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Abstract. The mathematical model of the retrial queuing system M™ /M /1 with
feedback and batch Poisson arrival is constructed. Customers arrive in groups. If the
server is free, one of the arriving customers starts his service, the rest join the orbit.
The retrial and service times are exponentially distributed. The customer whose
service is completed leaves the system, or reservice, or goes to the orbit. The method
of asymptotic diffusion analysis is proposed for finding the probability distribution
of the number of customers in orbit. The asymptotic condition is growing average
waiting time in orbit. The accuracy of the diffusion approximation is obtained.

Key words and phrases: retrial queuing system, batch arrival, feedback, asymptotic
diffusion analysis

1. Introduction

There are situations in practice where an arriving customer that sees the
server being occupied temporarily leaves the system or goes to orbit. In some
random time customer retries to occupy a server again. These situations are
modeled as retrial queuing systems. In addition, there are queuing systems in
which a customer that has already received service requires a second service.
It depends on the quality of the received service or external factors. Classical
examples are communication networks in which erroneously transmitted data
is retransmitted. The functioning of such systems is described by retrial
queuing systems with feedback.

There are many reviews on the study of queuing systems with repeated
calls, for example [1, 2|]. Models with feedback, instantaneous and delayed,
have also been intensively studied in the last two decades [3-5]. At the same
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time, classical methods do not allow us to evaluate the characteristics of such
systems. The application of asymptotic analysis methods makes it possible
to obtain the asymptotic characteristics of the system under various limiting
conditions. For example, in [6], a stationary probability distribution of the
number of customers in orbit was obtained under conditions of a large delay
of customers in orbit. To perform more detailed and accurate analysis of the
model a method of asymptotic diffusion analysis is applied [7].

In this paper, we study retrial queuing systems with single server, batch
Poisson arrival process, instantaneous and delayed feedback. The retrial and
service times are exponentially distributed. A diffusion approximation of the
probability distribution of the number of customers in orbit is constructed. It
is shown that the accuracy of the diffusion approximation is higher then the
accuracy of Gaussian approximation obtained in [6].

2. System description

We consider the queuing system M[™ /M /1 with repeated calls (see figure 1)
with Poisson batch input flow with a parameter A and given probabilities g,

of occurrence of v customers in the group (1/ >0, gy =0, Zzil q, = 1). If

the server is free, then one customer receive service, the rest of customers
go to the orbit. If the server is busy, the arriving customers join the orbit.
The service time is exponentially distributed with parameter pu. A customer
whose service is completed leaves the system with probability 7, receives
service again with probability r; or goes to the orbit with probability r,, thus
ro+ 1 + 79 = 1. In orbit, customers wait for a time distributed exponentially
with parameter o, after which they repeat an attempt to occupy the server.
In case of an unsuccessful attempt, the customers remain in orbit.
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Figure 1. Queuing system model with retrial calls and feedback

We denote by i(t) the number of customers in orbit at time ¢, the process
n(t) determines the state of the server as follows:

n(t) = {0, if the server is idle;

1, if the server is busy.

The two-dimensional process {i(t),n(t)} is a continuous-time Markov chain.
It is required to find the probability distribution of the number of customers
in orbit, taking into account the state of the server

P, (i,t) = P{n(t) =n, i(t) =i}, n=0,1; i=0,00.



A. A. Nazarov et al., Asymptotic diffusion analysis of the retrial queuing ... 207

We compose a system of Kolmogorov differential equations for the proba-
bility distribution P, (i,t)

( OP,(i,t . . ) .
% = —(A+i0)Py(i,t) + proPy (i, t) + pry Py (i — 1,1);
OP; (i,t . . .
< %:(Z+1)O-PO(Z+17t)+(/~LT1_M_)‘)P1<Zat>+ (1)
i+1 7
+Zx\qVPO(i—V—|— 1,t) +Zx\qVP1(i—1/,t).
N v=1 v=1

We consider the partial characteristic functions of the number of customers
o

in the orbit H, (u,t) = > /P (i,t) and the characteristic function for the
i=0

S .
number of customers in the batch h(u) = > e/*¥q,, where j = v/—1. Then
v=1

we take into account that

OH, (ut) o=, .
T:;W P, (i,t),

Z Z qyejuipl (7’ -V, t) = h(u)Hl <u7 t)7
=0 v=1
oo t+1

>SS g Py (i — v+ 1t) = e IUh(u)H(u, t),

i=0 v=1
and rewrite system (1) as

OH(u,t) .OHy(u,t)

TR NH(u,t) + (urg + prqee?™) Hy (u, t);
OH\(u,t) , 7ju8H0(u,t) i (2)
—ap = ot + Ae "h(u)Hy(u, t)+

+ (Ah(u) — prg — pry — X) Hy(u, t).

The total characteristic function H (u, t) of the number of customers in orbit
is H(u,t) = Hy(u,t) + Hy(u,t). We summarize the equations of system (2)
and write

OH (u, 1)

OH, (u, t)
ot

B + A(euh(u) — 1) Hy(u, t)+
+ (prg (7 = 1) + A (h(u) = 1)) Hy(u,t). (3)

=o0j (1 —e %)

3. The first stage of asymptotic. A transfer coefficient

We solve the equations for the characteristic function (2) under the as-
ymptotic condition of the growing average waiting time in orbit, that is, we
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assume that ¢ — 0. We denote 0 = € and make the following substitutions in
system (2)

T=c¢ct, wu=cw, H,(u,t)=F,(w71,e), n=0,1,

OHy(u,t) _ 10Fy(w,7,e)  OH,(u,t) _ €8Fn(w, T,€)

= =0,1
ou e ow ot or 0 T
then we get a system of equations
( OFy(w,1,e)  OF(w,T,¢)
g0 - = j0 o — %\Fo(w, T,€)+
+ (/””0 + W“zejws) Fy(w,T,¢);
) OF) (w, T,¢) OFy(w, T,¢) 4
T . T .
ot S Rk e 87,' L= jedwe 200 2 07/ 81;) — + Xe 7 h(w, ) Fy(w, T,e)+
\ + (A(w, €) — prg — pry — A) Fy(w, 7, €).

We look for a solution to the equations in the form F, (w, T,¢) = Rnejwmm,
then _
ejwx’ (T)Ry = —x(T)Ry — ARy + (prg + prye?™€) Ry;
ejwr’ (T)Ry = e 7%x(T)Ry + Ae 7 h(w, &) Ry+ (5)
+ (A(w, &) — prg — pry — A) R;.

As e — 0, we have lir% h(w,e) = 1 and system (5) reduces to a single
e—

equation
—(2(7) + M) Ry + (prg + pry) Ry = 0. (6)

Equation (6) with the normalization condition R, + R, = 1 give R, and
R, as functions of z

Uro + pur x4+ A
) ) Rl(x):x—l—)\—i—,ur + pry
0 2

R =
0<$> x+)\+ﬂro+/$r27

(7)

We summarize the equations of system (5) and obtain

e Jwe —1 e 7h(w,e) — 1

Jjwx' (1) = (x(T) + A

9 9

) Ry(2)+

Jwe 1 h(w,e) —1
—l—(;M’Qe . +A (w, )

3

) mifa).

Ase — 0 we get /(1) = (—z(7) + A(v — 1)) Ry(x) + (ury + Av) R, (x).
We denote by a(x) the right side of the last equality
a(z) = [A(v —1) =] Ry(x) + (A + pry) Ry (2). (8)

It will be shown below that the function a(x) is the transfer coefficient of
some diffusion process approximating the number of customers in orbit.
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4. The second stage of asymptotic. A diffusion
coefficient

We substitute

H, (u,t) = H? (u,t)exp {jgm(at)} , n=0,1
o

in the system (2) and the equation (3). Here HY (u,t) is the characteristic
function of the centered random variable i(t) — z(ot)/o. Then we obtain

a system of equations for H,(ZQ) (u,t) in the form

OH? (u,t)
ot

OH (u,t
+juw’(0t)Hé2>(u,t) = Jj—oc? (wt)
u

— (z(ot) + )\)H((f)(u, t) + (urg + prqe’™) Hf)(u, t);

OH (u,t) uaﬂfku¢)+

+ juw”(at)Hf)(u,t) = —oje?

ot 5
+ (2(ot) + Mi(u)) e H? (u, 1)+
+ (W) = X = pRo — puliy) By (u);
(2) | o
M{a—iu’t) + jux’(Ut)H(2)(u7t) =0 (1 _ e—ju) MIOG—(U;IS)_{_
u

+ (x(ot) (€77 — 1) + A (h(u)e ™ — 1)) HY (u, t)+
+ (pry (7 — 1) + A (h(u) — 1)) H (u, ).

We denote o = €2 and make a replacement

T = 62t, U = ew, HT(LQ) (ua t) = FT(LQ) (w7 T, 5)?

then we get the system
8F£2) (w,T,€)

( OF? (w, T,
g220 ~ 0 07/ gﬁ_ 7€) +j6wa(x)FéQ) (w,T,€) = jg—c‘?w —

- (x + A)Fém (w7 T 5) + (:LWO + :ur2€j5w> Fl(z) (w7 T, 5>5

X 2 8F1(2> (w,T,¢€) 8F(§2) (w,T,¢€) N 9)

o+ jewal@) F{Y (w7, €) = —jee I 0

+ (z + Ah(ew)) e*jewFéQ) (w,T,€)+
L + (Ah(ew) — X\ — pury — pry) Fl(Q) (w,T,¢€)
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and equation

(2)
82W + jewa(z, 7)F? (w,T,¢) =
T
= (x(7) (€775 — 1) + A (h(ew)e~=* — 1)) B\ (w, 7, )+
, 8F<2)(w T,€)
; _ p,—JEw 0 >
+ je (1 — e79=w) A

+ (pry (675 — 1) + A (h(ew) — 1)) F1(2) (w,,¢e). (10)
We write the solution F7<12) (w,7,¢), n=0,1 in the form

FP(w,7,¢) = ®(w,7) (R, + jewF,) + O(c?) (11)

and expand e*7°% h(ew) in Taylor series up to the first order of € in system (9),
and up to the second order in equation (10). We substitute (11) into (9), (10)
and take into account equations (6), (8), then we can write

jewa(z)Ry = —jew(z + A) fo + jewpry Ry + jew (prg + pry) f1+
. 1 0P(w,T) ~
+‘76R0¢(w, 5 ow + O(e%);

jewa(x)Ry = jew (A\v — X\ —z) Ry + jew(x + A) fy + jewA\v R, —

, ) 1 0®(w, T
— jew (prg + pry) fi _JgRoq)(w ) éw ) + O(e?);

(12)

and
0 T
2OPT) 4 (jew) aw)Blw, 7)f = Gow)? [Owy = 200+ A ) T2t
0= A=) o+ Oy + prg) 2+ (0 + o) | D, 7+
+ (e 0T 4 oty 1g)

where v, = Z v3q,.

After 51mp1e transformations using (8), two equations of system (12) are
reduced to a single equation

—(x + N fo + (urg + pry) £ = a(z)Ry(z) — pro Ry () — Ry(z) 3@(10,7-).

Solution we find in the form
1 0P(w, 1)
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Here C - R, (z) is the general solution of the homogeneous equation due
to (6), g,, is the solution of the equation

—(@+ N)go + (urg + pry) g1 = a(z)Ry(x) — pro Ry (2), (15)
and ¢, satisfies the equation
(=) 0%(w,7) (=p1) 0®(w,7) _

w®(w,7)  Ow = (uro + piry) wd(w,7) Ow
Ry(x) 0P(w,T)

—(z+X)

- S wd(w, ) Ow
or
—(@ + Mo + (uro + pra) 1 = Ro(). (16)
Differentiating (6) with respect to x and comparing with (16), we note that
_ ORy () _ OR, () 4 -0
o= T, 1T T Yot =l
Then, taking into account (7), we obtain
ulrg +r
Yo = — o +75) Y1 = —Po- (17)

(@ + A+ plrg +15))%
Similarly, we set g, + ¢g; = 0, then from equation (15)

_ aRy(x) — pry Ry ()

= , = —q,. 18
91 x+)\+/ﬂ"0+/ﬂ“2 9o 91 ( )

The equation (13) can be written as

% + (jw)2a(z)®(w, 7)f = (jw)? | (Avy — 2A0 + X + ) R02(x)+
+ (AW = A=) fo + (Avp + pr) R1§x> + AV + pry) fi| @(w, 7)+

Ry(z) 0P(w, )
w ow

+ (jw)?

We substitute solution (14) into it and, taking into account (8), (17), (18),
we obtain

0P (w, 1) 0P(w, 1)

g = Vg (O = A=) 0o + (A + pury) o1 — Ry (2)] +
R

R, (z)

+ Ay + pury) ®(w, 7). (19)
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We denote

b(x) = (A\vy — 2 \0 + A+ 2) Ry(x) + (Avy + ury) Ry (x)+
+2(pry + A+ ) g1 (). (20)

It will be shown below that the function b(z) is the diffusion coefficient
of some diffusion process approximating the number of customers in orbit.
Then, taking into account (8), (17), equation (19) can be written in the form

o0(w,7)  0®(w,T) , (jw)2
5 = W—p —a (x) + be(w,T)b(gj), (21)

5. The third stage of asymptotic. A diffuse

approximation
S .
The inverse Fourier transform ®(w,7) = [ e/“YP(y,7)dy converts an

—00
equation (21) for the characteristic functions to the equation for the probability
density P(y, 7).
Given the relationship

0®(w, 1) r Jwy /
W T [ ernyply ) d,
, [ 9P(y,T)
2 w 9
(Jw) @ (w, 1) = /ej ya—yzdy,

we obtain the equation

M — _a/(x)a@P(va)) n b(z) 0*P(y, 1)
or dy 92 oz

The resulting equation is the Fokker—Planck equation for the probability
density of some diffusion process y(7) with transfer coefficient a’(z)y and
diffusion coefficient b(z). Thus, the process y(7) is a solution of the stochastic
differential equation

dy(t) = a/(x)y(T)dT + \/b(x)dw(T),

where w(7) is a Wiener process.

We introduce a diffusion process z(7) = x(7) 4+ ey(7), where the function
x(7) is a solution of the ordinary differential equation dz(7) = a(z)dr. Then
the diffusion process z(7) is a solution of the following stochastic differential

equation
dz(7) = [a(x) + e’ (z)y(1)] dT + e/b(x)dw(T).
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We consider the right hand side of the resulting stochastic differential
equation

a(z) +ed’ (v)y = a(z +ey) + O(e?) = a(2) + O(£?),
e\/b(x) = e\/b(x + ey — cy) = e\/b(z — ey) = £1/b(2) + O(£?)

and assume that the terms O(¢?) do not contribute significantly to the solution
and can be neglected. Then we obtain a stochastic differential equation of

the form
dz(7T) = a(z)dT + e/ b(2)dw(T).
We denote by the probability density of the diffusion process z(7) as

OP{z(1) < z}
0z

and write the Fokker—Planck equation for this distribution

OM(zr) _ Oa()M(z7) | < 0%()M(z7)

or 0z 2 0z2

M(z,7) =

The inverse replacement o = €2 leads to the equation for stationary proba-
bility distribution of diffusion process z(7)

To solve this equation we introduce replacement of variables
G(z) = b(2)I1(2),
and obtain the equation

~ 2a(z)

G'(z) = (—7@ (2),

then the solution is written in the form

G(z) = Cexp {; / %dm} :

0

=

Inverse replacement leads to
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On the basis of obtained probability density function we construct the
diffusion approximation by formula

[(io)

PD(i) = ———.
;OH(TLO')

(22)

6. Numerical results

We determine the applicability of the obtained approximation by comparing
the asymptotic distribution (22) with the steady state distribution P(%)
obtained when solving the system (1) by the matrix method. We consider
different values of the parameter . To compare two probability distributions,
we use the Kolmogorov distance

n

Ay = max Y (P(i)—PD(i))|. (23)

<
0<n<oo et

We consider following system parameters A = 1,7, = 0.5, 7, = 0.3, 75 = 0.2,
qg; = 0.5, g5 = 0.3, g3 = 0.1, g, = 0.1. We introduce the system loading

parameter p = l;\—fo It defines the value of the parameter u. We take A = 0.05
as a threshold value.

Table 1 presents Kolmogorov distances A; calculated by formula (23),
table 2 presents Kolmogorov distances A, calculated for the Gaussian approx-
imation obtained in [6]. Bold in the tables are the values that correspond to
a satisfactory approximation accuracy. It can be concluded that the accuracy
of diffusion approximation increases with decreasing the parameter ¢ and
increasing the system load p, and the accuracy of Gaussian approximation
decreases with high system load. In addition, the accuracy of the diffusion
approximation is higher than the accuracy of the Gaussian approximation.

Table 1
Kolmogorov distance A;

A o= c=1 0=05 0=01 0=0.05
p=202| 0135 0.089  0.050 0.016 0.012
p=20.510.094 0.060 0.035 0.013 0.009
p=0.7|0.059 0.036 0.021 0.009 0.006
p=2091|0.019 0.011 0.007 0.003 0.002
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Table 2
Kolmogorov distance A,

A, c=2 o=1 0=05 0c=01 o0=0.05
p=02]0.221 0.152 0.086 0.018 0.013
p=20.>51]0.162 0.106 0.047 0.027 0.019
p=0.710.175 0.108 0.045 0.039 0.027
p=0.9/|0.187 0.109 0.084 0.057 0.040

7. Conclusions

The mathematical model of the system M[™ /M /1 with an incoming batch
Poisson flow and feedback is constructed. The system of equations for
probability distribution of the number of customers in orbit is present.

A diffusion approximation of the probability distributions of the number of
customers in orbit is obtained. The asymptotic condition is growing average
waiting time in orbit. The accuracy of the approximation is determined using
the Kolmogorov distance in comparison with the steady state probability
distribution obtained by the matrix method. Numerical examples are given
for different values of the system parameters, the accuracy of the diffusion
approximation and the Gaussian approximation is compared. It is shown that
the accuracy of the diffusion approximation is higher than the accuracy of
the Gaussian approximation.
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AcumnToTnuecku audpdy3uoHHbiil anaan3 RQ-cucremsbr
C OOpaTHBIMHU CBA3SIMU M HEOPAMHAPHBIM BXOIAIIINM
MMOTOKOM

A. A. Hazapos', C. B. Poxxkosa' 2, E. }O. TurapeHko’

U Mnemumym npukaadnoti mamemamuky, u KoMNuI0mepHuis Hayx,
Tomcrutli 2ocydapecmeennvili YHUBEPCUMEM
np. Jenuna, d. 36, Tomcx, 634050, Poccus
2 Omdesenue Mamemamuky & UWHGOPMAMUKY WK 6030601 UndICEHEPHOT
n0020mMosK,
Tomcxutl nosumexrruveckutl ynusepcumen,
ya. Cosemckan, 0. 73 cmp.1, Tomcx, 634050, Poccus

Annoranus. B pabore uccrenosama MU /M /1 RQ-cucrema ¢ HeOpIMHADHBIM ITyac-
COHOBCKHUM BXOJISITIIAM TOTOKOM. 3asiBKU Ha BXOJ[ CUCTEMbI MOCTYIIAIOT IPYIIIIAMHU.
B kaxknprit MOMEHT BpeMeHU OOC/IyKuBaeTcsd He 0ojiee OMHOI 3asBKU, OCTAJIbLHBIC
[IOTIa/1AI0T HA OpOuTy. 3asBKa, 0OCIyKUBAHUE KOTOPOI 3aBePIIEHO, JTUOO MOKUIAET
cucTeMy, JubO MOBTOPHO TMOCTYIAET HA OOC/IyKUBaHUe, JUOO MePEeXOIUT HA OpOuTy.
Metonom acuMmuToTudecku qud@y3uOHHOTO aHAIU3A IIPU ACUMITOTUIECKOM YCJIO-
BHUM PACTYIIETO CPETHETO BPEMEHN OKUJAHUs Ha OpOUTE MOCTPOEHA AIIPOKCUMAIINS
pacripe/iesieHus BEPOATHOCTEN dncia 3agBOK Ha opbure. [lokazano, 4T0 TOUYHOCTH
b Dy3MOHHON anITPOKCUMAIUE ITPEBBIIIAET TOTHOCTh M'ayCCOBCKOM aIlTPOKCAMAIIHH.

KiroueBbie cJjioBa: cucremMa MacCoOBOTO obcayxkupanus, RQ-cucrema, HeOp-
JUHAPHBIA TOTOK, oOOpaTHAasi CBA3b, ACUMITOTUYECKU-TU(DY3UOHHBIN aHAINA3



