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Abstract. The paper proposes a stable method for constructing a normal to a surface
given approximately. The normal is calculated as the gradient of the function in the
surface equation. As is known, the problem of calculating the derivative is ill-posed.
In the paper, an approach is adopted to solving this problem as to the problem of
calculating the values of an unbounded operator. To construct its stable solution,
the principle of minimum of the smoothing functional in Morozov’s formulation
is used. The normal is obtained in the form of a Fourier series in the expansion
in terms of eigenfunctions of the Laplace operator in a rectangle with boundary
conditions of the second kind. The functional stabilizer uses the Laplacian, which
makes it possible to obtain a normal in the form of a Fourier series that converges
uniformly to the exact normal vector as the error in the surface definition tends
to zero. The resulting approximate normal vector can be used to solve various
problems of mathematical physics using surface integrals, normal derivatives, simple
and double layer potentials.

Key words and phrases: ill-posed problem, stable derivative calculation, regular-
ization method, discrete Fourier series

1. Introduction

When solving many problems of mathematical physics, which are boundary
value problems for partial differential equations, there is a need to calculate the
normal to the surface, in particular, when calculating the normal derivative.
For example, when calculating the potentials of a simple and double layer, as
well as other surface integrals.
In the case when the surface is known “exactly”, that is, for example, it is

given by an equation with an exactly known function

𝐹(𝑥, 𝑦, 𝑧) = 0, (1)
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then the normal (generally speaking, not unit normal) will be calculated up
to the sign in the form of the gradient of the function in the equation of the
surface

n1 = grad𝐹(𝑥, 𝑦, 𝑧) = ∇𝐹. (2)

In applied problems, a situation may arise when the surface is not known
accurately. The error may be related to the measurement error, digitization,
or the surface data is the result of modeling, that is, it contains the model
error. That is, even in the case when the surface is given by the equation
𝑧 = 𝐹(𝑥, 𝑦), where the function 𝐹 is given analytically, that is, “exactly”,
such a surface can be considered as “model”, approximately describing “real”
surface.

In applied problems, a situation may arise when the surface is not known
accurately. In the case when the surface is known inaccurately, it becomes
necessary to calculate the normal to the surface given approximately.

As follows from (2), the calculation of the normal is related to the calculation
of the derivatives of the function in the equation of the surface. As [1] is
known, such a problem is ill-posed and in the case when the surface is known
approximately, the use of regularizing algorithms is required to obtain its
approximate solution.

The problem of calculating the derivative of a function as an ill-posed
problem has been considered in many works, for example [2–9] and others.
Here, following [10], we will solve the problem of stable differentiation as
a problem of calculating the values of an unbounded operator.

2. Problem statement

When solving the problem of constructing a normal vector to a surface, we
confine ourselves to considering a surface of the form

𝑆 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝐹(𝑥, 𝑦)}, (3)

that is, a surface given by the equation

𝑧 = 𝐹(𝑥, 𝑦), 𝐹 ∈ 𝐶2(Π) (4)

on a rectangle
Π = {(𝑥, 𝑦) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦}. (5)

As follows from (2), for an exactly given function 𝐹, the normal vector is
calculated by the formula

n1 = grad (𝐹(𝑥, 𝑦) − 𝑧) = ∇𝑥𝑦𝐹 − k. (6)

Let the surface 𝑆 be given with an error, namely: instead of the exact
function 𝐹 in (3), there is a function 𝐹 𝜇 defined on a rectangle Π of the
form (5), so

‖𝐹 𝜇 − 𝐹‖𝐿2(Π) ⩽ 𝜇. (7)
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Let us pose the problem of constructing a uniform approximation to the
normal vector to the surface that converges uniformly to the exact one as
𝜇 → 0.
Note that the normal vector is needed to calculate the normal derivative

of the function
𝜕𝜑
𝜕𝑛

= (n, ∇𝜑), n = n1

𝑛1
, as well as when calculating surface

integrals to calculate a surface element 𝑑𝜎 = 𝑛1(𝑥, 𝑦)𝑑𝑥𝑑𝑦.

3. Constructing a stable solution to the problem

To calculate the normal vector to the surface given by the equation (2), in
accordance with (6), it is necessary to calculate the gradient ∇𝑥𝑦𝐹. To obtain
a solution of the formulated problem that is stable to the error (7), we use
the [11] approach, which consists in the fact that the problem of calculating
the gradient ∇𝑥𝑦𝐹 is considered as the problem of calculating the values of an

unbounded operator [10]. In contrast to [11], we will consider the Laplacian
instead of the gradient as an unbounded operator, which allows us to obtain
a uniform approximation for the normal.
As an approximation to the function ∇𝑥𝑦𝐹, computed from the known

function 𝐹 𝜇 related to the function 𝐹 by the condition (7), we will consider
the gradient of the extremal of the functional

𝑁𝛽[𝑊] = ‖𝑊 − 𝐹 𝜇‖2
𝐿2(Π) + 𝛽 ‖Δ𝑊‖2

𝐿2(Π) , 𝛽 > 0 (8)

in which the squared norm of the Laplacian of the argument of the functional
is used as a stabilizer.
We assume that the surface 𝑆 of the form (3) satisfies the conditions

𝐹 ′
𝑥|𝑥=0,𝑙𝑥

= 0, 𝐹 ′
𝑦|𝑦=0,𝑙𝑦

= 0; 𝐹 ‴
𝑦 |𝑥=0,𝑙𝑥

= 0, 𝐹 ‴
𝑦 |𝑦=0,𝑙𝑦

= 0. (9)

We obtain the Euler equation for the functional (8). To vary the functional,
we have

𝛿𝑁𝛽[𝑊] = 2 (𝑊 − 𝐹 𝜇, 𝛿𝑊) + 2𝛽(Δ𝑊, Δ𝛿𝑊). (10)

We write the second scalar product in (10) as a double integral

𝛿𝑁𝛽[𝑊] = 2 (𝑊 − 𝐹 𝜇, 𝛿𝑊) + 2𝛽

𝑙𝑥

∫
0

𝑙𝑦

∫
0

𝑑𝑥𝑑𝑦Δ𝑊(𝑥, 𝑦)Δ𝛿𝑊(𝑥, 𝑦). (11)

Separating the second derivatives in the Laplacian and changing the order
of integration over the variables 𝑥 and 𝑦, we transform the double integrals
by integrating by parts:

𝑙𝑥

∫
0

𝑙𝑦

∫
0

𝑑𝑥𝑑𝑦Δ𝑊(𝑥, 𝑦)Δ𝛿𝑊(𝑥, 𝑦) =



E.B. Laneev, O. Baaj, On a stable calculation of the normal... 231

=

𝑙𝑦

∫
0

𝑑𝑦

𝑙𝑥

∫
0

𝑑𝑥Δ𝑊(𝑥, 𝑦) 𝜕2

𝜕𝑥2 𝛿𝑊(𝑥, 𝑦) +

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦Δ𝑊(𝑥, 𝑦) 𝜕2

𝜕𝑦2 𝛿𝑊(𝑥, 𝑦) =

=

𝑙𝑦

∫
0

𝑑𝑦 ⎡
⎢
⎣

Δ𝑊(𝑥, 𝑦)𝛿𝑊 ′
𝑥(𝑥, 𝑦)∣

𝑥=𝑙𝑥

𝑥=0
−

𝑙𝑥

∫
0

𝑑𝑥 𝜕
𝜕𝑥

Δ𝑊(𝑥, 𝑦) 𝜕
𝜕𝑥

𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

+

+

𝑙𝑥

∫
0

𝑑𝑥 ⎡
⎢
⎣

Δ𝑊(𝑥, 𝑦)𝛿𝑊 ′
𝑦(𝑥, 𝑦)∣

𝑦=𝑙𝑦

𝑦=0
−

𝑙𝑦

∫
0

𝑑𝑦 𝜕
𝜕𝑦

Δ𝑊(𝑥, 𝑦) 𝜕
𝜕𝑦

𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

. (12)

Since the extremal must satisfy the same boundary conditions, the variations
of the derivatives at the boundary are equal to zero, and the one-time integrals
are equal to zero. Integrating the remaining integrals by parts again, we
obtain

𝑙𝑥

∫
0

𝑙𝑦

∫
0

𝑑𝑥𝑑𝑦Δ𝑊(𝑥, 𝑦)Δ𝛿𝑊(𝑥, 𝑦) =

=

𝑙𝑦

∫
0

𝑑𝑦 ⎡
⎢
⎣

−

𝑙𝑥

∫
0

𝑑𝑥 𝜕
𝜕𝑥

Δ𝑊(𝑥, 𝑦) 𝜕
𝜕𝑥

𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

+

+

𝑙𝑥

∫
0

𝑑𝑥 ⎡
⎢
⎣

−

𝑙𝑦

∫
0

𝑑𝑦 𝜕
𝜕𝑦

Δ𝑊(𝑥, 𝑦) 𝜕
𝜕𝑦

𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

=

=

𝑙𝑦

∫
0

𝑑𝑦 ⎡
⎢
⎣

−Δ𝑊 ′
𝑥(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦)∣

𝑥=𝑙𝑥

𝑥=0
+

𝑙𝑥

∫
0

𝑑𝑥 𝜕2

𝜕𝑥2 Δ𝑊(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

+

+

𝑙𝑥

∫
0

𝑑𝑥 ⎡
⎢
⎣

−Δ𝑊 ′
𝑦(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦)∣

𝑦=𝑙𝑦

𝑦=0
+

𝑙𝑦

∫
0

𝑑𝑦 𝜕2

𝜕𝑦2 Δ𝑊(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦)⎤⎥
⎦

. (13)

Since, in accordance with the boundary conditions

𝑊 ‴
𝑥 |𝑥=0,𝑙𝑥

= 0, 𝜕2

𝜕𝑦2 𝑊 ′
𝑥|𝑥=0,𝑙𝑥

= 0; 𝑊 ‴
𝑦 |𝑦=0,𝑙𝑦

= 0, 𝜕2

𝜕𝑥2 𝑊 ′
𝑦|𝑦=0,𝑙𝑦

= 0.

Then the one-time integrals in (13) are equal to zero and, thus, we obtain

𝑙𝑥

∫
0

𝑙𝑦

∫
0

𝑑𝑥𝑑𝑦Δ𝑊(𝑥, 𝑦)Δ𝛿𝑊(𝑥, 𝑦) =

𝑙𝑦

∫
0

𝑑𝑦

𝑙𝑥

∫
0

𝑑𝑥 𝜕2

𝜕𝑥2 Δ𝑊(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦)+
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+

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦 𝜕2

𝜕𝑦2 Δ𝑊(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦) =

𝑙𝑥

∫
0

𝑑𝑥

𝑙𝑦

∫
0

𝑑𝑦Δ2𝑊(𝑥, 𝑦)𝛿𝑊(𝑥, 𝑦). (14)

Now, for the variation of the functional (10), taking into account (14), we
obtain

𝛿𝑁𝛽[𝑊] = 2(𝑊 − 𝐹 𝜇, 𝛿𝑊) + 2𝛽(Δ𝑊, Δ𝛿𝑊) =
= 2(𝑊 − 𝐹 𝜇, 𝛿𝑊) + 2𝛽(Δ2𝑊, 𝛿𝑊). (15)

Equating the variation to zero and adding boundary conditions (9), we
obtain that the extremal of the functional (8) is a solution to the following
boundary value problem for the Euler equation

⎧
{{{
⎨
{{{
⎩

𝛽Δ2𝑊 + 𝑊 = 𝐹 𝜇,
𝑊 ′

𝑥|𝑥=0,𝑙𝑥
= 0,

𝑊 ′
𝑦|𝑦=0,𝑙𝑦

= 0,
𝑊 ‴

𝑥 |𝑥=0,𝑙𝑥
= 0,

𝑊 ‴
𝑦 |𝑦=0,𝑙𝑦

= 0.

We will seek the solution of this boundary value problem in the form of an
expansion in the Fourier series

𝑊(𝑥, 𝑦) =
∞

∑
𝑛,𝑚=0

𝑊̃𝑛𝑚 cos
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
(16)

in terms of the eigenfunctions of the Laplace operator satisfying the boundary
conditions (9)

{cos 𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
}

∞

𝑛,𝑚=0

. (17)

The solution of the boundary value problem for the Euler equation is
obtained in the form

𝑊 𝜇
𝛽 (𝑥, 𝑦) =

∞
∑

𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚

1 + 𝛽𝑘4
𝑛𝑚

cos
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
, (18)

where, for brevity, the notation is introduced

𝑘𝑛𝑚 = 𝜋 (𝑛2

𝑙2𝑥
+ 𝑚2

𝑙2𝑦
)

1/2

,
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and the Fourier coefficients ̃𝐹 𝜇
𝑛𝑚 have the form

̃𝐹 𝜇
𝑛𝑚 = 4𝜀𝑛𝜀𝑚

𝑙𝑥𝑙𝑦
∫
Π

𝐹 𝜇(𝑥, 𝑦) cos 𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
𝑑𝑥𝑑𝑦,

𝜀𝑛 = 1, 𝑛 ≠ 0, 𝜀0 = 0.5.
(19)

It is easy to see that the series (18) converges uniformly on the rectangle Π.
As an approximation to the gradient of the function 𝐹 𝜇, we will consider

the vector function

∇𝑥𝑦𝑊 𝜇
𝛽 (𝑥, 𝑦) =

=
∞

∑
𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚

1 + 𝛽𝑘4
𝑛𝑚

(−i𝜋𝑛
𝑙𝑥

sin
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
− j

𝜋𝑚
𝑙𝑦

cos
𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦

𝑙𝑦
) . (20)

The series (20) also converges uniformly on Π. Indeed, applying the Cauchy–
Bunyakovsky inequality, in particular, for the 𝑥-component of the gradient,
we obtain

∣ 𝜕
𝜕𝑥

𝑊 𝜇
𝛽 (𝑥, 𝑦)∣ ⩽

⩽
∞

∑
𝑛,𝑚=0

| ̃𝐹 𝜇
𝑛𝑚|

1 + 𝛽𝑘4
𝑛𝑚

𝜋𝑛
𝑙𝑥

⩽
∞

∑
𝑛,𝑚=0

| ̃𝐹 𝜇
𝑛𝑚|𝑘𝑛𝑚

1 + 𝛽𝑘4
𝑛𝑚

⩽ 1
𝛽

∞
∑

𝑛,𝑚=0

| ̃𝐹 𝜇
𝑛𝑚|√𝜀𝑛𝜀𝑚

𝑘3
𝑛𝑚

√𝜀𝑛𝜀𝑚
⩽

⩽ 1
𝛽

( 4
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=0

𝜀𝑛𝜀𝑚
𝑘6

𝑛𝑚
)

1
2

(
𝑙𝑥𝑙𝑦
4

∞
∑

𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚)2

𝜀𝑛𝜀𝑚
)

1
2

⩽ 𝐶
𝛽

||𝐹 𝜇||𝐿2(Π). (21)

A similar estimate can be obtained for the 𝑦-component of the gradient. In
addition, the uniform convergence of the series (18) is also proved.
Let us now prove the convergence of the series (18) and (20) to 𝐹 and

grad𝐹, respectively, as 𝜇 → 0.
Let 𝐹 +− be an even-periodic continuation of the function 𝐹 with period 2𝑙𝑥

in variable 𝑥 and period 2𝑙𝑦 in variable 𝑦 from a rectangle Π of the form (5),

that is

𝐹 +(𝑥, 𝑦) = 𝐹(𝑥, 𝑦), (𝑥, 𝑦) ∈ Π; 𝐹 +(−𝑥, 𝑦) = 𝐹(𝑥, 𝑦), (𝑥, 𝑦) ∈ Π;
𝐹 +(𝑥, −𝑦) = 𝐹(𝑥, 𝑦), (𝑥, 𝑦) ∈ Π; 𝐹 +(−𝑥, −𝑦) = 𝐹(𝑥, 𝑦), (𝑥, 𝑦) ∈ Π;

𝐹 +(𝑥 + 2𝑙𝑥𝑛, 𝑦 + 2𝑙𝑦𝑚) = 𝐹 +(𝑥, 𝑦), (𝑥, 𝑦) ∈ ℝ2, 𝑛, 𝑚 = ±1, ±2, ....

Theorem 1. Let 𝐹 + ∈ 𝐶2(ℝ2), 𝑀 ⩾ ‖Δ𝐹‖𝐿2(Π), 𝛽 = 𝛽(𝜇) = 𝜇2/𝑀2.

Then

∥𝑊 𝜇
𝛽(𝜇) − 𝐹∥

𝐿2(Π)
⩽ 3

2
𝜇 → 0 as 𝜇 → 0, (22)

∥∇𝑥𝑦𝑊 𝜇
𝛽(𝜇) − ∇𝑥𝑦𝐹∥

𝐿2(Π)
⩽ 2√𝜇𝑀 → 0 as 𝜇 → 0. (23)
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Proof. Let’s introduce a notation for a function of the form (18) for 𝜇 = 0

𝑊𝛽(𝑥, 𝑦) =
∞

∑
𝑛,𝑚=0

̃𝐹𝑛𝑚
1 + 𝛽𝑘4

𝑛𝑚
cos

𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
. (24)

Let us prove the estimate (22) in the assertion of the theorem. Applying

the triangle inequality for the norm of the difference 𝑊 𝜇
𝛽 − 𝐹 we obtain

∥𝑊 𝜇
𝛽 − 𝐹∥

𝐿2(Π)
⩽ ∥𝑊 𝜇

𝛽 − 𝑊𝛽∥
𝐿2(Π)

+ ∥𝑊𝛽 − 𝐹∥
𝐿2(Π)

. (25)

Using the orthogonality of the trigonometric system, for the first norm on
the right side (25) we obtain

∥𝑊 𝜇
𝛽(𝜇) − 𝑊𝛽(𝜇)∥

2

𝐿2(Π)
=

=
∞

∑
𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2

(1 + 𝛽𝑘4
𝑛𝑚)2

𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

⩽
∞

∑
𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2
𝑙𝑥𝑙𝑦

4𝜀𝑛𝜀𝑚
⩽

⩽ ‖𝐹 𝜇 − 𝐹‖2
𝐿2(Π) = 𝜇2. (26)

And for the second norm on the right side (25) under the conditions of the
theorem, we obtain:

∥𝑊𝛽(𝜇) − 𝐹∥
2

𝐿2(Π)
=

=
∞

∑
𝑛,𝑚=0

(𝛽𝑘4
𝑛𝑚)2 ̃𝐹 2

𝑛𝑚

(1 + 𝛽𝑘4
𝑛𝑚)2

𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

⩽ 𝛽2 max
𝑥

( 𝑥
1 + 𝛽𝑥2 )

2 ∞
∑

𝑛,𝑚=0

𝑘4
𝑛𝑚 ̃𝐹 2

𝑛𝑚𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

⩽

⩽ 𝛽
4

‖Δ𝐹‖2
𝐿2(Π) ⩽ 𝜇2

4𝑀2 𝑀2 = 𝜇2

4
. (27)

Here we have used the fact that under the conditions of the theorem

∞
∑

𝑛,𝑚=0

𝑘4
𝑛𝑚 ̃𝐹 2

𝑛𝑚𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

= ∥Δ𝐹∥2
𝐿2(Π)

⩽ 𝑀2, (28)

as well as the value of the maximum

max
𝑥

( 𝑥
1 + 𝛽𝑥2 ) = 1

2
√

𝛽
.

For the difference norm on the left side (25) with 𝛽(𝜇) = 𝜇2/𝑀2 from (26)
and (27) we obtain

∥𝑊 𝜇
𝛽(𝜇) − 𝐹∥

𝐿2(Π)
⩽ 𝜇 + 𝜇

2
= 3

2
𝜇. (29)
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We now obtain the estimate (23) by applying the triangle inequality

∥∇𝑥𝑦𝑊 𝜇
𝛽 − ∇𝑥𝑦𝐹∥

𝐿2(Π)
⩽

⩽ ∥∇𝑥𝑦𝑊 𝜇
𝛽 − ∇𝑥𝑦𝑊𝛽∥

𝐿2(Π)
+ ∥∇𝑥𝑦𝑊𝛽 − ∇𝑥𝑦𝐹∥

𝐿2(Π)
. (30)

Estimate the first difference in on the right side (30):

∥∇𝑥𝑦𝑊 𝜇
𝛽 − ∇𝑥𝑦𝑊𝛽∥

2

𝐿2(Π)
= ∫

Π

∣−i
∞

∑
𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚
1 + 𝛽𝑘4

𝑛𝑚

𝜋𝑛
𝑙𝑥

sin
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
−

−j
∞

∑
𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚
1 + 𝛽𝑘4

𝑛𝑚

𝜋𝑚
𝑙𝑦

sin
𝜋𝑚𝑦

𝑙𝑦
cos

𝜋𝑛𝑥
𝑙𝑥

∣
2

𝑑𝑥𝑑𝑦 =

= ∫
Π

∣
∞

∑
𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚
1 + 𝛽𝑘4

𝑛𝑚

𝜋𝑛
𝑙𝑥

sin
𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
∣
2

𝑑𝑥𝑑𝑦+

+ ∫
Π

∣
∞

∑
𝑛,𝑚=0

̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚
1 + 𝛽𝑘4

𝑛𝑚

𝜋𝑚
𝑙𝑦

sin
𝜋𝑚𝑦

𝑙𝑦
cos

𝜋𝑛𝑥
𝑙𝑥

∣
2

𝑑𝑥𝑑𝑦. (31)

Using the orthogonality of the trigonometric system, we obtain:

∥∇𝑥𝑦𝑊 𝜇
𝛽 − ∇𝑥𝑦𝑊𝛽∥

2

𝐿2(Π)
=

∞
∑

𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2

(1 + 𝛽𝑘4
𝑛𝑚)2 (𝜋𝑛

𝑙𝑥
)

2 𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

+

+
∞

∑
𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2

(1 + 𝛽𝑘4
𝑛𝑚)2 (𝜋𝑚

𝑙𝑦
)

2 𝑙𝑥𝑙𝑦
4𝜀𝑛𝜀𝑚

=
𝑙𝑥𝑙𝑦
4

∞
∑

𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2
𝑘2

𝑛𝑚

𝜀𝑛𝜀𝑚 (1 + 𝛽𝑘4
𝑛𝑚)2 ⩽

⩽ max
𝑥

( 𝑥
1 + 𝛽𝑥4 )

2 ∞
∑

𝑛,𝑚=0

( ̃𝐹 𝜇
𝑛𝑚 − ̃𝐹𝑛𝑚)

2
𝑙𝑥𝑙𝑦

4𝜀𝑛𝜀𝑚
= 1√

𝛽
∥𝐹 𝜇 − 𝐹∥2

𝐿2(Π)
. (32)

Here we have used the estimate for the maximum

max
𝑥

( 𝑥
1 + 𝛽𝑥4 ) = 33/4

4
𝛽−1/4 ⩽ 𝛽−1/4.

Extracting the root at (32), we obtain for the first difference at (30):

∥∇𝑥𝑦𝑊 𝜇
𝛽 − ∇𝑥𝑦𝑊𝛽∥

𝐿2(Π)
⩽ 1

4
√

𝛽
∥𝐹 𝜇 − 𝐹∥

𝐿2(Π)
= 𝜇

4
√

𝛽
. (33)

Similarly, to evaluate the second difference in (30), using (24), we obtain:



236 DCM&ACS. 2023, 31 (3) 228–241

∥∇𝑥𝑦𝑊𝛽 − ∇𝑥𝑦𝐹∥2
𝐿2(Π)

= 𝛽2 𝑙𝑥𝑙𝑦
4

∞
∑

𝑛,𝑚=0

̃𝐹 2
𝑛𝑚 [𝑘4

𝑛𝑚]2 𝑘2
𝑛𝑚

𝜀𝑛𝜀𝑚 (1 + 𝛽𝑘4
𝑛𝑚)2 ⩽

⩽ 𝛽2 max
𝑥

( 𝑥3

1 + 𝛽𝑥4 )
2 ∞

∑
𝑛,𝑚=0

( ̃𝐹𝑛𝑚𝑘2
𝑛𝑚)2𝑙𝑥𝑙𝑦

4𝜀𝑛𝜀𝑚
= √𝛽∥Δ𝐹∥2 = √𝛽𝑀2. (34)

Here we have used the estimate for the maximum

max
𝑥

( 𝑥3

1 + 𝛽𝑥4 ) = 33/4

4
𝛽−3/4 ⩽ 𝛽−3/4,

and also by the fact that under the conditions of the theorem

Δ𝐹 =
∞

∑
𝑛,𝑚=0

̃𝐹𝑛𝑚𝑘2
𝑛𝑚 cos

𝜋𝑛𝑥
𝑙𝑥

cos
𝜋𝑚𝑦

𝑙𝑦
.

Therefore, the second norm on the right side (30) after taking the square
root in (34) evaluates to

∥∇𝑥𝑦𝑊𝛽 − ∇𝑥𝑦𝐹∥
𝐿2(Π)

⩽ 4√𝛽𝑀. (35)

Thus, using the estimates (34), (35) and the conditions of the theorem on
the function 𝛽(𝜇), from (30) we obtain an error estimate in calculating the
gradient of the function 𝐹:

∥∇𝑥𝑦𝑊 𝜇
𝛽(𝜇) − ∇𝑥𝑦𝐹∥

𝐿2(Π)
⩽ 𝜇

4
√

𝛽
+ 4√𝛽𝑀 ⩽ 2√𝜇𝑀 → 0 as 𝜇 → 0. (36)

Note that for 𝛽(𝜇) = 𝜇2/𝑀2, the expression on the right represents the
minimum by the parameter 𝛽.
The theorem is proved. �

Based on this theorem, we can use the formula for the approximate gradient
to construct an approximate normal to the surface 𝑆 by the formula (6)

n
𝜇
1 = ∇𝑥𝑦𝑊 𝜇

𝛽(𝜇) − k. (37)

then from (37) and (36) follows an estimate of the deviation of the approximate

normal n
𝜇
1 from the exact:

∥n𝜇
1 − n1∥

𝐿2(Π)
= ∥∇𝑥𝑦𝑊 𝜇

𝛽 − ∇𝑥𝑦𝐹∥
𝐿2(Π)

⩽ 2√𝜇𝑀.

The surface defined by the equation 𝑧 = 𝑊 𝜇
𝛽(𝜇)(𝑥, 𝑦), where 𝑊 𝜇

𝛽(𝜇) has the

form (18), denote

𝑆𝜇 = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝑧 = 𝑊 𝜇
𝛽(𝜇)(𝑥, 𝑦)} . (38)
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Since the series (18) converges uniformly, the surface 𝑆𝜇 is given by a con-
tinuous function.

When solving various problems of mathematical physics that use surface
integrals and a normal derivative on a surface given approximately by the
condition (7), an approximately given surface 𝑧 = 𝐹 𝜇(𝑥, 𝑦) can be replaced
by the surface 𝑆𝜇, and the normal to the surface can be calculated according
to the formula (37).

4. Application of the problem of calculating the normal
to the inverse problem of thermography

Calculation of the normal to the surface may be necessary, in particular,
when solving the inverse problem of thermography. In this case, we consider
the problem of correcting the thermogram 𝑓, which is a digitized temperature
distribution on the surface of the investigated heat-conducting body containing
heat sources. The image of body sources on a thermogram is, as a rule,
distorted due to the process of heat conduction, heat transfer, and the relative
remoteness of heat sources from the body surface. In order to refine the image
in a cylindrical area of rectangular cross section

𝐷(𝐹, 𝐻) = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, 𝐹 (𝑥, 𝑦) < 𝑧 < 𝐻}. (39)

a boundary value problem for the Laplace equation is considered (we assume
that the support of the heat source density function 𝜌 is located in the region
𝑧 > 𝐻)

⎧{{{
⎨{{{⎩

Δ𝑢(𝑀) = 0, 𝑀 ∈ 𝐷(𝐹 , 𝐻),
𝑢∣

𝑆
= 𝑓,

𝜕𝑢
𝜕𝑛

∣
𝑆

= ℎ(𝑈0 − 𝑓)∣
𝑆
,

𝑢|Γ𝐻
= 0.

(40)

The set of side faces of 𝐷(𝐹, 𝐻) is denoted as Γ𝐻.

Note that in the problem (40) on the surface 𝑆 of the form (3), the Cauchy
conditions are specified, that is, the boundary values 𝑓 of the desired function
𝑢 and the values of its normal derivative are given, so the problem (40) has
a unique solution. The boundary 𝑧 = 𝐻 of the domain 𝐷(𝐹, 𝐻) is free and
thus the problem (40) is not robust against data errors, i.e. ill-posed.

The function 𝑢|𝑧=𝐻 will be considered as an adjusted thermogram. Since
the plane 𝑧 = 𝐻 is located closer to the density carrier 𝜌 than the surface
𝑆 from which the original thermogram is taken, it should be expected that
the corrected thermogram more accurately conveys information about the
distribution of heat sources than the original thermogram.

We will assume that the function 𝑓 in the problem (40) is given with an

error, that is, instead of 𝑓, the function 𝑓𝛿 is given, such that

∥𝑓𝛿 − 𝑓∥
𝐿2(Π)

⩽ 𝛿. (41)
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In [12], an approximate solution to an ill-posed problem (40) is con-
structed as

𝑢𝛿
𝛼(𝑀) = 𝑣𝛿

𝛼(𝑀) + Φ𝛿(𝑀), 𝑀 ∈ 𝐷(𝐹 , 𝐻), (42)

where the function

Φ𝛿(𝑀) = ∫
Π

[ℎ(𝑈0 − 𝑓𝛿(𝑥𝑃, 𝑦𝑃))𝜑(𝑀, 𝑃)∣
𝑃∈𝑆

𝑛1(𝑥𝑃, 𝑦𝑃)−

− 𝑓𝛿(𝑥𝑃, 𝑦𝑃)(n1, ∇𝑃𝜑(𝑀, 𝑃))∣
𝑃∈𝑆

]𝑑𝑥𝑃𝑑𝑦𝑃 (43)

is calculated using the problem data (40) and the Dirichlet problem source
function

𝜑(𝑀, 𝑃) =

= 2
𝑙𝑥𝑙𝑦

∞
∑

𝑛,𝑚=1

𝑒−𝑘𝑛𝑚|𝑧𝑀−𝑧𝑃|

𝑘𝑛𝑚
× sin

𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
sin

𝜋𝑛𝑥𝑃
𝑙𝑥

sin
𝜋𝑚𝑦𝑃

𝑙𝑦
, (44)

𝑘𝑛𝑚 = 𝜋(𝑛2

𝑙2𝑥
+ 𝑚2

𝑙2𝑦
)

1/2

in the infinite cylinder

𝐷∞ = {(𝑥, 𝑦, 𝑧) ∶ 0 < 𝑥 < 𝑙𝑥, 0 < 𝑦 < 𝑙𝑦, −∞ < 𝑧 < ∞} ⊂ ℝ3.

The function 𝑣𝛿
𝛼, which is an approximation to the density potential 𝜌, in

[12] is obtained using the Tikhonov regularization method [1]

𝑣𝛿
𝛼(𝑀) =

= −
∞

∑
𝑛,𝑚=1

Φ̃𝛿
𝑛𝑚(𝑎) exp{𝑘𝑛𝑚(𝑧𝑀 − 𝑎)}

1 + 𝛼 exp{2𝑘𝑛𝑚(𝐻 − 𝑎)}
sin

𝜋𝑛𝑥𝑀
𝑙𝑥

sin
𝜋𝑚𝑦𝑀

𝑙𝑦
, 𝛼 > 0, (45)

Φ̃𝛿
𝑛𝑚(𝑎) are Fourier coefficients of the function Φ𝛿(𝑀) of the form (43)

Φ̃𝛿
𝑛𝑚(𝑎) = 4

𝑙𝑥𝑙𝑦
∫
Π

Φ𝛿(𝑥, 𝑦, 𝑎) sin 𝜋𝑛𝑥
𝑙𝑥

sin
𝜋𝑚𝑦

𝑙𝑦
𝑑𝑥𝑑𝑦. (46)

As follows from the formula (43) when calculating the value of Φ, the normal
to the surface is used. Estimates of the error in calculating the function Φ
and the approximate solution 𝑢 that arise when replacing the exact normal
n1 with an approximate normal are obtained in [13].

5. Conclusion and discussion

Formulas (37), (20) for approximate calculation of the normal to an ap-
proximately given surface can be used in the calculation of surface integrals
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and potentials of a simple and double layer and in other problems [14] using
the normal to the surface. For numerical summation of Fourier series (45)
and calculation of Fourier coefficients (46) algorithms for summing discrete
Hamming series [15, 16] can be used. Discretization of formulas (45), (46)
can be done in accordance with [17].
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Об устойчивом вычислении нормали к поверхности,
заданной приближённо

Е. Б. Ланеев, Обаида Бааж

Российский университет дружбы народов,
ул. Миклухо-Маклая, д. 6, Москва, 117198, Россия

Аннотация. В работе предлагается устойчивый метод построения нормали к по-
верхности, заданной приближённо. Нормаль вычисляется как градиент функции
в уравнении поверхности. Как известно, задача вычисления производной яв-
ляется некорректно поставленной. В работе принят подход к решению этой
задачи как к задаче вычисления значений неограниченного оператора. Для
построения её устойчивого решения используется принцип минимума сглажива-
ющего функционала в формулировке Морозова. Нормаль получена в виде ряда
Фурье в разложении по собственным функциям оператора Лапласа в прямо-
угольнике с краевыми условиями второго рода. В стабилизаторе функционала
используется лапласиан, что позволяет получить нормаль в виде ряда Фурье,
равномерно сходящегося к точному вектору нормали при стремлении к нулю по-
грешности в задании поверхности. Полученный приближенный вектор нормали
может использоваться при решении различных задач математической физики,
использующих поверхностные интегралы, нормальные производные, потенциалы
простого и двойного слоя.

Ключевые слова: некорректная задача, устойчивое вычисление производной,
метод регуляризации, дискретный ряд Фурье


