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Abstract. The paper proposes a stable method for constructing a normal to a surface
given approximately. The normal is calculated as the gradient of the function in the
surface equation. As is known, the problem of calculating the derivative is ill-posed.
In the paper, an approach is adopted to solving this problem as to the problem of
calculating the values of an unbounded operator. To construct its stable solution,
the principle of minimum of the smoothing functional in Morozov’s formulation
is used. The normal is obtained in the form of a Fourier series in the expansion
in terms of eigenfunctions of the Laplace operator in a rectangle with boundary
conditions of the second kind. The functional stabilizer uses the Laplacian, which
makes it possible to obtain a normal in the form of a Fourier series that converges
uniformly to the exact normal vector as the error in the surface definition tends
to zero. The resulting approximate normal vector can be used to solve various
problems of mathematical physics using surface integrals, normal derivatives, simple
and double layer potentials.

Key words and phrases: ill-posed problem, stable derivative calculation, regular-
ization method, discrete Fourier series

1. Introduction

When solving many problems of mathematical physics, which are boundary
value problems for partial differential equations, there is a need to calculate the
normal to the surface, in particular, when calculating the normal derivative.
For example, when calculating the potentials of a simple and double layer, as
well as other surface integrals.

In the case when the surface is known “exactly”, that is, for example, it is
given by an equation with an exactly known function

F(z,y,2) =0, (1)
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then the normal (generally speaking, not unit normal) will be calculated up
to the sign in the form of the gradient of the function in the equation of the
surface

n, = gradF(z,y,z) = VF. (2)

In applied problems, a situation may arise when the surface is not known
accurately. The error may be related to the measurement error, digitization,
or the surface data is the result of modeling, that is, it contains the model
error. That is, even in the case when the surface is given by the equation
z = F(z,y), where the function F'is given analytically, that is, “exactly”,
such a surface can be considered as “model”, approximately describing “real”
surface.

In applied problems, a situation may arise when the surface is not known

accurately. In the case when the surface is known inaccurately, it becomes
necessary to calculate the normal to the surface given approximately.

As follows from (2), the calculation of the normal is related to the calculation
of the derivatives of the function in the equation of the surface. As [1] is
known, such a problem is ill-posed and in the case when the surface is known
approximately, the use of regularizing algorithms is required to obtain its
approximate solution.

The problem of calculating the derivative of a function as an ill-posed
problem has been considered in many works, for example [2-9] and others.
Here, following [10], we will solve the problem of stable differentiation as
a problem of calculating the values of an unbounded operator.

2. Problem statement

When solving the problem of constructing a normal vector to a surface, we
confine ourselves to considering a surface of the form

S={(r,y,2): 0<z2<l,,0<y <, z=F(z,y)}, (3)
that is, a surface given by the equation
z=F(z,y), FeC*1) (4)
on a rectangle
M= {(r,y):0<2 <, 0<y <} (5)

As follows from (2), for an exactly given function F, the normal vector is
calculated by the formula

n, = grad (F(z,y) —2) =V, F — k. (6)

Let the surface S be given with an error, namely: instead of the exact
function F in (3), there is a function F'* defined on a rectangle II of the

form (5), so
e, < b @
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Let us pose the problem of constructing a uniform approximation to the
normal vector to the surface that converges uniformly to the exact one as
w— 0.

Note that the normal vector is needed to calculate the normal derivative

of the function <% = (n,Vyp), n= ﬁ, as well as when calculating surface
n

on

1
integrals to calculate a surface element do = ny(z,y)dxzdy.

3. Constructing a stable solution to the problem

To calculate the normal vector to the surface given by the equation (2), in
accordance with (6), it is necessary to calculate the gradient V,, F. To obtain
a solution of the formulated problem that is stable to the error (7), we use
the [11] approach, which consists in the fact that the problem of calculating
the gradient V,, F'is considered as the problem of calculating the values of an
unbounded operator [10]. In contrast to [11]|, we will consider the Laplacian
instead of the gradient as an unbounded operator, which allows us to obtain
a uniform approximation for the normal.

As an approximation to the function V, F, computed from the known
function F* related to the function F' by the condition (7), we will consider
the gradient of the extremal of the functional

NOW] = W — PR BIAWE L B> 0 ®)

in which the squared norm of the Laplacian of the argument of the functional
is used as a stabilizer.

We assume that the surface S of the form (3) satisfies the conditions

Fa/c’:czo,lz = 07 0; F;;”'a::O,l:c = 05 F;/'y:O,ly =0. (9)

/| _
yly=0,l, —

We obtain the Euler equation for the functional (8). To vary the functional,
we have

SNPW] =2(W — FFr §W) + 2B(AW, ASW). (10)
We write the second scalar product in (10) as a double integral
1.1

Yy

SNPIW] = 2(W — Fr §W) + QB/ drdyAW (x, y) AW (z,y).  (11)
0 0

Separating the second derivatives in the Laplacian and changing the order
of integration over the variables x and y, we transform the double integrals
by integrating by parts:

11

//dxdyAW(SC,y)A(SW(l’,y) =
00
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ly

, Ly Ly
2 52
= /dy/dxAW(x,y)%(;W(x,y)—|—/dx/dyAW x y oy W (z,y) =
0 0

0
l

T

o 0
_/dx%AW(x,y)%CSW(CE,y)} +

0
Ly

0 0

ZA = . (12
/dyay W(fc,y)ay(mf(x,y) (12)
0

dy | AW (z,y)dW, (z,

~°\N
)

y= l

—f—/d:c AW (z,y)dW, (z, y)’ B
0

Since the extremal must satisfy the same boundary conditions, the variations
of the derivatives at the boundary are equal to zero, and the one-time integrals
are equal to zero. Integrating the remaining integrals by parts again, we
obtain

1

x Y

//dxdyAW(a:,y)AcSW(iU,y) =
0 0
-,

ly
= /dy /dm—AW x y)ﬁgéW(x y)] +
L 0

l -

x

0 0
/dw —/dy%AW(w,y)a—fW(w,y) =

0

_|_

—AW, (z,y)

W (x y)éW(x,y)} +

Ly
- fo
0
l

—l—/dw AW’xy)ény
0

8

W(z,y)oW(z,y)| . (13)

o
o[k

Since, in accordance with the boundary conditions

0? 0?

/ . Vi _ %
(9 2W ‘w 0,1, 07 W, |y:0,ly - 0’ o912 ylyzO,ly

m _
Wm ‘aczO,lJB - 07 Y

=0.

Then the one-time integrals in (13) are equal to zero and, thus, we obtain

11

x Y

ly l,
2
//d:cdyAW(x Y)AIW (z,y) /dy/dw%AW(m,y)éW(m,y)—i—
0 0
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l, l

+0/ld O/l Ay 3 AW (z,y)6W (x,y) :o/d /dyAZW(w y)oW (z,y). (14)

Now, for the variation of the functional (10), taking into account (14), we
obtain
SNBW] = 2(W — FH W) + 28(AW, ASW) =
=2(W — FH W) + 2B(A%2W,6W). (15)

Equating the variation to zero and adding boundary conditions (9), we
obtain that the extremal of the functional (8) is a solution to the following
boundary value problem for the Euler equation

(BAW + W = Fn,
Wlo—ou, =0,

< gj\y:o,zy =0,

Wi le=01, =0,

(W0, = 0.

We will seek the solution of this boundary value problem in the form of an
expansion in the Fourier series

Wi(z,y) = Z an cos 7Tlnx cos @ (16)
n,m=0 T Yy

in terms of the eigenfunctions of the Laplace operator satisfying the boundary

conditions (9)
mmx  wmy)
cos L cos = : (17)

Y n,m=0

The solution of the boundary value problem for the Euler equation is
obtained in the form

= El T  mmy
m . nm
W (z,y) = ) mg . 17 BEL, cos L cos I, (18)

where, for brevity, the notation is introduced

n?2  m2 1/2
knm =T <Z_2 + l_2> )

T Yy
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and the Fourier coefficients ﬁ#m have the form

~ 4
Flim = “ontm /F“(x,y) cos Wzm cos mydxdy,

lwly i T ly (19)
e, =1, n#0, g =0.5.

It is easy to see that the series (18) converges uniformly on the rectangle II.
As an approximation to the gradient of the function F*, we will consider
the vector function

vxng(xa y) =

= i —ﬁ#m —i@ sin e cos Ty _ sTm cos e sin my (20)
- 1+pka \ 1, " LY l L)

x Yy Yy z Yy

n,m=0

The series (20) also converges uniformly on II. Indeed, applying the Cauchy—
Bunyakovsky inequality, in particular, for the z-component of the gradient,
we obtain

‘a ”)‘
< i | Bl ﬂ Z | Bl B, Z |7, m|\/€n€m
\nm 01+6knm z \ 01+Bk nm 0 6 E

IS 3

,m=

1 4 XN g6 L, S (Fh)2\°  C
< = nzm 2zY ANy < || FH . (21
- ﬁ (lﬂ?ly n%:() k?lm ) ( 4 n;() 5ngn% ) h BH ||L2<H) ( )

A similar estimate can be obtained for the y-component of the gradient. In
addition, the uniform convergence of the series (18) is also proved.

Let us now prove the convergence of the series (18) and (20) to F' and
grad F, respectively, as u — 0.

Let F*— be an even-periodic continuation of the function F with period 21,
in variable z and period 2[, in variable y from a rectangle II of the form (5),

that is

Ft(z,y)=F(z,y), (z,y)ell; F'(—z,y)=F(z,y), (zy) el
Fr(z,—y) = F(z,y), (=, y)GH‘ Ft(—x,—y) = F(z,y), (z,y) €Il

Fr(z+2l,n,y+2l,m) = F*(z,y), (v,y)¢€ R?, n,m=4+1,42, ...
Theorem 1. Let F'* € C%(R?), M > IAF|, )’ B = B(p) = p?/M?>.
2
Then 3
n

Ve W vmyd] (<2 uM—0 as p— 0. (23)
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Proof. Let’s introduce a notation for a function of the form (18) for =0

~

= F,. ™x  Tmy
We(z,y) = Z T Bk oS o cos L (24)

n,m=0

Let us prove the estimate (22) in the assertion of the theorem. Applying
the triangle inequality for the norm of the difference Wg — F we obtain

s, <l e, e

Using the orthogonality of the trigonometric system, for the first norm on
the right side (25) we obtain

Wi — Wﬁ<u>||2L2(H) =
(Bt — Fp ) 1,0

BRI e D S

2
< HFH o H‘LZ(H) = IUQ' (26)

n

And for the second norm on the right side (25) under the conditions of the
theorem, we obtain:

2
HWB(M)_FH
2 11 2 oo A 2o
= F2 i gﬁQmaX(L> § o monmrly o
nao 1_|_5k4 ) 4e,em z \14 pz? w0 4EnEm
2 2
1% 2 M

Here we have used the fact that under the conditions of the theorem

o kA F2 11

nm* nm'z 2
> = A, <M, (28)

0 4e, €0
as well as the value of the maximum
(752) =
max | ——— | = —.
= \1+p22) 2B

For the difference norm on the left side (25) with 8(u) = pu?/M? from (26)
and (27) we obtain

3
W5 — "ﬂL?(H) Sh % = SH- (29)



E.B. Laneev, O. Baaj, On a stable calculation of the normal... 235

We now obtain the estimate (23) by applying the triangle inequality
K
[~V

<[V = VoW, I W=

Estimate the first difference in on the right side (30):

wa—vwm@@=/

. i Ft, — ﬁnm ™ T mmy
_1 —_—_———— — —_—
1+ 8k, L, l, L,

I m=0
i Ely—FE mm . mmy  wnax ’
nm .
—J ——sin cos dxdy =
e Bk l, l, L,
~ ~ 2
> K, —F
= / Z —Mm_—nm 4”m m sin me cos ™y dxdy+
N et 1+ Bkt L, L, l,
~ ~ 2
OO EY, — F
/ it T T i T o T2 dzdy. (31)
N el L+ Bkpm 1, l, L,

Using the orthogonality of the trigonometric system, we obtain:

v, W' v, W’ = (P — F, )2 )\ Ll
Ve = ¥ BHLz( ; (1+ Bk4,,)° (l_> .

n 0 €T

s (Bt — F,,.)° (Wm>2 Ly Ll (Bt = B ) K2,
(

n,m=0 (1 + Bk%m)2 4€n€m 4 n,m=0 En€m (1 + ﬁk%m>2

~ 2
x 2 & #m - an) la:ly 1 2
S max <1 n @x4> 2 e e, - TBHFN — iy

Here we have used the estimate for the maximum

T 33/4 .
_ ~1/4 < g-1/4
m3X<1+5a:4> g sy

Extracting the root at (32), we obtain for the first difference at (30):

Vo Wi = Vo Wil (33)

1 %
- wo__ = L
m < A"~ H,m =

Similarly, to evaluate the second difference in (30), using (24), we obtain:



236 DCM&ACS. 2023, 31 (3) 228-241

l l 0o FQ [k4 ]2 k2
_ 2 _ polaly nm Lnmd i
[VayWs = Vau H, oy = 8 n,mz_o Entm (1+ BEL,)°

< 52 max x—S 2 i (ﬁnmkim)lely _ \/B||AF”2 _ \/BMQ (34)
= x 1+ ﬁ.’LA 0 4e, € ‘

Here we have used the estimate for the maximum

23 33/4 ,
m _ ~3/4 < g-3/4
ax (1 n @x‘l) 4 b S

and also by the fact that under the conditions of the theorem

AF = Z F k2 cos e ™my

nm'vnm l cos l
n,m=0 z Y

Therefore, the second norm on the right side (30) after taking the square
root in (34) evaluates to

Thus, using the estimates (34), (35) and the conditions of the theorem on
the function B(u), from (30) we obtain an error estimate in calculating the
gradient of the function F:

IV Wiy = Ve Fll, oy < =7 S VBM 2R 50 as w0, (36)

\4/_

Note that for 3(u) = u?/M?, the expression on the right represents the
minimum by the parameter (.
The theorem is proved. 0

Based on this theorem, we can use the formula for the approximate gradient
to construct an approximate normal to the surface S by the formula (6)

nf =V, Wh -k (37)

then from (37) and (36) follows an estimate of the deviation of the approximate
normal n}’ from the exact:

Hnlf o anLQ(H) = “vl’ng - vxyH‘LQ(H) < 2 \% ML

The surface defined by the equation z = Wg(u) (z,y), where Wg(u) has the
form (18), denote

SH = {(m,y,z) 0<w<l, 0<y<l, z= Wg(u)(x,y)}. (38)
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Since the series (18) converges uniformly, the surface S* is given by a con-
tinuous function.

When solving various problems of mathematical physics that use surface
integrals and a normal derivative on a surface given approximately by the
condition (7), an approximately given surface z = F*(z,y) can be replaced
by the surface S*, and the normal to the surface can be calculated according
to the formula (37).

4. Application of the problem of calculating the normal
to the inverse problem of thermography

Calculation of the normal to the surface may be necessary, in particular,
when solving the inverse problem of thermography. In this case, we consider
the problem of correcting the thermogram f, which is a digitized temperature
distribution on the surface of the investigated heat-conducting body containing
heat sources. The image of body sources on a thermogram is, as a rule,
distorted due to the process of heat conduction, heat transfer, and the relative
remoteness of heat sources from the body surface. In order to refine the image
in a cylindrical area of rectangular cross section

D(F,H)={(z,y,2): 0<ao <, 0<y<l, Flz,y) <z< H}. (39)

a boundary value problem for the Laplace equation is considered (we assume
that the support of the heat source density function p is located in the region

z> H)

(Au(M) =0, M e D(F,H),
i, =1,

4 Ju (40)
2 - ).

\u‘FH - 0

The set of side faces of D(F', H) is denoted as I'j;.

Note that in the problem (40) on the surface S of the form (3), the Cauchy
conditions are specified, that is, the boundary values f of the desired function
u and the values of its normal derivative are given, so the problem (40) has
a unique solution. The boundary z = H of the domain D(F, H) is free and
thus the problem (40) is not robust against data errors, i.e. ill-posed.

The function u|,_j will be considered as an adjusted thermogram. Since
the plane z = H is located closer to the density carrier p than the surface
S from which the original thermogram is taken, it should be expected that
the corrected thermogram more accurately conveys information about the
distribution of heat sources than the original thermogram.

We will assume that the function f in the problem (40) is given with an
error, that is, instead of f, the function f° is given, such that
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In [12], an approximate solution to an ill-posed problem (40) is con-

structed as
ud (M) = v, (M) + ®°(M), M e D(F,H), (42)

where the function

W) = [ [T = Fpyp) oM. P s ()
I1

_f(s(xpa yp)(nthSO(M,P))‘PEs] dedyP (43)

is calculated using the problem data (40) and the Dirichlet problem source
function

(M, P) =
2 0 7k‘lnm|zM7zP‘
Z ¢ x sin M g TTIM ) THEP ) TP , (44)
lmly Mool Epm, L, L, l, L,
n2 2\ 1/2
e )
@ y

in the infinite cylinder
Dw:{(xvyv'Z): 0<1‘<lm,0<y<ly, _OO<Z<OO}C|R3.

The function v%, which is an approximation to the density potential p, in
[12] is obtained usmg the Tikhonov regularization method [1]

. a) expl{k,,(zpr—a)} . mnxy, . Tmy,y,
S 4
Z 1+aexp{2k ) sin ——= sin ———, a>0, (45)

z Yy

n,m=1

CTDfLm(a) are Fourier coefficients of the function ®°(M) of the form (43)

~ 4
o0 (a) = /@5(33 y,a)sin T sin 7Tmydxaly. (46)
l L, L, L,

Y11

As follows from the formula (43) when calculating the value of ®, the normal
to the surface is used. Estimates of the error in calculating the function ®
and the approximate solution u that arise when replacing the exact normal
n; with an approximate normal are obtained in [13].

5. Conclusion and discussion

Formulas (37), (20) for approximate calculation of the normal to an ap-
proximately given surface can be used in the calculation of surface integrals
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and potentials of a simple and double layer and in other problems [14] using
the normal to the surface. For numerical summation of Fourier series (45)
and calculation of Fourier coefficients (46) algorithms for summing discrete
Hamming series [15, 16| can be used. Discretization of formulas (45), (46)
can be done in accordance with [17].
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O6 ycTOIiYMBOM BBIYUCJIEHUU HOPMAJIN K IIOBEPXHOCTH,
3aJJaHHON MTPUOJIN>KEHHO

E. B. JlaneeB, Obanga Baaxk

Poccutickuti ynusepcumem dpyorcov, Hapodos,
ya. Murayzo-Maxaas, 0. 6, Mockea, 117198, Poccus

Annoranus. B pabore npesiaraeTcs ycTORIUBBIN METOJ, TOCTPOEHUST HOPMAJIH K TI0-
BEPXHOCTH, 33/ IaHHOM mpubmkeénno. HopMasb Bbrauc/isieTcs Kak rpaaueHT pyHKInnT
B ypaBHEHHHU NOBepxXHOCTU. KaK m3BeCTHO, 3a71a9a BBIYUCJIEHUS ITPOU3IBOTHON AB-
JISIETCsl HEKOPPEKTHO TOCTaBJIeHHON. B pabdoTe MPUHAT IOIXO K PEIIEHUIO dTOM
3a/1a9n KaK K 33/la9€ BBIYUC/ICHUS 3HAYCHUN HEOTPAHUIEHHOrO oreparopa. [ljs
ITOCTPOEHUSI €€ YCTOMIMBOTO PEIIeHNs UCIIOIb3yeTCs MPUHITAIT MUHUMYMAa CIJIaKABa-
forero pyHKuoHasa B popmysimposke Mopososa. Hopmass nosydena B Buze psiiaa
Dypbe B Pa3I0KEHUU 10 COOCTBEHHBIM (DYHKIHAM oleparopa Jlamiaca B mpsamMo-
YTOJIbHUKE C KPAEBBIMU yCJIOBUSIMHU BTOPOrO poja. B crabmauzarope dpyHKIIMOHAIA
HUCIOIb3YeTCs JIAIJIACUAH, YTO MO3BOJIFET IIOJYIUTh HOpMaJIb B Buje pana Pypbe,
PABHOMEPHO CXOJISAIIETOCH K TOYHOMY BEKTOPY HOPMAJIHU IPU CTPEMJICHUH K HYJIIO T10-
TPEITHOCTU B 3aIAHUN MOBEPXHOCTH. 1lo/TydeHHbI TPpUO/JIMKEHHBI BEKTOP HOPMAJIN
MOYKET MCIIOJIb30BAThCs IIPU PEIIEHUN PA3JIUIHBIX 33189 MAaTeMATUIeCKON (hu3nkn,
HCIIOJIB3YIOIIUX TIOBEPXHOCTHBIE HHTEI'PAJIBI, HOPMAJIbHBIE TTPOU3BOIHBIE, TTOTCHITUAJIBI
IIPOCTOrO M JBOMHOTO CJIOA.

KuarodueBrle cjoBa: HEKOPPEKTHad 3aJa4a, YCTONYMNBOE BBIUMUCJIEHUE ITPOU3BO/IHOM,
METOJI, PEeryJsIpu3aIiuu, JUCKpeTHbIH psix Pypbe



