrOypoBHEBBIH aHAIIU3 MapaMETPOB TEKCTOB
Ha PYCCKOM $sI3bIKE, MHTEIPUPYSI IPH 3TOM KaK WH/IEKCHI TEKCTOBOH CII0KHOCTH, TaK M COBPEMEHHBIC
S3bIKOBBIE Mojienn, B yacTHocTH, BERT. Onenka npejyiaraeMoro aropurMa o0paboTKH MTPOBOAHU-
Jach Ha KOPIyCE PYCCKHX TEKCTOB JIBYX SI3BIKOBBIX YPOBHEH, HCIIOIB3YEMbIX MPU 00y4YEeHUH pycC-
CKOMY SI3bIKY KaK HHOCTpaHHOMY (A — 0a30BBbIi 110JIb30BaTENb U B — HE3aBHCHMBII TT0JIB30BATEND ).
Hamm skcriepuMeHTsl oKa3ald, 4To (a) WHIEKCHI CIIOKHOCTH TEKCTOB Pa3iIMYHBIX YPOBHEH 110
OO01eeBporeiickoi mKane, paccuuThiBaeMble Ipu nomonu ReaderBench, craTuctiyecky 3HaYUMMEI
(o kputepuro Kpackena-Yosica), Ipu 3TOM KOJIMYECTBO CYLIECTBUTENBHBIX HA YPOBHE IPEJIO-
JKEHHS 0Ka3aJ0Ch HAMTY4IIHM [IPEAUKTOPOM CIIOKHOCTH; 0) a Hallla HeHpoHHast MOJIelTb, COYETAal0-
Iasi MHAEKCHI CIOKHOCTH TEKCTa M KOHTEKCTYalIn3UPOBAHHBIC BIIOXKCHHUS, NPU HEPEKPEeCTHOM
BaManuu jgocruria touHoctu 92,36 % u npes3onuia 6a3oBeiii ypoBenb BERT. ReaderBench
MO>KET HCII0JIL30BaThCA pa3padOTYMKaMH YIeOHBIX MaTEPHAIIOB JUIsl OLEHKU U PAHKUPOBAHUS TEK-
CTOB B 3aBUCUMOCTH OT UX CJIOXKHOCTH, a TAKXKe 0oJiee IUPOKOH ayIuTOpHEit ISl OLIEHKH CJIOKHO-
CTH BOCIIPUSITHSI TEKCTA B Pa3IMYHBIX 00JIACTSX, BKIIIOYAs IOPHCIPYICHIINIO, ECTECTBO3HAHUE HIIH
MOJIUTHKY.

KioueBsbie cinoBa: gpeiimeopk ReaderBench, unoexcwvl ciodcHocmu mekcma, a3ulk08as MoOeib,
HeUPOHHAS apXUumeKmypd, MHO20YPOBHESbIL AHANU3 MEKCMA, OYEHKA CLOACHOCIU MeKCma

Jns nuTHpOBAaHUS:

Corlatescu D., Ruseti S, Dascalu M. ReaderBench: Multilevel analysis of Russian text
characteristics. Russian Journal of Linguistics. 2022. Vol. 26. Ne 2. P. 342-370.
https://doi.org/10.22363/2687-0088-30145

1. Introduction

The Natural Language Processing (NLP) field focuses on empowering
computers to process and then understand written or spoken language texts in order
to perform various tasks. The performance of Artificial Intelligence or Machine
Learning approaches on common NLP tasks has increased over the years, but there
are still many tasks where computers are far from human performance. Nonetheless,
the processing speed of computer programs is not to be neglected, and the current
tradeoff between the response time of an algorithm and its errors is shifting the
balance towards automated analyses — for example, a human invests tens of hours
to correctly extract all the parts of speech from a novel, while the computer can
perform the same task in a couple of minutes, with an error of only 1-5% mislabeled
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words. As such, NLP tools are becoming more widely used to provide valuable
inputs to further develop and test various hypotheses.

Tailoring reading materials for learners is a practical and essential field where
NLP tools can have a high impact. Designing such materials can prove to be a
difficult task since texts below readers’ level of understanding will make them lose
interest, while texts too difficult to comprehend will demotivate learners.
Automated NLP frameworks provide valuable insights in those situations,
especially the ones that focus on identifying the complexity of a text. One such tool
is the ReaderBench (Dascalu et al. 2013) framework, which previously supported
other languages besides English, namely French (Dascalu et al. 2014), Dutch
(Dascalu et al. 2017), and Romanian (Gifu et al. 2016), and has now been adapted
to also support Russian.

The new version of ReaderBench! is a Python library that extracts multilevel
textual characteristics from texts in multiple languages. These characteristics,
named also textual complexity indices, provide valuable insights of text difficulty
on multiple levels, namely surface, word, morphology, syntax, and semantics (i.e.,
cohesion), all described in the following sections. The purpose of this study is to
present the adaptation process of ReaderBench to support the Russian language,
starting from the computation of Russian complexity indices, and followed by the
integration of new methods for building the Cohesion Network Analysis (CNA,
Dascalu et al. 2018) graph using state-of-the-art language models, namely
Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.
2019).

Various neural network architectures and statistical analyses were employed
to assess the performance of our processing pipeline. Our experiment uses Russian
texts from two language level groups that reflect an individual’s language
proficiency: A (Basic User) and B (Independent User). The corpus is a part of the
Russian as a Foreign Language Corpus (RuFoLC) compiled by language experts
from the “Text Analysis” laboratory, Kazan Federal University. Our goal is to build
an automated model and to perform statistical analyses of the texts in order to
differentiate between the two classes, while assessing the importance of the textual
complexity indices in making this decision.

2. Assessing Russian text complexity

The manner in which people understand and study languages has changed
during the last two centuries; Russian is no different. A brief history of the
approaches used to analyze textual complexity in Russian texts is presented by
Guryanov et al. (2017). The authors documented that such analyses were conducted
by linguists mostly by hand in the beginning of the 20th century. Even though the
key terms such as readability or text complexity were not completely defined, the
general understanding of the concepts existed and simple indices, such as word

! https://github.com/readerbench/ReaderBench
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length or number of words, were considered. Moving on to the end of the 20th
century — beginning of the 21st century, researchers started to include semantic
features, such as, for example: the polysemy of the words. In recent times,
additional features were introduced, detailed in the next subsection dedicated to
automated measures of text complexity.

One important part of research on text complexity revolves around its
educational theme: are texts appropriate in terms of complexity for the students
reading or studying them? Linguists can provide an expert opinion to this question;
however, this requires a lot of resources, including a considerable amount of time.
Thus, a system that can provide meaningful insights into the difficulties
encountered when reading a text is desirable.

McCarthy et al. (2019), who are language experts, developed a Russian
language test to assess text comprehension. The test was conducted on
approximately 200 students (~100 fifth graders, ~100 ninth graders) and the results
showed that they struggle to understand the ideas of the texts. Additionally, the
paper provided an overview of the entire evaluation process in the Russian
educational system, and it offered a viable evaluation alternative designed by
linguists in the form of a test.

One of the initial papers on the same matter, but written from a more statistical
perspective, was the work by Gabitov et al. (2017). In their study, the problem of
text complexity in Russian manuals was addressed. Specifically, the investigation
focused on the 8th grade manual on social studies made by Bogolyubov. All
analyses were performed mostly manually, starting from selecting 16 texts from the
book and then computing readability indices formulas, such as Flesch-Kincaid,
Coleman-Liau, Dale-Chale readability formula, Automated Readability Index, and
Simple Measure of Gobbledygook (SMOG). The unevenness of those indices
across the texts raised questions whether the texts were suitable for students and
represented the underlying reason for further research in this domain.

The syntactic complexity of social studies texts was explored by Solovyev et
al. (2018). The authors used ETAP-3 (Boguslavsky et al. 2004), a syntactic analyzer
for Russian grammar, to compute the dependency parse tree for each sentence.
Fourteen indices were extracted based on the dependency tree that looked at key
components of the Russian sentence structure in order to deduct its complexity,
namely the length of the path between two nodes and various counts of nodes,
leaves, verbal participles, verbal adverb phrases, modifiers in a nominal group,
syndetic elements, participial constructs, compound sentences, coordinating chains,
subtrees, and finite dependent verbs. Their statistical analyses showed high
correlation between the extracted features and grade level; however, syntactic
features were less correlated than the lexical ones.

Solovyev et al. (2020) also explored how predictive specific quantitative
indices were in ranking academic Russian texts and in determining their
complexity. Their corpus was composed of texts from the field of Social Studies
grouped by grade level, i.e. 5Sth—11th grades. The texts were extracted from manuals
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written by two authors (Bogolyubov and Nikitin) used at that time for teaching
social studies. The corpus required a preprocessing step, where the parts of speech
were extracted using TreeTagger (Schmid et al. 2007) for Russian, the texts were
split into sentences, and outliers (i.e., sentences that were even too short or too long)
were eliminated. The following indices were used in their analysis: Flesch-Kincaid
Grade, Flesch Readability Ease, frequency of content words, average words per
sentence, average syllables per word, and additional features based on the part of
speech tags (such as the number of nouns or verbs). The authors performed a
statistical analysis using both Pearson (1895) and Spearman (1987) coefficients to
inspect the correlation between the indices and the complexity of the texts (i.e., their
grades level). All features proved to be statistically significant, except for “average
words per sentence” and “average syllables per word”. Additionally, the authors
proposed slightly modified formulas for the Flesch-Kincaid Grade and Flesch
Readability Ease that better reflect the field of Social Studies.

Further studies of quantitative indices on the corpus containing texts from
Social Sciences manuals, Churunina et al. (2020) introduced new indices such as
type-token ratio (TTR), abstractness index, and words frequency based on Sharoff's
dictionary (Sharoff et al. 2014) that proved to be statistically significant in
differentiating the grades of the texts. Out of the specified indices, abstractness, was
proven to be closely related to textual complexity. In fact, the study by Sadoski et
al. (2000) claimed that the concreteness (which is the opposite of abstractness) is
the most predictive feature for comprehensibility. As a follow-up, Solovyev et al.
(2020) provided an in-depth analysis of the abstractness of words in the Russian
Academic Corpus (RAC, Solnyshkina et al. 2018) and in a corpus containing
students recalls of academic texts. The core of the experiments was the Russian
dictionary of concrete/abstract words (RDCA, Akhtiamov 2019). A notable result
was obtained in terms of students recall, where texts provided by students used
more concrete words than the original ones, underlining the idea that abstract terms
are harder to digest.

Quantitative indices provide significant insights into the textual complexity of
writings, but they are not the only concept that can be applied to analyze text
difficulty. One example can be topic modelling, as applied in an experiment
performed by Sakhovskiy et al. (2020) on the Social Studies corpus. The authors
implemented Latent Dirichlet Allocation with Additive regularization of topic
models (ARTM, Vorontsov & Potapenko 2015). Topics were extracted at three
granularity levels: paragraph, segment (i.e., sequences of 1000 words maximum),
and full text level. The topics were manually verified by linguist experts, and they
were further used in an experiment to determine the correlations between topics and
grades of the texts, in four different ways: a) correlation between grade and topic
weight, b) correlation between grade and the distance between topic words in a
semantic space, c)correlation between grade and topic coherence, and
d) correlation between topic properties and complexity-based topic proportion
growth. The conclusion of their study highlighted that topic models can be
successfully used to assess text complexity.
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3. Textual complexity as a Natural Language Processing task

Readability reflects the level of easiness in understanding of a text. Extracting
features using NLP techniques is a common approach, when exploring the
readability of a given text. There are multiple tools readily available; however, most
of them support only English. Nevertheless, the underlying ideas can be
extrapolated to other languages, as well. We further describe recent tools that cover
the most frequently integrated textual complexity indices and that are also present
to some extent in the Russian version of ReaderBench.

One of the first freely available systems is Coh-Metrix (Graesser et al. 2004)
which is at its 3™ version at present. Coh-Metrix provides 108 textual complexity
indices from eleven categories: descriptive, text easability principal components
scores, referential cohesion, LSA, lexical diversity, connectives, situation model,
syntactic complexity, syntactic pattern density, word information, and readability.
The framework can be freely accessed on a website, but the code is not open-
sourced. Coh-Metrix offers support for other languages than English, namely
Traditional Chinese, while adaptations for other languages exist — for example,
Coh-Metrix-Esp (Quispesaravia et al. 2016) for Spanish.

The Automatic Readability Tool for English (ARTE, Choi 2020) is a Java
library available on all platforms that processes plain text files and outputs a CSV
file with all the computed indices. The list of indices includes the Flesch Reading
Ease Formula (Flesch 1949), Flesch Kincaid Grade Level Formula (Kincaid et al.
1975), and Automated Readability Index (Senter & Smith 1967), which take into
consideration the average number of words per sentence, the average number of
syllables per word, and the difference between them consisting of the weights for
each parameter. Other examples of indices are SMOG Grading (Mc Laughlin 1969)
and the New Dale-Chall Readability Formula (Dale & Chall 1948). Lastly, there
are multiple “crowdsourced” indices that are computed by aggregation of different
counts and statistics from other libraries.

The following library is the Constructed Response Analysis Tool (CRAT,
Crossley et al. 2016) which provides over 700 indices that also take into
consideration text cohesion. The indices are grouped in specific categories, namely:
a) indices that count or compute percentages for words, sentences, paragraphs,
content words, function words, and parts of speech, or b) indices based on the MRC
Psycholinguistic Database (Coltheart 1981), the Kuperman Age of Acquisition
scores (Kuperman et al. 2012), the Brysbaert Concreteness scores (Brysbaert et al.
2014), the SUBTLEXus corpus (Brysbaert et al. 2012), the British National Corpus
(BNC, BNC Consortium 2007), the COCA corpus (Davies 2010). Complementary,
the Custom List Analyzer (CLA, Kyle et al. 2015) is a library written in Python that
computes various occurrences of text sequences (i.e., a word, an n-gram, or a
wildcard) in a corpus.

The Grammar and Mechanics Error Tool (GAMET, Crossley et al. 2019) is a
Java library that identifies errors in a plain text file from the perspective of
grammar, spelling, punctuation, white space, and repetitions. The core of the library
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integrates two packages, one from Java, Java LanguageTool (LanguageTool 2021),
and one from Python, language-check (Myint 2014). The GAMET project was also
tested and evaluated on two datasets (Crossley et al. 2019): a) a TOEFL-iBT corpus
containing 480 essays written by English as a Second Language Learners, and
b) 100 essays written by high school students in the Writing Pal Intelligent Tutoring
System project (Roscoe et al. 2014). The errors reported by GAMET were
evaluated by two expert raters, and the results showed that GAMET offered relevant
feedback throughout the experiments.

Next, we explore a collection of four tools (TAACO, TAALEED, TAALES
and TAASC) that cover a wide spectrum of analysis levels. All the tools have a
graphical interface that accepts plain text files as input to produce CSV files with
all indices as outputs. First, the Tool for the Automatic Analysis of Cohesion is a
framework that focuses on text cohesion. The indices are separated into multiple
categories: a) TTR and Density, where TTR stands for type-token ratio computed
as the number of unique words/lemmas in a category, divided by the total number
of words/lemma in the same category; b) Sentence overlap, where statistics
regarding the repetition of the same word with certain properties in the following
sentences are computed; c¢) Paragraph overlap, which is similar to the sentence
overlap, only that the metrics are computed at paragraph level; d) Semantic overlap,
where the scores of similarity between adjacent blocks (sentences and paragraphs)
are computed on three methods: Latent semantic analysis (Landauer et al. 1998),
Latent Dirichlet allocation (LDA, Blei et al. 2003), and word2vec (Mikolov et al.
2013); e) Connectives, where statistics are computed based on the types of the
English connectives (e.g. conjunctions, disjunctions); f) Givenness, which is a
measure of new information in the context of previous information, based on
pronouns counts and repeated content lemmas. Second, the Tool for the Automatic
Analysis of Lexical Diversity (TAALED, Kyle et al. 2021) provides 9 indices for
measuring the language diversity of a text.

Third, the Tool for the Automatic Analysis of Lexical Sophistication
(TAALES, Kyle et al. 2018) offers 484 indices addressing lexical sophistication
divided into 4 major categories: a) Academic Language containing wordlists and
formulas based on counts and percentages of words, b) indices based on the COCA
corpus, ¢) indices based on other corpora (BNC, MRC, SUBTLEXus), and d) other
types of indices, such as Age of Exposure or Contextual Distinctiveness. Fourth,
the Tool for the Automatic Analysis of Syntactic Sophistication and Complexity
(TAASSC, Kyle 2016) focuses on analyzing the sentence components and the
relations between them. It provides statistics at the clause and noun phrase level for
measuring complexity. The syntactic sophistication is computed based on indices
that focus on verbs and lemmas.

Textstat (Bansal 2014) is a Python library available online on the pypi archives
which provides textual complexity indices for multiple languages. Textstat includes
16 indices, out of which most are English readability formulas: Flesch Reading
Ease, Flesch Kincaid grade, SMOG, Coleman Liau, Automated Readability, and
Dale Chall.
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ReaderBench (Dascalu et al. 2013) is an open-source framework that offers
multiple natural language processing tools. ReaderBench was initially developed in
Java, but the library migrated to Python given that all major NLP frameworks,
including Tensorflow (Abadi et al. 2016), Scikit learn (Pedregosa et al. 2011),
spaCy (Honnibal & Montani 2017), and Gensim (Rehurek & Sojka 2010) are
written in Python to enable Graphics Processing Unit (GPU) optimizations.
ReaderBench is grounded in Cohesion Network Analysis (CNA, Dascalu et al.
2018), a method similar to Social Network Analysis, but instead of representing
relations between people or entities, the CNA graph contains links between text
elements. The weights of the links are given by the semantic similarity between the
components using different semantic models, such as LSA, LDA, or word2vec.
Both local and global cohesion are computed based on the strength of intra and
inter-paragraph edges extracted from the CNA graph. The library comes with a
demo website (Gutu-Robu et al. 2018), making it available to multiple audiences.
On one hand, the Python library can be installed and used by machine learning/NLP
developers using the Pip library archives?). On the other hand, the website provides
multiple interactive interfaces, where linguists or any other person interested in
studying text can perform their own analysis using the capabilities of the library,
without having any programming knowledge — demos include for example: Multi
document CNA (i.e., a detailed analysis and visualization of multiple documents
grounded in Cohesion Network Analysis), Keywords extraction (i.e., a list and a
graph of the keywords from a text), AMoC (Automated Model of Comprehension,
a model that simulates reading comprehension), Sentiment Analysis (i.e., extracting
the polarity of a text in terms of expressed sentiments), and Textual Complexity
(i.e., provide an export of the complexity indices applied on the input text). All
publicly available analyses cover multiple languages, not just English, and all the
additional information required for each experiment is also present on the website.
In this study, we focus on the extension of the framework to also accommodate
textual complexity indices and prediction models for Russian texts.

It is important to note that ReaderBench provides a viable alternative to all
other previously mentioned software for text analysis. ReaderBench leverages state
of the art NLP models to explore the semantics of texts and was effectively
employed in various comprehension tasks, in multiple languages including English,
French, Dutch, and Romanian. The project is open sourced under an Apache 2
license, the library can be easily integrated into multiple Python projects, whereas
the presentation website can be used freely for the remote processing of texts.

4. Current study objectives

Our study focuses on an in-depth multilevel analysis of Russian texts by
employing textual complexity indices and the CNA graph updated with language
models, together with neural network models and statistical analyses, all integrated

2 https://pypi.org/project/rbpy-rb/
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into the ReaderBench framework. As such, we assess to what extent the Russian
textual complexity indices integrintoed into ReaderBench are predictive of the
differences between Russian texts from two language levels (i.e., A — Basic User
and B — Independent User). We perform this analysis to explore the predictive
power of our models and underline the most predictive features for this task.

5. Method

Corpus

This study considers Russian texts from two language levels for foreign
learners (A-Basic User and B-Independent User) with the aim to predict a text’s
difficulty class. The selection of texts in terms of complexity assessment was
performed by Russian linguists, members of the “Text Analytics” Laboratory from
the Kazan Federal University. The corpus used in the follow-up experiments is a
subpart of the Russian as a Foreign Language Corpus (RuFoLC). The initial corpus
was in a raw format containing texts from 3 language levels A1 (Breakthrough or
beginner), A2 (Waystage or elementary), and Bl (Threshold or intermediate).
However, since only 3 texts were available for the Al level, we decided to merge
the A1 and A2 together (see Table 1 for corpus statistics). Since the overarching
number of examples was too low for a neural network to learn meaningful
representations, we decided to use paragraphs as input in order to ensure an
increased number of samples.

Table 1. Language levels corpus statistics.

Class # Documents # Paragraphs # Sentences # Words
A 37 465 1663 18,307
B 48 333 1105 13,741

The ReaderBench Framework adapted for Russian

A specific set of resources is required for a new language to be integrated into
ReaderBench. From this list, part are mandatory, while others are nice to have. One
mandatory requirement is to have a language model available in spaCy (Honnibal
& Montani 2017), an open-source library written in Python that offers support for
NLP pre-processing tasks, such as part of speech tagging, dependency parsing, and
named entity recognition. SpaCy offers a unified pipeline structure for any language
and, at the moment of writing, spaCy reached version 3.1 with support for
18 languages, including Russian which has been integrated for reproducibility
reasons. Additionally, spaCy includes a multi-language model that can be used for
any language, but with lower performance. All languages have multiple models
(i.e., small, medium, and large) available to address memory or time constraints.
Smaller models are faster to run and require fewer resources, but yield lower
performance.

Semantic models are a key component for the ReaderBench pipeline and for
building the CNA graph. All indices that are calculated based on the meaning of the
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words, the relations between words, sentences and paragraphs need a semantic
language model. ReaderBench generally uses word2vec as a language model
because it is available for most languages from multiple sources. During the
development of this paper, we also considered it fit to align the semantic models
across all the languages available in ReaderBench. Thus, we added support for the
MUSE (Conneau et al. 2018) version of word2vec, where the semantic spaces are
similar across the three languages.

Previous versions of ReaderBench used to compute similarity scores between
textual elements from the CNA graph using LSA, LDA, and word2vec; however,
these models have been outperformed by BERT-based (Devlin et al. 2019)
derivatives. The Transformer architecture introduced by Vaswani et al. (2017)
obtained state of the art results in most NLP tasks, especially with its encoder
component, namely the Bidirectional Encoder Representations from Transformers
(BERT). The original BERT was trained on two tasks: language modeling (where
15% of the tokens were masked and the model tried to predict the best word that
fitted the mask, given the context) and next sentence prediction (given a pair of
sentences, the model tried to predict if the second sentence made sense to follow
the first sentence). The language modeling component is used to represent words in
a latent vector space.

Nowadays, almost all languages have a custom BERT model available, and
Russian is no exception. The ReaderBench library now integrates the DeepPavlov
rubert-base-cased (Kuratov & Arkhipov 2019) BERT-base model to compute
contextualized embeddings. It is important to note that this is the first study in which
ReaderBench indices are computed using BERT-based embeddings.

Besides the above-mentioned libraries and models, ReaderBench can also
benefit from specific word lists which were adapted for Russian, including: list of
stop words (i.e., words with no semantic meaning ignored in preprocessing stages),
list of connectives and discourse markers, and list of pronouns grouped by type and
person; all previous word lists were provided by Russian linguists.

Additional improvements were made to the ReaderBench Python codebase,
including performance optimizations and a refactoring to provide a more efficient
and cleaner implementation of the textual complexity indices. New cohesion-
centered textual complexity indices were added in ReaderBench, as well as a new
aggregation function on top of them — the maximum value at a certain granularity
level (more details are presented in the next section).

Textual Complexity Indices for Russian

The textual complexity indices provided by ReaderBench ensure a multilevel
analysis of text characteristics and are grouped by their scope (see dedicated Wiki
page?). Table 2—6 present the names of the indices, their description, what
component or components from the above enumeration are used, as well as
availability in terms of granularity. Note that, as previously mentioned, all indices

3 https://github.com/readerbench/ReaderBench/wiki/Textual-Complexity-Indices
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require the spaCy pre-processing pipeline to be executed; thus, SpaCy does not
appear as a dependency. The “Granularity” column reflects four possible levels on
which the index is calculated: Document (D), Paragraph (P), Sentence (S), or Word
(W). In general, the value of one level of granularity is computed recursively as a
function of values coming from one level below. For example, word counts are
calculated at the sentence level by considering word occurrences from each
sentence; follow-up at paragraph level, we report the count of the words from all
sentences belonging to a targeted paragraph. The final values presented as indices
are the results of three aggregation functions: mean (abbreviated “M”), standard
deviation (abbreviated “SD”), and maximum (abbreviated “Max”). Thus, an index
can look like “M(Wd / Sent)”, which can be translated as the mean value of words
per sentence in a text. In terms of consistency across languages, all ReaderBench
indices, their acronyms and descriptions, are provided in English.

The surface indices available in ReaderBench are presented in Table 2. These
indices are computed using simple algorithms that involve counting appearances of
words, punctuations, and sentences. Starting from the Shannon’s Information
Theory (Shannon 1948), the idea of entropy at word level is also included as an
index; the hypothesis is that a more varied vocabulary (i.e., higher entropy) may
result in a more difficult text to understand.

Table 2. ReaderBench Surface indices

i — . Granularity
Abbreviation Description Dependencies DlpPlslw
wd Words - X | X|X
UngWd Unique words - X | X|X
Comma Commas - X[ X|X
Punct Punctuation marks (including commas) - X | X|X
Sent Sentences - X | X
WdEnt Word Entropy - X | X|X

The morphology category (see Table 3) contains indices computed using the
part of speech tagger from spaCy. Statistics are computed for each part of speech
(e.g., nouns, verbs), while more detailed statistics are considered for sub-types of
pronouns provided by linguists as predefined lists.

Table 3. ReaderBench Morphology indices

L. . X Granularity
Abbreviation Description Dependencies DIPlslw
PosMain Words with a specific POS - X | X|X
UngPosMain | Unique words with a specific POS - X| X | X
Pron Specific pronoun types Pronoun lists X| X |X

From the syntax point of view (see Table 4), ReaderBench provides indices
derived from the dependency parsing tree. An index is computed for each
dependency type available in the spaCy parser, such as “nsubj” or “cc”. The depth
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of the parsing tree is also an important feature in quantifying textual complexity: if
the depth is high, then the text may become harder to understand.

Table 4. ReaderBench Syntax indices

- . . Granularity
Abbreviation Description Dependencies DIpPls W
Dep Dependencies of specific type - X | X|X
ParseTreeDpth | Depth of the parsing tree - X

Table 5 presents the indices that take into consideration text cohesion derived
from the CNA graph. Cohesion is an important component when assigning text
difficulty, as a lack of cohesion or cohesion gaps can make a text harder to follow
(Dascalu 2014). As expected, a semantic model is required, either word2vec or the
newly introduced BERT-base models. Note that the indices AdjSentCoh,
AdjParCoh, IntraParCoh and InterParCoh were newly added to ReaderBench for
this research.

Table 5. ReaderBench Cohesion indices

i I . Granularity
Abbreviation Description Dependencies Dlpls|w

AdjSentCoh Cohesion between two adjacent sentences Semantic Model | X | X
AdjParCoh Cohesion between two adjacent paragraphs Semantic Model | X
IntraParCoh Cohesion between sentences contained within a [Semantic Model | X | X

given paragraph
InterParCoh Cohesion between paragraphs Semantic Model | X
StartEndCoh Cohesion between first and last text element Semantic Model | X | X
StartMiddleCoh|Cohesion between start and all middle text Semantic Model | X | X

elements
MiddleEndCoh [Cohesion between all middle and last elements |Semantic Model | X | X
TransCoh Cohesion between the last sentence of the Semantic Model | X

current paragraph and the first sentence from

the upcoming paragraph

ReaderBench also provides statistics at individual words level (see Table 6).
Name entity features are computed based on the Named Entity Recognizer from
spaCy, while specific tags depend on the corpus on which the NER model was
trained. For example, the Russian model is trained on a Wikipedia corpus and offers
only 3 tags: location (“LOC”), organization (“ORG”), person (“PER”), while other
models such as the English one offer 18 categories. This may affect the global
statistics when comparing the complexity of texts from two languages, as observed
in follow-up experiments. The syllables are computed using the “Pyphen” library
for each language (Kozea 2016).

For other languages besides Russian, ReaderBench also includes additional
textual complexity indices. For example, none of the Wordnet indices (e.g., sense
counts, depths in hypernym trees) are currently available as the Russian WordNet
(Loukachevitch et al. 2016) is in a different format when compared to the models
integrated in Natural Language Toolkit (NLTK). Additionally, specific word lists
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like Age of Acquisition, Age of Exposure, and discourse connectors are not yet
available for Russian; as such, their corresponding indices are not computed.

Table 6. ReaderBench Word indices

i — . Granularity

Abbreviation Description Dependencies DIPlslw
WdLen Number of characters in a word - X
WdDiffLemma |Distance in characters between word X

(inflected form) and its corresponding lemma
Repetition Number of occurrences of the same lemma - X | X|X
NmdEnt Number of specific types of named entity Named Entity X | X|X
Recognizer

Syllab Number of syllables in a word Rules or Dictionary X

6. Neural Network Architectures combining Textual Complexity Indices
and Language Models

Our first approach for predicting text difficulty involved using ReaderBench
to extract the complexity indices available for the Russian language that were
further introduced into a neural network depicted in Figure 1.a. The architecture
started with an input layer which received the complexity indices for each text as a
list. An optional layer with 128 units and Rectified Linear Unit (“RELU”) activation
function can be added to increase the complexity of the function computed by the
neural network. Next, a dense layer with 32 units and with “RELU” as the activation
function is used as a hidden layer. Finally, the output layer is a dense layer with
only one output and the activation function ‘sigmoid’, which provides the class of
the text.

Second, BERT and its derived models hold state-of-the-art results in multiple
text classification tasks. Thus, we decided to test an architecture that uses only
RuBERT, a BERT-base model trained for the Russian language. We obtained a
semantic representation for each text by computing the mean of the last hidden state
from the RuBERT output. Then, the embedding was feed into a neural network with
an architecture similar to the previous one (see Figure 1.b).

Third, we tested a combination of the two inputs, as the RUBERT embeddings
were concatenated with the ReaderBench indices and fed as input into the neural
network. The architecture of the neural network can be observed in Figure 1.c

7. Statistical Analyses

A statistical approach was adopted to determine which features were
significant in differentiating between textual complexity classes. The Shapiro
normality test (Shapiro & Wilk 1965), as well as the skewness and kurtosis tests
(Hopkins & Weeks 1990), were used to filter ReaderBench indices in terms of
normality. Since most indices were not normally distributed, the Kruskal-Wallis
analysis of variance (Kruskal & Wallis 1952) was employed to determine the
statistical importance of the indices.
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Figure 1. Neural network architectures:
a) Neural Network with ReaderBench indices as input; b) Neural Network with RUBERT embeddings
as input; C) Neural network with both ReaderBench indices and RUBERT embeddings as input
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8. Experimental Setup

The process of training neural networks requires the setup of hyperparameters.
Thus, the Adam optimizer was considered with a learning rate of le-3. The loss
function was binary cross-entropy, given that only two classes were predicted.
Finally, each model was trained for 64 epochs with a batch size of 16.

The neural network architectures were used to classify the Russian texts on the
two language levels: A (Basic user) and B (Independent user). The paragraphs were
extracted from each text and labeled as the category the source text belonged to.
We decided to perform cross-validation to evaluate the models due to the limited
number of examples. There are multiple ways in which cross-validation can be
performed, the most common ones being the 5-fold or 10-fold cross-validations.
However, employing those methods involves limiting even more the input of the
neural network, which in turn requires a substantial amount of data to be trained.
Thus, given the limited number of entries, we elected to use a “leave-one-out”
approach, where the entire corpus except a single entry is used for training a model
at one iteration, followed by evaluation on the remaining entry. The process is
repeated for each entry until the corpus is exhausted and performance is computed
as the mean of all evaluation scores. Our corpus was composed of paragraphs and
leaving one out would have meant that the other paragraphs from the same text
would have been used in the training process which, again, could have generated
biased. Thus, we decided to employ the “leave one text out” cross-validation. In
this approach, an entire text (i.e., all the paragraphs belonging to the selected text)
was left out, while the models were trained on all the other paragraphs. The final
accuracy was reported as the mean of the results for each text.

9. Results

Table 7 depicts the results for the three neural architectures. The complexity
indices from ReaderBench, as well as the RuBERT embeddings, were used as input
to two different architectures: the first with only one hidden layer of 32 units, and
the second with two hidden layers of 128 and 32 units. The scenario where the two
input sources were combined is also presented.

Table 7. Neural networks results

. Leave one text out

Model Input Features Hidden Layers cross-validation (%)
Complexity Indices 1 hidden layer — 32 units 90.58
RUBERT 1 hidden layer — 32 units 87.49
Complexity Indices 2 hidden layers — 128, 32 units 87.05
RuBERT 2 hidden layers — 128, 32 units 88.69
Complexity Indices + RUBERT 1 hidden layer — 32 units 88.23
Complexity Indices + RUBERT 2 hidden layers — 128, 32 units 92.36

Table 8 presents a summary of the results obtained by applying Kruskal-Wallis
test. The indices are divided by categories and subcategories, and each slot
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introduces specific indices that are either statistically significant in differentiating
the texts from the classes A and B or not. The notation is condensed and indices
with the same characteristics are grouped using the “|” character. For example, the
first entry considers the category “Surface” and subcategory word (“Wd”); the
notation “M|Max(Wd / Doc|Par|Sent)” can be expanded to all the possibilities
where “|” appears: M(Wd / Doc), M(Wd / Par), M(Wd / Sent), Max(Wd / Doc),
Max(Wd / Par), Max(Wd / Sent). Additionally, in the “Dep” subcategory there is a
list of dependency types that fitted the same pattern, and they are represented in a
mathematical manner as a set. An important observation is that all features at
document granularity were disregarded in this analysis, given the structure our
data—1i.e., all documents in the dataset contain only 1 paragraph; as such, the indices
for the two granularities were the same. Similarly, the maximum values at
paragraph level were ignored since the maximum and the mean values of only one
entry are the same. An extended table with the descriptive statistics and
corresponding y2 and p values for all statistically significant textual complexity
indices is provided in Appendix 1.

Table 8. Summary of the predictive power of textual complexity indices.

Cl:ttl:z:y Sulla:(ailceegsory Significant Indices (p < .05) Not Significant Indices (p > .05)
Surface wd M|Max(Wd / Sent), SD(wd / Par)
M(Wd / Par), SD(Wd / Sent)
UngWd M|Max(Ungwd / Sent), M(UngwWd / [SD(UngWd / Par)
Par), SD(UngWd / Sent)
Comma M| Max(Commas / Sent), SD(Commas / Par)
M(Commas / Par), SD(Commas /
Sent)
Punct M(Punct / Par), SD(Punct / Sent) M | Max(Punct / Sent), SD(Punct /
Par)
Sent M(Sent / Par) SD(Sent / Par)
WdEntr M|Max|SD(WdEntr / Sent), -
M |SD(WdEntr / Par)
NgramEntr  |[M|Max|SD(NgramEntr_2 / Word) -
Morphology |POS M|Max(POS_noun|_adj|_adv/ SD(POS_noun|_adj|adv / Par)
Sent), M(POS_noun|_adj|_adv / Par),
SD(POS_noun|_adj|_adv / Sent)
SD(POS_pron / Sent) M|Max(POS_noun / Sent),
M(POS_noun / Par),
SD(POS_noun / Par)
M(POS_verb / Par), SD(POS_verb/  |M|Max(POS_verb / Sent),
Sent) SD(POS_verb / Par)
UngPOS M| Max(UngPOS_noun|_adj|_adv/ |SD(UngPOS_noun|_adj|_adv/
Sent), M(UngPOS_noun|_adj|_adv/ |Par)
Par), SD(UngPOS_noun|_adj / Sent)
SD(UngPOS_pron / Sent) M| Max(UngPOS_noun / Sent),
M|SD(UngPOS_noun / Par)
M(UngPOS_verb / Par), M| Max(UngPOS_verb / Sent),
SD(UngPOS_verb / Sent) SD(UngPOS_verb / Par)

357



Dragos Corlatescu et al. 2022. Russian Journal of Linguistics 26 (2). 342-370

Cl:t(::::y Sul!»::;:egi)ry Significant Indices (p < .05) Not Significant Indices (p > .05)
Pron M|Max(Pron_indef / Sent), SD(Pron_indef / Par)
M(Pron_indef / Par), SD(Pron_indef /
Sent)
- M |Max|SD(Pron_fst|Pron_thrd /
Sent),
M |SD(Pron_fst|Pron_thrd / Par)
SD(Pron_snd / Sent) M|Max(Pron_snd / Sent),
M(Pron_snd / Par), SD(Pron_snd /
Par)
Syntax Dep M|Max(Dep_X / Sent), M(Dep_X/  |SD(Dep_X/ Par)
Par), SD(Dep_X / Sent)
X € {nmod, amod, case, acl, obl, det, xcomp, nummod, conj, appos,
mark, cc, objt}
M(Dep_nsubj / Par), SD(Dep_nsubj/ |M|Max(Dep_nsubj / Sent),
Sent) SD(Dep_nsubj / Par)
* All other types of dependencies were not significant
ParseDepth |M|Max(ParseDepth / Sent), SD(ParseDepth / Par)
M(ParseDepth / Par), SD(ParseDepth
/ Sent)
Cohesion AdjCoh M| Max(AdjCoh / Par) SD(AdjCoh / Par)
IntraCoh M| Max(IntraCoh / Par) SD(IntraCoh / Par)
* StartEndCoh, StartMidCoh, MidEndCoh, TransCoh — Not Relevant for this analysis
Word Chars M |Max|SD(Chars / Sent|Word), -

M |SD(Chars / Par)

LemmaDiff |Max|SD(LemmaDiff / Word) Max | M |SD(LemmaDiff / Sent),
M(LemmaDif / Word),
M |SD(LemmaDiff / Par)
Repetitions |M|Max|SD(Repetitions / Sent), -
M |SD(Repetitions / Par)
NmdEnt M|Max(NmdEnt_loc|_org / SD(NmdEnt_loc|_org / Par),
Sent|Word), SD(NmdEnt_loc|_org/ |*All for NmdEnt_per
Sent|Word), M(NmdEnt_loc|_org/
Par),
Syllab M| Max(Syllab / Sent|Word), SD(Syllab / Par)

M(Syllab / Par), SD(Syllab /
Sent|Word)

* mean (abbreviated “M”), standard deviation (abbreviated “SD”), and maximum (abbreviated “Max”)
are the aggregation functions applied at various granularities.

Two methods were employed to determine the efficiency of textual indices
from ReaderBench in differentiating texts from two language levels (i.e., A versus
B): neural networks and statistical analyses. In the first approach, the ReaderBench
features performed better than RUBERT embeddings (see Table 7). Nonetheless,
the neural networks that used only the RUBERT embeddings as input performed
well (i.e., accuracy of 88.69%), even though the BERT embeddings are recognized
for their capabilities to model the meaning of a text. Note that this result does not
imply that ReaderBench indices are better than BERT on text classification tasks in
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general, but rather argue that ReaderBench textual complexity indices can be
successfully employed to assess text difficulty.

Both inputs, ReaderBench textual complexity indices and RuBERT
embeddings, were used in different versions of initial neural network. The results
from Table 7 indicate that adding an extra hidden layer for the neural network with
only textual complexity indices decreased performance, thus arguing that the
function that maps the inputs to the predicted class should be a simple one. In
contrast, the BERT embeddings benefitted from the additional layer, therefore
arguing that the mapping between the encodings and the complexity of a text is
more complex than in the previous case. In the third configuration the two input
sources were combined and tested on the same task; this architecture achieved the
highest score (92.36%) with two hidden layers, benefiting from both handcrafted
features and BERT contextualized embeddings. The intuition behind the
performance increase is that the two approaches complement each other.

The statistical analysis using Kruskal-Wallis statistical test showed that the
majority of indices were significant in differentiating between the two classes. In
general, the indices aggregated with the standard deviation function were not so
statistically significant, while the mean and the maximum related indices proved to
be more predictive. While considering Appendix 1, the “nmod” dependency
category was the most influential one, ranking first in the Kruskal-Wallis y2(1)
score with the index Max(Dep nmod / Sent) (x2 = 84.48,p <.001), as well as having
6 appearances in top 10 most influential features. The nominal modifier appeared
more frequently in more complex texts (B) than in the less complex texts (A). In
the same syntactic category, the “amod” dependency also exhibited similar patterns.

In terms of morphology, the number of nouns was higher in B texts than in A
text, both as rough count and unique count. The mean value of nouns at sentence
level was ranked 2™ in terms of effect size (M(POS_noun / Sent); ¥2 = 84.31, p <
.001), while other 3 related indices made it to top 10 most predictive features. The
number of adjectives was also statistically significant, with the most predictive
index in this subcategory (i.e., M(POS_adj / Par); x2 = 69.28, p <.001) ranking in
top 5% of all the indices.

From the Word category, character indices performed best in terms of
separating the two types of texts (e.g., M(Chars/Word); 42 = 76.03, p <.001), all
the three variations being close to each other in the ranking. This finding supports
the intuition that easier texts generally have shorter words in their composition.
Strongly related to this subcategory is the syllables subcategory that also had an
important impact (e.g., M(Syllab / Word); 2 = 73.08, p <.001).

From the remaining two categories, Surface and Cohesion, the highest impact
was obtained by the features regarding the number of unique words (e.g.,
M(UngWd / Par); 2 = 32.74, p <.001) and, respectively, the middle end cohesion
feature (e.g., M(MidEndCoh / Par); y2 = 25.89, p <.001). As it can be seen from
Table 8, these features were still statistically significant in differentiating the two
categories of texts, but they are in the middle of overall rankings in terms of
predictive power (i.e., ranks between places 70 and 100).
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10. Discussion

Our findings indicate that the ReaderBench textual complexity indices, which
span across multiple levels of analysis, provide valuable insights into the
differences between two language levels for foreign Russian learners (A-Basic User
and B-Independent User). From a machine learning perspective, the results are
interesting, as a simple neural network using the features extracted with
ReaderBench outperformed the Russian version of BERT, namely RuBERT, in the
task of text classification. Nonetheless, this result likely occurred given that the
complexity indices were specifically fitted for this task. In addition, we observed
that the combination of features from both methods improved the overall
classification scores. As such, the methods complement one another and the texts
from the two categories differ from each other in terms of both textual complexity
features and underlying themes (represented by meaning).

A follow-up analysis was centered on the textual complexity features; as such,
the Kruskal-Wallis test was used to identify the most predictive indices,
individually and per category. From the syntactic point of view, we can observe
that the two most impactful features were “nmod” and “amod”. The nominal
modifier (i.e., “nmod”) consists of a noun or a noun phrase that is expressed in
Russian using genitive, while showing the possessiveness of another noun; “amod”
is similar, with the difference that the syntactical formation is an adjectival phrase.
Thus, both “amod” and “nmod” modify the meaning of a noun. In other words,
adding more information to the nouns seems to make texts more difficult to
comprehend.

From the surface category, the most significant feature is the number of unique
words. Although this feature is not that impactful, it suggests that B texts tend to be
longer than A texts. Nonetheless, it is more interesting to emphasize the underlying
reason: from the morphological category, the number of nouns and of adjectives
influence most the differences between the two types of texts; thus, additional
concepts (i.e., nouns) are introduced, with corresponding descriptions (i.e.,
adjectives). In contrast, the number of verbs indicative of actions has a lower y2
value in comparison to the previously mentioned parts of speech. Thus, texts that
are ranked as being more difficult include more descriptive passages rather than
action centered.

When considering semantics, text cohesion does not differ that much in
comparison to the other categories, although is statistically significant at in-between
sentences from the input paragraph. Yet again, this was an expected result, given
that text cohesion is a measure of how well ideas relate to one another and flow
throughout the text; nevertheless, texts are well written by experts and should be
cohesive.

Our statistical analysis pinpointed that the difficulty of Russian texts comes
from the usage of more descriptive passages that include phrases rich in nouns and
adjectives. Other characteristics, such as the number of (unique) words, are logical
implications of the previous idea. Given that the considered corpus was developed
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by language experts and can be considered of reference for the Russian educational
system, our findings can further support the design of new materials for L2
education. In addition, ReaderBench can be used in other experiments or domains
where textual complexity is an important factor, as it can be used to quantify the
differences between B and C language level texts, between manuals from two
different grade levels, or to estimate the difficulty of science, politics, or law texts.

11. Conclusions and future work

This paper introduced the adaptation of the open-source ReaderBench
framework to support multilevel analyses of Russian language in terms of
identifying text characteristics reflective of its difficulty. Numerous improvements
were made, starting from code refactoring, the addition of new indices (e.g.,
adjacent cohesion for sentences and for paragraphs, inter-paragraph cohesion) and
of the maximum aggregation function, the integration of BERT language model as
input for building the CNA graph, as well as the usage of the MUSE version of
word2vec that provides multilingual word embeddings.

The ReaderBench textual complexity indices together with BERT
contextualized embeddings were used as inputs to predict the language level of texts
from two classes: A (Basic User) and B (Independent User). Both approaches,
namely neural network architectures and the statistical analyses using the Kruskal-
Wallis test, confirmed that the complexity indices from ReaderBench are reliable
predictors for text difficulty. The best performance of the neural network using both
handcrafted features and BERT embeddings achieved a 92.36% leave one text out
cross-validation, thus arguing for the model’s capability to distinguish between text
of various difficulties.

ReaderBench can be used to assess the complexity of Russian texts in different
domains, including law, science, or politics. In addition, our framework can be
employed by designers and developers of educational materials to evaluate and rank
learning materials.

In terms of future work, we want to further extend the list of Russian textual
complexity indices available in ReaderBench, including discourse markers and the
Russian WordNet which currently is not aligned with the Open Multilingual
Wordnet format. In addition, we envision performing additional studies regarding
the complexity of the Russian texts and focusing on textbooks used in the Russian
educational system, as well as multilingual analyses highlighting language
specificities.
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Appendix 1. Statistically significant ReaderBench indices

Index M ?SD) M ?SD) X2(1) p
Max(Dep_nmod / Sent) 0.49 (0.84) 1.24 (1.33) 84.48 <.001
M(POS_noun / Sent) 1.50 (1.25) 2.58 (1.84) 84.31 <.001
M(Dep_nmod / Sent) 0.22 (0.41) 0.64 (0.79) 83.55 <.001
Max(POS_noun / Sent) 2.27 (2.12) 3.82(2.63) 82.50 <.001
M(Dep_nmod / Par) 1.10 (3.57) 2.14 (2.67) 81.24 <.001
M(UngPOS_noun / Sent) 1.50 (1.24) 2.51(1.76) 79.97 <.001
Max(UngPOS_noun / Sent) 2.26 (2.09) 3.73 (2.54) 78.43 <.001
Max(NgramEntr_2 / Word) 2.05 (0.34) 2.20(0.45) 76.74 <.001
M(Chars / Word) 3.97 (0.98) 4.43 (1.12) 76.03 <.001
Max(Chars / Word) 9.21 (2.46) 10.76 (3.39) 74.83 <.001
M(POS_noun / Par) 6.96 (18.39) 8.81(8.13) 73.83 <.001
M(Dep_amod / Par) 1.91 (6.70) 2.41(2.72) 73.77 <.001
M(Syllab / Word) 1.73 (0.32) 1.89 (0.46) 73.08 <.001
Max(Syllab / Word) 3.66 (1.04) 4.27 (1.39) 72.10 <.001
M(UngPOS_noun / Par) 5.80 (13.29) 7.96 (7.10) 69.45 <.001
M(POS_adj / Par) 2.65 (8.85) 3.28(3.39) 69.28 <.001
M(UngPOS_adj / Par) 2.42 (7.52) 3.18 (3.25) 69.05 <.001
Max(ParseDepth / Sent) 4.06 (1.61) 5.09 (2.06) 66.62 <.001
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Index M ?SD) M :BSD) x2(1) p
Max(Dep_amod / Sent) 0.70(1.12) 1.29 (1.23) 66.28 <.001
M(Dep_amod / Sent) 0.35(0.57) 0.73(0.82) 65.66 <.001
SD(Dep_nmod / Sent) 0.18 (0.36) 0.47 (0.61) 63.21 <.001
Max(POS_adj / Sent) 0.97 (1.30) 1.68 (1.46) 62.27 <.001
Max(UnqPOS_adj / Sent) 0.97 (1.29) 1.66 (1.43) 62.25 <.001
SD(Syllab / Word) 0.88 (0.28) 1.01 (0.41) 62.20 <.001
M(NgramEntr_2 / Word) 0.88 (0.27) 0.98 (0.27) 62.15 <.001
M(POS_adj / Sent) 0.51 (0.67) 0.97 (0.98) 60.85 <.001
M(UngPOS_adj / Sent) 0.51 (0.66) 0.96 (0.96) 60.81 <.001
SD(Chars / Word) 2.71(0.71) 3.03 (0.94) 58.24 <.001
M(ParseDepth / Sent) 3.43 (1.00) 4.07 (1.47) 53.99 <.001
SD(Dep_amod / Sent) 0.23 (0.41) 0.46 (0.53) 47.14 <.001
M(Dep_case / Par) 3.03(7.92) 3.45 (3.74) 39.03 <.001
SD(POS_noun / Sent) 0.61 (0.83) 1.07 (1.15) 38.47 <.001
SD(POS_adj / Sent) 0.34 (0.52) 0.58 (0.62) 38.30 <.001
SD(UngPOS_adj / Sent) 0.34 (0.52) 0.58 (0.61) 37.76 <.001
SD(UngPOS_noun / Sent) 0.61 (0.82) 1.04 (1.11) 36.88 <.001
SD(ParseDepth / Sent) 0.54 (0.69) 0.85 (0.81) 34.05 <.001
M(Unqwd / Par) 27.37 (48.36) 31.79 (24.87) 32.74 <.001
SD(NgramEntr_2 / Word) 0.78 (0.18) 0.82(0.21) 31.88 <.001
Max(UngWd / Sent) 11.72 (7.00) 14.93 (8.52) 31.81 <.001
M(WdEntr / Par) 2.58 (0.93) 2.84 (1.06) 31.78 <.001
M(Wd / Par) 39.37(93.19) 41.26 (36.14) 31.65 <.001
Max(WdEntr / Sent) 2.23(0.67) 2.4 (0.82) 31.30 <.001
Max(Wd / Sent) 12.76 (8.31) 16.56 (10.35) 29.49 <.001
Max(Dep_case / Sent) 1.17 (1.36) 1.69 (1.50) 29.39 <.001
SD(Dep_acl / Sent) 0.03 (0.11) 0.09 (0.20) 29.16 <.001
M(Pron_indef / Par) 1.34 (3.69) 1.65 (2.08) 28.83 <.001
M(Dep_case / Sent) 0.66 (0.78) 0.94 (0.85) 28.77 <.001
SD(Pron_indef / Sent) 0.24 (0.38) 0.4 (0.48) 28.44 <.001
M(Dep_obl / Par) 2.66 (7.21) 2.72 (3.06) 27.91 <.001
M(Dep_det / Par) 0.88 (2.34) 1.22 (1.72) 27.26 <.001
Max(Dep_det / Sent) 0.45 (0.74) 0.77 (1.01) 27.20 <.001
M(Dep_xcomp / Sent) 0.11 (0.26) 0.21 (0.35) 26.88 <.001
SD(Dep_case / Sent) 0.39 (0.54) 0.64 (0.70) 26.82 <.001
M(Dep_xcomp / Par) 0.60 (1.89) 0.76 (1.21) 26.80 <.001
Max(Dep_xcomp / Sent) 0.29 (0.55) 0.51 (0.74) 26.43 <.001
SD(Wd / Sent) 2.47 (3.25) 3.86 (3.92) 26.32 <.001
Max(Pron_indef / Sent) 0.61 (0.85) 0.92 (0.99) 26.19 <.001
M(MidEndCoh / Par) 0.23 (0.32) 0.35 (0.35) 25.89 <.001
Max(LemmaDiff / Word) 1.31(0.87) 1.63 (0.99) 25.80 <.001
M(Dep_acl / Sent) 0.02 (0.12) 0.06 (0.14) 24.68 <.001
SD(Dep_det / Sent) 0.19 (0.36) 0.33 (0.45) 24.57 <.001
SD(Ungwd / Sent) 2.17 (2.77) 3.31(3.28) 24.31 <.001
M(Dep_acl / Par) 0.17 (1.02) 0.26 (0.61) 24.23 <.001
Max(Dep_acl / Sent) 0.08 (0.30) 0.20(0.43) 24.18 <.001
M(Dep_nummod / Sent) 0.04 (0.22) 0.10(0.30) 23.29 <.001
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Index M ?SD) M :BSD) x2(1) p
M(Dep_det / Sent) 0.19 (0.33) 0.33(0.62) 22.94 <.001
Max(Dep_nummod / Sent) 0.12 (0.41) 0.29 (0.64) 22.90 <.001
M(Dep_nummod / Par) 0.16 (0.62) 0.35(0.86) 22.10 <.001
Max(Dep_obl / Sent) 1.02 (1.25) 1.38(1.27) 21.88 <.001
M(UngWd / Sent) 9.02 (4.39) 10.94 (6.11) 21.57 <.001
M(Pron_indef / Sent) 0.29 (0.43) 0.43 (0.56) 21.20 <.001
SD(Dep_xcomp / Sent) 0.12 (0.24) 0.23(0.35) 21.19 <.001
SD(Dep_obl / Sent) 0.36 (0.51) 0.54 (0.60) 20.91 <.001
SD(Dep_nummod / Sent) 0.05 (0.18) 0.13(0.30) 20.37 <.001
M(Sent / Par) 3.58(7.30) 3.32(2.59) 20.15 <.001
M(Wd / Sent) 9.57 (4.95) 11.84 (7.39) 19.55 <.001
SD(Repetitions / Sent) 0.34 (0.68) 0.53(0.82) 18.27 <.001
M(Dep_conj / Par) 2.18 (5.95) 2.08 (2.48) 18.14 <.001
M(Dep_obl / Sent) 0.54 (0.68) 0.73(0.712) 17.79 <.001
M(Commas / Par) 3.01 (7.55) 3.12 (3.43) 16.97 <.001
M(Dep_appos / Sent) 0.09 (0.27) 0.18 (0.41) 16.95 <.001
M(WdEntr / Sent) 1.99 (0.57) 2.09 (0.72) 16.82 <.001
SD(POS_adv / Sent) 0.37 (0.52) 0.51 (0.57) 16.19 <.001
M(StartMidCoh / Par) 0.23 (0.32) 0.32(0.34) 16.09 <.001
SD(UngPOS_adv / Sent) 0.36 (0.52) 0.50 (0.55) 15.72 <.001
M(Dep_obj / Par) 1.74 (4.35) 1.89 (2.43) 15.49 <.001
SD(Dep_cc / Sent) 0.27 (0.42) 0.39 (0.46) 15.46 <.001
Max(Dep_appos / Sent) 0.21 (0.51) 0.36 (0.66) 15.25 <.001
Max(Dep_conj / Sent) 0.94 (1.33) 1.23 (1.34) 15.03 <.001
SD(Dep_advmod / Sent) 0.40 (0.56) 0.57 (0.66) 14.70 <.001
M(Dep_appos / Par) 0.33 (1.07) 0.42 (0.86) 14.34 <.001
M(UngPOS_adyv / Par) 1.94 (3.90) 2.21(2.50) 13.75 <.001
Max(UngPOS_adv / Par) 1.94 (3.90) 2.21(2.50) 13.75 <.001
SD(Pron_int / Sent) 0.15 (0.28) 0.24 (0.34) 13.58 <.001
M(Pron_int / Par) 0.57 (1.42) 0.80(1.22) 13.47 <.001
M(POS_adv / Par) 2.19 (4.85) 2.33(2.72) 13.44 <.001
M(Punct / Par) 8.34 (18.53) 7.74 (6.6) 13.39 <.001
M(Dep_mark / Par) 0.61 (1.54) 0.84 (1.41) 13.22 <.001
Max(Dep_obj / Sent) 0.75(0.91) 0.99 (0.99) 12.82 <.001
SD(Dep_conj / Sent) 0.35 (0.56) 0.48 (0.61) 12.76 <.001
M(Dep_nsubj / Par) 4.18 (10.36) 3.77(3.7) 12.74 <.001
SD(Commas / Sent) 0.45 (0.61) 0.60 (0.66) 12.74 <.001
Max(POS_adv / Sent) 1.01 (1.20) 1.29 (1.27) 12.66 <.001
SD(Dep_mark / Sent) 0.15 (0.29) 0.23 (0.34) 12.62 <.001
Max(Dep_mark / Sent) 0.35 (0.59) 0.53(0.73) 12.61 <.001
SD(WdEntr / Sent) 0.23 (0.29) 0.30(0.29) 12.49 <.001
Max(Commas / Sent) 1.32 (1.41) 1.68 (1.53) 12.41 <.001
Max(UngPOS_adv / Sent) 1.00 (1.18) 1.27 (1.22) 12.32 <.001
Max(Pron_int / Sent) 0.36 (0.57) 0.55 (0.73) 12.32 <.001
SD(Dep_obj / Sent) 0.29 (0.41) 0.40 (0.45) 12.25 <.001
M(Dep_cc / Par) 1.73 (4.53) 1.71(2.16) 12.14 <.001
M(Repetitions / Par) 1.85 (5.64) 1.96 (3.06) 11.87 <.001
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Index M ?SD) M :BSD) x2(1) p
M(SentAdjCoh / Par) 0.35(0.33) 0.43 (0.33) 11.81 <.001
M(Dep_mark / Sent) 0.15 (0.31) 0.22(0.39) 11.66 <.001
M(Dep_advmod / Par) 2.65 (5.95) 2.72 (3.19) 11.36 <.001
M(StartEndCoh / Par) 0.35(0.34) 0.42 (0.35) 11.32 <.001
M(POS_verb / Par) 5.65 (13.16) 5.16 (5.15) 11.19 <.001
M(UnqPOS_verb / Par) 5.19 (11.26) 4.92 (4.83) 10.90 <.001
SD(NmdEnt_loc / Sent) 0.09 (0.30) 0.15(0.35) 10.82 .001
SD(POS_verb / Sent) 0.54 (0.67) 0.70 (0.72) 10.74 .001
SD(Punct / Sent) 0.66 (0.84) 0.87 (0.97) 10.32 .001
Max(Repetitions / Sent) 0.98 (1.78) 1.37(2.13) 10.11 .001
SD(UngPOS_verb / Sent) 0.54 (0.67) 0.68 (0.71) 9.91 .002
M(Pron_int / Sent) 0.15 (0.28) 0.22(0.39) 9.69 .002
Max(Dep_advmod / Sent) 1.18 (1.33) 1.48 (1.44) 9.67 .002
Max(Dep_cc / Sent) 0.73 (0.94) 0.93 (0.99) 9.59 .002
M(Dep_fixed / Sent) 0.03 (0.13) 0.08 (0.24) 9.51 .002
SD(LemmaDiff / Word) 0.39 (0.22) 0.42 (0.23) 9.35 .002
M(NmdEnt_org / Sent) 0.01(0.12) 0.06 (0.29) 9.05 .003
Max(NmdEnt_org / Sent) 0.06 (0.51) 0.12 (0.5) 8.91 .003
M(NmdEnt_org / Par) 0.10 (0.98) 0.14 (0.66) 8.87 .003
SD(Dep_expl / Sent) 0.00 (0.05) 0.02 (0.1) 8.62 .003
M(NmdEnt_loc / Sent) 0.08 (0.29) 0.13 (0.34) 8.60 .003
M(Dep_conj / Sent) 0.47 (0.64) 0.62 (0.86) 8.50 .004
M(NmdEnt_loc / Par) 0.40 (2.53) 0.51 (1.26) 8.42 .004
SD(Dep_fixed / Sent) 0.05 (0.18) 0.12(0.32) 8.24 .004
M(Dep_obj / Sent) 0.39 (0.49) 0.50 (0.56) 8.17 .004
Max(Dep_expl / Sent) 0.01 (0.10) 0.04 (0.2) 8.16 .004
M(Dep_expl / Sent) 0.00 (0.06) 0.01 (0.08) 8.14 .004
M(Dep_expl / Par) 0.01 (0.13) 0.05 (0.22) 8.13 .004
Max(Dep_fixed / Sent) 0.15 (0.47) 0.25 (0.58) 7.93 .005
SD(Dep_appos / Sent) 0.07 (0.21) 0.13(0.30) 7.76 .005
Max(NmdEnt_loc / Sent) 0.23 (0.72) 0.33(0.73) 7.76 .005
M(Dep_fixed / Par) 0.19 (0.63) 0.27 (0.65) 7.67 .006
SD(Dep_iobj / Sent) 0.11 (0.25) 0.15 (0.26) 7.34 .007
SD(POS_pron / Sent) 0.44 (0.58) 0.56 (0.67) 7.02 .008
SD(Dep_advcl / Sent) 0.09 (0.21) 0.13 (0.24) 6.67 .010
SD(Dep_nsubj / Sent) 0.36 (0.47) 0.45 (0.52) 6.62 .010
M(Commas / Sent) 0.74 (0.80) 0.93 (1.01) 6.50 .011
SD(UngPOS_pron / Sent) 0.42 (0.56) 0.52 (0.60) 6.11 .013
M(Repetitions / Sent) 0.43 (0.73) 0.64 (1.52) 5.74 .017
M(POS_adv / Sent) 0.55 (0.74) 0.65 (0.74) 5.72 017
SD(Pron_snd / Sent) 0.06 (0.20) 0.11 (0.27) 5.51 .019
M(UngPOS_adyv / Sent) 0.55 (0.73) 0.65 (0.73) 5.49 .019
SD(NmdEnt_org / Sent) 0.01 (0.12) 0.05 (0.22) 5.39 .020
SD(Dep_csubj / Sent) 0.04 (0.15) 0.07 (0.18) 5.07 .024
SD(Dep_ccomp / Sent) 0.07 (0.19) 0.11(0.23) 5.01 .025
Max(Dep_csubj / Sent) 0.10(0.32) 0.16 (0.39) 4.85 .028
M(Dep_csubj / Sent) 0.04 (0.14) 0.05 (0.18) 4.80 .029
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Index M ?SD) M :BSD) x2(1) p
M(Dep_ccomp / Par) 0.27 (0.84) 0.36 (0.80) 4.55 .033
Max(Dep_ccomp / Sent) 0.19 (0.43) 0.26 (0.50) 4.35 .037
M(Dep_csubj / Par) 0.16 (0.59) 0.18 (0.46) 4.34 .037
Max(Dep_iobj / Sent) 0.28 (0.54) 0.35 (0.56) 4.28 .039
M(Dep_ccomp / Sent) 0.08 (0.23) 0.10(0.23) 4.24 .039
M(Dep_iobj / Par) 0.50 (1.43) 0.47 (0.91) 3.95 .047
M(Dep_cc / Sent) 0.38 (0.50) 0.45 (0.55) 3.89 .049
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