

Вестник РУДН. Серия: Инженерные исследования

RUDN Journal of Engineering Research

2022;23(2):108–116

ISSN 2312�8143 (Print); ISSN 2312�8151 (Online)
journals.rudn.ru/engineering�researches

108

DOI 10.22363/2312-8143-2022-23-2-108-116
UDC 510.52:519.16

Research article / Научная статья

Necessary and sufficient conditions for dividing the structure of algorithms
into non�intersecting sets: polynomial and enumeration algorithms1

Natalia L. Malinina
Moscow Aviation Institute (National Research University), Moscow, Russian Federation

✉ malinina806@gmail.com

Article history
Received: January 28, 2022
Revised: March 11, 2022
Accepted: April 15, 2022

 Abstract. The article is devoted to a rigorous proof of the first millennium prob-
lem, which is named as 𝑃 ് 𝑁𝑃. This problem was raised in 1971 by S. Cook
and marked the beginning of a long struggle in order to understand and prove it.
The problem is closely related to the concept of a combinatorial explosion, which
concept was aroused in the early 1970s and became a symbol of the enormous
difficulties that developers of algorithms and programs have to face, since the com-
plexity of the tasks that have to be solved is growing every day. The presented
proof is based on the achievements of graph theory and algorithm theory. Neces-
sary conditions (normalizing), to which arbitrary algorithm must satisfy in order to
be solved with a help of a Turing machine, are proved in the article. Further, using
the theory of algorithms and graph theory, it is proved that normalized (necessary
condition) graphs (visualization of algorithms) with respect to such a characteris-
tic of their complexity as a cyclomatic number fall into three non-intersecting sets
that have different properties. These properties are determined by the structural
features of graphs, and they can be taken into account when developing algo-
rithms and programs for solving mass problems. The division of algorithms of mass
problems into three non-intersecting sets is proved. Such division corresponds
with graph-schemes, or block-schemes of polynomial ሺ𝑃ሻ or enumeration ሺ𝑁𝑃ሻ
algorithms. This proves a sufficient condition, to which algorithms must satisfy
in order to belong to different classes and actually confirm that 𝑃 ് 𝑁𝑃.

Keywords:
algorithm, alphabet, graph, graph-scheme,
block-graph, cyclomatic number, isomor-
phism

For citation
Malinina NL. Necessary and sufficient conditions for dividing the structure of algorithms into non-intersecting sets: poly-
nomial and enumeration algorithms. RUDN Journal of Engineering Research. 2022;23(2):108–116. http://doi.org/10.22363/2312-
8143-2022-23-2-108-116

Необходимые и достаточные условия разделения структур алгоритмов
на непересекающиеся множества: полиномиальные и переборные алгоритмы

Н.Л. Малинина
Московский авиационный институт (национальный исследовательский университет), Москва, Российская Федерация

✉ malinina806@gmail.com

История статьи
Поступила в редакцию: 28 января 2022 г.
Доработана: 11 марта 2022 г.
Принята к публикации: 15 апреля 2022 г.

 Аннотация. Представлено строгое доказательство первой проблемы мил-
лениума, а именно: 𝑃 ് 𝑁𝑃, которая была озвучена в 1971 г. в статье
Стивена Кука и положила начало долгой борьбе за ее осмысление и дока-
зательство. Проблема тесно связана с понятием комбинаторного взрыва,

© Malinina N.L., 2022

This work is licensed under a Creative Commons Attribution 4.0 International License
https://creativecommons.org/licenses/by-nc/4.0/legalcode

https://orcid.org/0000-0003-0116-5889
https://orcid.org/0000-0003-0116-5889

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2022. Т. 23. № 2. С. 108–116

 109

Ключевые слова:
алгоритм, алфавит, граф, граф-схема,
блок-схема, цикломатическое число,
изоморфизм

возникшего в начале 1970-х гг. Она стала символом тех громадных
трудностей, с которыми приходится сталкиваться разработчикам ал-
горитмов и программ, поскольку сложность решаемых задач с каждым
днем растет. Предлагаемое доказательство основано на достижениях
теории графов и теории алгоритмов. Обосновывается необходимое
условие того, чтобы произвольный алгоритм мог быть решен с помо-
щью машины Тьюринга и приводятся необходимые теоремы. Далее
с помощью теории алгоритмов и теории графов доказывается, что нор-
мализованные графы (визуализации алгоритмов) относительно такой
характеристики их сложности, как цикломатическое число, распадаются
на три непересекающихся множества, которые обладают различными
свойствами. Эти свойства определяются структурными особенностями
графов, их можно учесть при разработке алгоритмов и программ для
решения массовых задач. Доказывается разделение алгоритмов массовых
задач на непересекающиеся множества, которые соответствуют граф-
схемам (блок-схемам) полиномиальных ሺ𝑃ሻ или переборных ሺ𝑁𝑃ሻ алго-
ритмов. Этим обосновывается достаточное условие, которое, собственно,
и подтверждает, что 𝑃 ് 𝑁𝑃.

Для цитирования
Малинина Н.Л. Необходимые и достаточные условия разделения структур алгоритмов на непересекающиеся мно-
жества: полиномиальные и переборные алгоритмы // Вестник Российского университета дружбы народов. Серия:
Инженерные исследования. 2022. Т. 23. № 2. С. 108–116. http://doi.org/10.22363/2312-8143-2022-23-2-108-116

Introduction

The 𝑃vs𝑁𝑃 problem, or the Cook problem [1;
2], as it is called, ranks first on the list of millennial
problems. This article continues a twelve-year-old
project presented by the author at the International
Mathematical Congress in Hyderabad [3]. The rela-
tionship between the classes 𝑃 and 𝑁𝑃 is considered
in the theory of computational complexity (a branch
of the theory of computation), which studies the re-
sources needed to solve a certain problem. Since 1971,
many topologists, algorithm designers, and other scien-
tists have devoted their time and effort in order to
solve it. The most cited author who writes on the topic
is A. Razborov [4]. There is also a website dedica-
ted to this problem.1 It contains links to 116 articles
on possible solutions of the problem.

Let us dwell only on those articles that were
published in refereed journals. One of them is an arti-
cle by M. Giannakakis [5]. The article does not solve
the problem itself, but only verifies that some par-
ticular approach to the proof does not work. There
are a few more references to papers proving that
𝑃 ൌ 𝑁𝑃. They are mainly devoted to the successful
attempts to create polynomial algorithms for some
special cases, and thus authors pretended that 𝑃 ൌ 𝑁𝑃.
However, we should not forget that the number of
mass problems that we cannot accurately solve with-

1 The P-versus-NP page. Available from:

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm (accessed:
26.09.2016).

out the use of enumeration algorithms is expanding
every day.

A little less works have been written to prove
that 𝑃 ് 𝑁𝑃. It is almost impossible to carefully re-
view all the works (there are more than 50 of them).
A part of the works is based on the fact that there
are models (specific special cases) for which poly-
nomial algorithms cannot be found and, according-
ly, it was concluded that 𝑃 ് 𝑁𝑃. In particular,
this is the work of R. Valeyev [6]. An interesting
article was presented by A. Anilla [7], in which
he comes to the proof of 𝑃 ് 𝑁𝑃 by investigating
computational complexity applying the principle
of increasing entropy. In the work of V. Ivanov [8],
the proof is based on more accurate estimates of
the lower bounds on the time complexity, which are
valid for all algorithms for solving. The most recent
work, which is also devoted to the proof of 𝑃 ് 𝑁𝑃
problem [9] is posted on the Internet, and the opi-
nion of the mathematical community is also not yet
known. A number of proofs, in particular, the works
of Anand, Deliokar, Vian, Barbos2 and some others,
have got responses and were critisized.

It should be noted that only the proof of the fact
that 𝑃 ് 𝑁𝑃 will give us nothing for solving problems
from the practical area. It is necessary to divide the tasks
according to some structural features. This will allow

2 The P-versus-NP page. Available from:

https://www.win.tue.nl/~gwoegi/P-versus-NP.htm (accessed:
26.09.2016).

Malinina N.L. RUDN Journal of Engineering Research. 2022;23(2):108–116

110

at the first stage to understand how difficult the algo-
rithm for solving a practical problem will be.

What is the most important thing we know and
don’t know about the 𝑃vs𝑁𝑃 problem [2]?

1. We know that for the mass problems belonging
to the 𝑃 class, we can create linear or polynomial
algorithms, and obtain exact solutions or solutions
that are of good approximation.

2. We know that for the mass problems from
the 𝑁𝑃 class, we can get exact solutions if we will
use enumeration algorithms or we can get accept-
able solutions if we will use nonlinear or exponen-
tial algorithms.

3. We do not know whether these areas are divi-
ded into disjoint sets and how to determine the be-
longing of the task (or the algorithm that solves it)
to the concrete area?

It seems that it is possible to approach the solu-
tion of the 𝑃vs𝑁𝑃 problem from the other side,
from the standpoint of the need to solve practical
problems. This will allow applying the achievements
of the graph theory and the theory of algorithms.

1. The problem of computation

So, in order to search for the solution of the 𝑃vs𝑁𝑃
problem, we should be interested in the possibility
of computing, that is, in the possibility to create algo-
rithms and programs that solve some problems. Where-
in it is not only desirable, but it is necessary to obtain
economical algorithms and programs. On the one hand,
it is necessary to reduce the resources of time and
memory needed for the solution of problems from
the 𝑁𝑃 class. On the other hand, it takes a lot of energy
resources to build and maintain the powerful servers
that are needed to solve such problems. The brute-
force algorithms also need energy. The number of mass
problems from the 𝑁𝑃 class multiplies every year.
And these are not only obligatory and vital tasks,
such as management of complicated systems in dif-
ferent social and technic areas, but also entertaining
tasks such as games and social media.

We perform calculations using computers.
We know that a computer can process data or solve
only those problems (programs) that correspond to
the Church – Turing thesis [10; 11], that is, algo-
rithms and, accordingly, programs must have the pro-
perty of effective recursiveness.

How can we achieve this magical property?
This property is prescribed by the Markov principle
of normalizing: “an algorithm must be normal in order
to be processed by a Turing machine” [12]. Basical-

ly, all algorithms are normalizable, this is confirmed
by the practice of developing algorithms and pro-
grams [12].

It is well known that all algorithmic schemes
and their compositions (up to equivalence) lead to
normal algorithms. Operators in algorithms are im-
plemented in a specific order or in the order of their
numbering. In turn, the numbering of operators can
be performed if the set of operators is recursive.
However, none of the algorithmic systems still has
any predetermined way of numbering the opera-
tors [12; 13]. It is also well known that in order to
create the property of recursiveness, it is necessary
to expand the alphabet of the algorithm and it is
possible to be done by adding only one letter [12].
It is also known that algorithms can be visualized
using directed graphs.

The next question arises: how to add this letter
and add it somehow automatically? How to make
an arbitrary algorithm normal or efficiently recursive?
This problem was solved in 1972 in L. Malinin’s
doctoral dissertation, but was published only in 2009
in the book “Graph Isomorphism in Theorems and
Algorithms” [14].3

2. Extension of graph theory
and connection with theory of algorithms

Let’s turn to graph theory. Before the publica-
tion of the [14], devoted to the solution of the graph
isomorphism problem, there was no solution to
the problem of a clear definition of the possible
duality of graphs in graph theory.

Everyone knows that an edge graph (algorithm’s
graph-scheme) always has a dual vertex graph (algo-
rithm’s block-scheme). But a vertex graph does not
always have its dual edge graph [15] (Figure 1).

Figure 1. On the non�mandatory duality
between edge and vertex graphs

The extension of graph theory in [14] allows

one to solve this problem. A wide study of the dua-

3 The English variant of the book

may be seen on ResearchGate. Available from:
https://www.researchgate.net/publication/358570634 (accessed:
26.09.2016).

G(Q, Г)
or

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2022. Т. 23. № 2. С. 108–116

 111

lity of graphs was carried out in this work, and
the necessary and the sufficient conditions were proved
for the adjacency matrix to be simultaneously the ad-
jacency matrix of both edge and vertex graphs. It is
necessary to present the main theorems, which lead
to the concepts of duality of graphs and show us,
how to achieve this duality.

In the basic, or main, theorem, the conditions
are proved that the adjacency matrix must meet
in order for the graph corresponding to it to have dua-
lity properties.

Theorem 1 “On a quasi-canonical adjacency
matrix.”4 A theorem on the quasi-canonical adja-
cency matrix determines both necessary and suffi-
cient conditions that the direct path’s 𝐿 matrix has
a dual nature that is at the same time it might be
both 𝐸 – adjacency matrix of the 𝐺 graph’s vertices
and 𝑅 – adjacency matrix of the 𝐻 graph’s edges
on condition that they may have not equal cyclo-
matic numbers. Theorem was proved for the case
of the directed graphs.5

It is given: a set 𝑄 ൌ ሼ𝑞௜ሽ and 𝐿 ൌ 𝑄𝑄 by
the way of 𝑞௜ ൏ 𝑞௝, and 𝐿 ൌ ฮ𝑙௜௝ฮ

ଵ

௡
ൌ ฮ𝑒௜௝ฮ

ଵ

௡ for
the 𝐺ሺ𝑄, Γሻ graph. Then ฮ𝑙௜௝ฮ

ଵ

௡
ൌ ฮ𝑟௜௝ฮ

ଵ

௡
ൌ 𝑅 for

the 𝐻ሺ𝑉, 𝑄ሻ graph only if
𝐿 ൌ ฮ𝑙௜௝ฮ

ଵ

௡ generates 𝐶௡ ൌ ฮ𝑐௜௝ฮ
ଵ

௡
ൌ ሾ0ሿ.

A minor ห𝑙௜௝ห
ଵ

௡ିଵ of the every 𝑙௜௝ ൌ 1 generates

𝐶௡ିଵ ൌ ฮ𝑐௜௝ฮ
ଵ

௡
ൌ ሾ0ሿ, (1)

where

𝑐௜௝ ൌ 𝑙௜௝൫∆௝/௜𝑠௜௝ ൅ ∆௜/௝𝑠௜௝൯,

∆௝/௜𝑠௜௝ ൌ ൬𝑠௜௝ െ min
௝

𝑠௜௝൰
௜
,

∆௜/௝𝑠௜௝ ൌ ቀ𝑠௜௝ െ min
௜

𝑠௜௝ቁ
௜
,

𝑘 ൌ 𝑛, ሺ𝑛 െ 1ሻ,

𝑠௜௝ ൌ 𝑙௜௝ ቆ∑ 𝑙௜௝ ൅ ∑ 𝑙௜௝
௞
௝ୀଵ

௜

௞
௜ୀଵ

௝
ቇ,

4 The numbers of the theorems in the article correspond to

the numbers of the theorems in the book.
5 The directed graph can be transformed to the undirected

graph by doubling the edges of the graph.

൬min
௝

𝑠௜௝൰
௜

ൌ min
௝/௜

𝑠௜௝ ∈ ൛𝑠௜௝ ് 0ൟ,

ቀmin
௜

𝑠௜௝ቁ
௝

ൌ min
௜/௝

𝑠௜௝ ∈ ൛𝑠௜௝ ് 0ൟ.

For the proof of the theorem it must be testified
that the 𝐿 matrix, which meets the conditions (1)
and is considered as the 𝑅 matrix – the adjacency
matrix of 𝐻 graph’s edges, has all the information
for a single-valued representation of the 𝐹 matrix –
the adjacency matrix of 𝐻 graph’s vertices. The proof
is presented in [14].

Cyclomatic numbers of graphs always satisfy
the condition

𝜈൫𝐺௤൯ ൒ 𝜈൫𝐻௤൯. (2)

Condition (2) reflects a certain degeneracy of
the duality (quasi-duality) of the quasi-canonical
adjacency matrix. In addition, this condition reflects
the possibility of the presence of complex vertices
in the 𝐻௤ graph.

Theorem 1 defines the conditions for the exis-
tence of a quasi-canonical adjacency matrix, although
in practical applications such ready-made matrices can
occur only by chance. It becomes very important to
find a way to transform any arbitrary matrix of di-
rect paths, which does not satisfy the requirements
of theorem 1, to the required form. The transfor-
mation of the matrix 𝐿 must be such that the system
of relations between the initial elements remains
unchanged, that is, the transformation must be con-
servative with respect to the system of binary rela-
tions defined on the 𝑄 ൌ ሼ𝑞௜ሽ set.

Transformation of the direct path matrix to
a quasi-canonical form. Definitions:

1. By the conservative transformation of the bi-
nary relation between the two 𝑞௜ and 𝑞௝ elements
we’ll denote such a transformation, which will al-
low either to insert the additional elements into
the 𝑄 ൌ ሼ𝑞௜ሽ set or to exclude them without chang-
ing the relation between the ൫𝑞௜, 𝑞௝൯ elements. Such
a transformation may be based on the transitivity pro-
perty of the binary relation. For example, the initial
pair is defined as ൫𝑞௜, 𝑞௝൯ ∈ 𝑄. Let the elements be
connected by the relation: 𝑞௜ ൏ 𝑞௝. Let’s accept two
conditions: both 𝑞௜ ൏ 𝑞௭ and 𝑞௭ ൏ 𝑞௝, and transform
the initial expression. We’ll find that 𝑞௜ ൏ 𝑞௭ ൏ 𝑞௝.
It is obvious, that two relations both 𝑞௜ ൏ 𝑞௝ and

Malinina N.L. RUDN Journal of Engineering Research. 2022;23(2):108–116

112

𝑞௜ ൏ 𝑞௭ ൏ 𝑞௝ are equivalent according to the initial
pair of the elements. Therefore, the inserting of
the 𝑞௭ element into the 𝑞௜ ൏ 𝑞௝ relation is the con-
servative operation regarding to this relation in
the initial pair.

2. Let us settle that by the ∆𝑛-transformation
of the 𝐿 matrix we will comprehend the addition
of one row (both line and column) to the 𝐿 matrix
at the condition of replacement the 𝑞௫ ൏ 𝑞௬ relation
with the pair of binary both 𝑞௫ ൏ 𝑞௡ାଵ and 𝑞௡ାଵ ൏ 𝑞௬
relations. It is evident, that the ∆𝑛-transformation is
the conservative operation regarding the binary rela-
tion in the initial ൫𝑞௜, 𝑞௝൯ pair and does not break
such a structural similarity criterion as the binary
relation’s system.

Theorem 2 “On a quasi-normalization of
the 𝑳 matrix’s binary relations.” Any direct path’s
ฮ𝑙௜௝ฮ

ଵ

௡ matrix can be transformed to the quasi-

canonical (quasi-normal) ฮ𝑙௜௝ฮ
ଵ

௡ା௦೜ form, where
𝑠௤ ൑ 𝑛ଶ െ 1, by means of applying the ∆𝑛-trans-
formation to such 𝑠௤ elements of the ฮ𝑙௜௝ฮ

ଵ

௡ matrix,
which do not satisfy to the conditions of theorem 1.

The convergence of ∆𝑛-transformation and
the proof of the theorem are presented in [14].
If we correlate said above with the theory of
algorithms and Markov’s thesis, then the proved
∆𝑛-transformation automatically adds the missing
letter to the alphabet of an arbitrary algorithm,
and makes it normal or recursive. It is proved
that the ∆𝑛-transformation (normalizing) of
the algorithm is local, although with the help
of some tweaks it can become linear. In the special
case when ν൫𝐺௤൯ ൌ ν൫𝐻௤൯, the matrix 𝐿௤ ൌ 𝑅௤ is
called canonical or normal. For the case of strict
duality (the cyclomatic numbers are equal), the fol-
lowing theorem was proved.

Theorem 4 “On the canonical adjacency
matrix.” Let the 𝐺 initial graph be specified as
the ฮ𝑒௜௝ฮ

ଵ

௡ matrix – an adjacency matrix of vertices,

which corresponds to the quasi-canonical ฮ𝑟௜௝ฮ
ଵ

௡ା௦೜
matrix – an adjacency matrix of edges of the con-
nected edge 𝐻௤ graph. In order that the 𝐻௤ graph’s
cyclomatic νሺ𝐻௤ሻ number might be equal to the ini-
tial 𝐺 graph’s cyclomatic νሺ𝐺ሻ number, it is neces-
sary and sufficient for all the 𝐻௤ graph’s vertices
to be simple, or, for every 𝑟௫௬ ൌ 1 such condition
must be fulfilled:

If ෍ 𝑟௜௝ ൒ 1, then ෍ 𝑟௜௝ ൌ 1

௡ା௦೜

௝ୀଵ
௜ୀ௫

௡ା௦೜

௜ୀଵ
௝ୀ௬

If ෍ 𝑟௜௝ ൒ 1, then ෍ 𝑟௜௝ ൌ 1

௡ା௦೜

௜ୀଵ
௝ୀ௬

௡ା௦೜

௝ୀଵ
௜ୀ௫ ⎭

⎪
⎪
⎬

⎪
⎪
⎫

. ሺ3ሻ

As a result of graph normalizing and subsequent
ordering, we get an edge graph in the form of a Koenig
graph. In [14] it is proved that canonical graphs
without contours, obtained as a result of normaliz-
ing, possess the recursive property, which is based
on the partition of canonical adjacency matrices into
mutually non-intersecting submatrices. This allows
us to build recurrent local algorithms for their order-
ing. Such possibility gives the graphs the property
of effective recursiveness (numbering is carried out
in one pass along the set of rows of the matrix as it
is required in [14]) to the graphs (algorithms and
programs with such a structure).

The obtaining of an ordered Koenig graph is a ne-
cessary condition, but not a sufficient one. Theoreti-
cally, we get the opportunity to create a normal al-
gorithm in the form of an ordered Koenig graph.
However, the possible presence of complex vertices
in the original contour graph and in the resulting graph
𝐻௤ leads to some problems. The cyclomatic number
of some graphs grows under the ∆𝑛-transformation,
that is, it is not entirely clear what happens to graphs
that have contours. So, the possibility of automating
the algorithm normalizing process does not yet solve
the problem of proving 𝑃vs𝑁𝑃.

We are faced with another problem – how to
divide mass tasks into classes so that, according to
certain signs of the task graph, it is immediately
clear to which class the task belongs: 𝑃 or 𝑁𝑃. Here
we face the problem of graph complexity. A charac-
teristic of graph complexity is the cyclomatic num-
ber ν. Therefore, one should turn to such a charac-
teristic of graph complexity as a cyclomatic number
and figure out whether it is a graph invariant and,
if so, in what cases.

3. Cyclomatic number and isomorphism

Basically, in order to compare graphs we have
a sufficient number of invariants, which can help
to compare graphs with each other. And among
the invariants there is such a characteristic of
the graph as the cyclomatic number ν. There are

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2022. Т. 23. № 2. С. 108–116

 113

works of [15–19], which indicate that the cyclo-
matic number is equal to the maximum number of
independent cycles in the graph and thus becomes
the characteristic of the complexity of the graph.
In order to understand whether the cyclomatic num-
ber is an invariant that we can rely on, we should
turn to the study such a transformation of graphs as
the transformation of a vertex graph into an edge
graph; of the resulting edge graph back to the vertex
graph, and so on [14]. Let’s call this operation as
the graph conversion (Figure 2).

Figure 2. Graph transformation scheme

By straight conversion we’ll call the operation

of constructing a vertex graph from a given edge
graph. An arbitrary directed graph can be subjected
to the operation of the straight conversion if and
only if the adjacency matrix of its vertices has a ca-
nonical ሺν ൌ constሻ or quasi-canonical form ሺ𝜈 ↑ሻ.

By the reverse conversion we’ll call the opera-
tion of constructing an edge graph from a given ver-
tex graph. A graph can be subjected to the operation
of reverse conversion if and only if the adjacency
matrix of its vertices has a canonical or quasi-
canonical form. Both conversion operations were
thoroughly discussed in [14]. It is necessary to pre-
sent only two theorems.

Theorem 9. If the graph 𝐻ଵ in the process of its
sequential direct conversion generates only canoni-
cal graphs 𝐻௞௝ ሺ𝑗 ൌ 1, 2, 3 … , 𝑀ሻ, then the number
of vertices of these successively obtained graphs is
determined by a linear dependence on the number
of the conversion operation ሺ𝑗 െ 1ሻ, that is

𝑛௝ ൌ 𝑛ଵ ൅ Δ𝑛ሺ௝ିଵሻ
∗ . (4)

Theorem 10. If the 𝐻ଵ graph in the process of
its consecutive straight converting generates both
the canonical and the quasi-canonical graphs or on-
ly the quasi-canonical graphs, then the numbers of
the vertices of these graphs, received step by step,
are determined by the following expression:

𝑛௝ ൌ 𝑛ଵ ൅ ෍ 𝛥𝑛ஞ

ஞୀሺ௝ିଵሻ

ஞୀଵ

, ሺ5ሻ

where

Δ𝑛ஞ ൌ Δ𝑛ሺஞିଵሻ ൅ Δ𝜈ሺ𝐻ሺஞିଵሻ, ሺ6ሻ

where ξ ൌ 1, 2, … ሺ𝑗 െ 1ሻ; 𝑗 ൌ 1, 2, 3, … 𝑀.
It was shown that the increase in the number of

graph vertices obtained by sequential straight con-
version is associated with the cyclomatic number
and the type of conversion (canonical or quasi-
canonical), and the increase in the cyclomatic num-
ber during this conversion depends on the structure
of the graph.

The proved theorems [14] represent that all di-
rected graphs can be divided into two classes:

1) graphs for which the cyclomatic number is
always an invariant of the direct conversion;

2) graphs for which the cyclomatic number is
not an invariant at some steps or at all steps of the
direct conversion.

As a result of a thorough study of converting
operations and determining the properties of graph
structures with respect to combinations of various
types of vertices and edges between them the neces-
sary and sufficient signs of these graphs were identi-
fied. The proved theorems are given in [14]. Also,
the concept of a path and a contour in a directed graph
was considered more precisely. Real processes can
only correspond to such circuits that have at least one
“input” and at least one “output.” The concept of
path and contour were already introduced much ear-
lier [15; 16; 18], but in [14] a function was added
that allows one to distinguish paths in a graph from
one another. This sign was determined using the func-
tion of the sums of the degrees of the vertices through
which the path passes. It turned out that these func-
tions can be divided into two classes, which are de-
scribed in [14]. Accordingly, paths can also be divi-
ded into two classes. The proved theorems are pre-
sented in [14].

The study of various paths in graphs led to
the study of various combinations of intervals be-
tween the vertices of the graph [14]. The vertices of
the graph were determined as the positive (one input
and many outputs) one and the negative (many in-
puts and one output) one. In addition the vertices
of the graph were also divided into the simplest
(one input and one output), the simple (one/several
input and several/one outputs) and complex (several
inputs and several outputs). Particular attention was
drawn to the interval of the 𝑙ଷଵ type, which has
complex vertices at both ends (Figure 3, a, b).

(_ _)qkR G or H ()qkF H()L G

Malinina N.L. RUDN Journal of Engineering Research. 2022;23(2):108–116

114

The main feature of this interval 𝑙ଷଵ is that
there is a negative vertex at the input end, and
a positive vertex on the output end. Such an inter-
val, during sequential conversion, first turns into
a complex vertex (Figure 3, c). At the next conver-

sion step this complex vertex (one) is converted into
four independent cycles (Figure 3, d). The appea-
rance of new cycles causes an increase in the cy-
clomatic number. Accordingly, the complexity of
the graph also grows.

Figure 3. The transformation of the interval 𝑙ଷଵ into a complex vertex and the appearance of the independent cycles

As a result of research, it turned out that direc-

ted graphs can be divided into three classes (the dis-
joint sets):

1. Holonomic graphs. For them, the cyclomatic
number is a regular conversion invariant, regardless
of the number of sequential conversion steps. Due
to this, the number of graph vertices obtained from
the original graph as a result of its sequential con-
version depends linearly on the number of conver-
sion steps. These graphs should not contain con-
tours and intervals of type 𝑙ଷଵ.

2. Bounded heteronomous graphs. Such graphs
have a heteronomy boundary in terms of the number
of sequential conversion steps. Until this limit is
reached, the cyclomatic number is not a regular

conversion invariant. After reaching this boundary,
as a result of the next conversion step, a holonomic
graph is generated and the cyclomatic number be-
comes a regular conversion invariant regardless of
the number of steps of further sequential conver-
sion. The structure of such graphs may contain in-
tervals of type 𝑙ଷଵ, but should not have contours.

3. Progressive heteronomous graphs do not have
heteronomic boundaries in terms of the number of
steps of sequential conversion. As a result, the cy-
clomatic number of a progressive heteronomous
graph does not become a regular invariant of se-
quential conversion, for any, however large, number
of conversion steps. The structure of such graphs
contains both contours and intervals of the 𝑙ଷଵ type.

a

31(2) 2jl  

c d
e

f

31(1) 1jl  
() 0kH 










1

2

3

4
5

6
31 0jl 

() 0qH 

13(1) 1jl  

() 4kH 

e

f

a

b



 



A

B

C

D

α δ
γ

β η

ν(Hk) = 0

ν(Hq) = 0

ν(Hk) = 4

α

β

γ

δ

η

Малинина Н.Л. Вестник РУДН. Серия: Инженерные исследования. 2022. Т. 23. № 2. С. 108–116

 115

The comparison of graphs and algorithmic schemes

Initial graph’s view Ordered graph No in Table 1 [14] Complete name of algorithm’s scheme

Гамильтонов граф

𝐺ሺுሻ при ∑ 𝑙௜௝ ൌ 2௝
൫𝑗 ൌ 2,3, … , ሺ𝑛 െ 1ሻ൯

𝐺ሺுሻ൫𝐿ሺுሻ൯ 6 Normal single�channel two�address algorithm’s flow block

𝐺௄
ሺுሻ ቀ𝑅௄

ሺுሻቁ 7 Normal single�channel two�address algorithm’s flowgraph by Kaluznin

𝐻௄
ሺுሻ ቀ𝐹௄

ሺுሻቁ
8 Normal ordinary single�channel two�address algorithm’s flowgraph

9 Generalized normal single�channel two�address algorithm’s flowgraph

𝐷௄
ሺுሻ ቀ𝐹௄

ሺுሻቁ 10 Normal operator single�channel two�address algorithm’s flowgraph

Произвольный граф

𝐺ሺ௄ሻ при ∑ 𝑙௜௝ ൌ 2௝
൫𝑗 ൌ 2,3, … , ሺ𝑛 െ 1ሻ൯

𝐺ሺ௄ሻ൫𝐿ሺ௄ሻ൯ 16 Two�address algorithm’s flow block with arbitrary number of channels

𝐺௄
ሺ௄ሻ ቀ𝑅௄

ሺ௄ሻቁ 17
Normal two�address algorithm’s flowgraph by Kaluznin with arbi�
trary number of channels

𝐻௄
ሺ௄ሻ ቀ𝐹௄

ሺ௄ሻቁ
18

Normal ordinary two�address algorithm’s flowgraph with arbitrary
number of channels

19
Generalized normal two�address algorithm’s flowgraph with arbi�
trary number of channels

𝐷௄
ሺ௄ሻ ቀ𝐹௄

ሺ௄ሻቁ 20
Normal operator two�address algorithm’s flowgraph with arbitrary
number of channels

Произвольный граф 𝐺

𝐺ሺ𝐿ሻ 26 𝑁�address algorithm’s flow block with arbitrary number of channels

𝐺௄ሺ𝑅௄ሻ 27 Normal conjugate 𝑁�address algorithm’s flowgraph with arbitrary
number of channels

𝐻௄ሺ𝐹௄ሻ
28 Normal ordinary 𝑁�address algorithm’s flowgraph with arbitrary

number of channels

29 Generalized normal 𝑁�address algorithm’s flowgraph with arbitrary
number of channels

𝐷௄ሺ𝐹௄ሻ 30 Normal operator 𝑁�address algorithm’s flowgraph with arbitrary
number of channels

Полный граф 𝐺଴
∗

𝐺଴
∗ሺ𝐿଴

∗ ሻ 36 Complete algorithm’s flow block

𝐺଴௨
∗ ሺ𝑅଴௨

∗ ሻ 37 Normal conjugate complete algorithm’s flowgraph

𝐻଴௨
∗ ሺ𝐹଴௨

∗ ሻ
38 Normal ordinary complete algorithm’s flowgraph

39 Generalized normal complete algorithm’s flowgraph

𝐷଴௨
∗ ሺ𝐹଴௨

∗ ሻ 40 Normal operator complete algorithm’s flowgraph

𝐺ሺ௄ሻ, 𝐺, 𝐺଴
∗ 𝐺ሺுሻ൫𝐿ሺுሻ൯ 41 Normal algorithm’s flow block (single�channel two�address)

The correspondence between graph structures

and various block diagrams and graph diagrams of
various algorithms (Table) is investigated in [14,
chapter 4], where presented in the form of Table 1.

Conclusion

So, we can conclude that the set of all algorithms
is divided into three classes (or three disjoint sets),
according to the above partition of the set of directed
graphs. After the operation of normalizing, the graphs,
and, consequently, the algorithms, that have a similar
structure, acquire the properties of recursiveness.

For the holonomic graphs, the cyclomatic number
becomes an invariant. Algorithms, which after the
operation of normalizing will have a similar structure,
automatically receive the property of effective re-
cursiveness and will belong to the polynomial area.

Bounded-heteronomic graphs must be subjected
to some finite number of direct conversion steps in

order for the cyclomatic number to become an invari-
ant. Algorithms with such a structure can be called
reducible to a set of polynomial algorithms.

Progressively-heteronomic graphs will never have
a cyclomatic number invariant. Therefore, algorithms
with a similar structure will always belong to the non-
polynomial area, although in particular cases the norma-
lization operation can reduce the number of search
options.

And finally, the main thing that can be said in
support of 𝑃 ് 𝑁𝑃 thesis.

The necessary condition: in order for the arbi-
trary massive task be implemented with the help of
the computer, it must have a form of the ordered
Koenig graph, which can be obtained by the opera-
tion of normalizing an arbitrary graph of the task.

But the sufficient condition is divided into three
parts, because the arbitrary graphs are divided into
three non-intersecting classes according to their structural

Malinina N.L. RUDN Journal of Engineering Research. 2022;23(2):108–116

116

properties. Therefore, the algorithms that correspond
to them also fall into three non-overlapping classes.
There will remain a class of algorithms that cannot
be reduced to the class of polynomials. They will
always remain exhaustive, that is, NP-hard.

All this proves that 𝑃 ് 𝑁𝑃.

References

1. Cook SA. The complexity of theorem-proving
procedures. Conference Record of Third Annual ACM
Symposium on Theory of Computing. New York:
Association for Computing Machinery; 1971. p. 151–158.
https://doi.org/10.1145/800157.805047

2. Gary M, Johnson D. Computing machines and
intractable problems. Moscow: Mir Publ.; 1982. (In Russ.)

3. Malinina NL. On a principal impossibility to prove
P = NP. International Congress of Mathematicians.
Hyderabad: Hundistan Book Agency; 2010. p. 484–485.

4. Razborov AA. Lower bounds for the polinomial
calculus. Computational Complexity. 1998;7:291–324.

5. Yannakakis M. Expressing combinatorial optimi-
zation problems by liner programs. Journal of Computer
and System Sciences. 1991;43:441–466.

6. Valeyev R. The lower border of complexity of al-
gorithm of elementary NP-complete task. World Applied
Science Journal. 2013;24(8):1072–1083.

7. Annila A. Physical portrayal of computational com-
plexity. ISRN Computational Mathematics. 2009;2012:
321372. https://doi.org/10.5402/2012/321372

8. Ivanov V. A short proof that NP is not P. Inter-
national Journal of Pure and Applied Mathematics. 2014;
94(1):81–88. http://doi.org/10.12732/ijpam.v94i1.9

9. Dowd M. On the provability of P = NP.
2020:1–13. Preprint. Available from:
https://www.researchgate.net/publication/339426546_On
_the_Provability_of_PNP (accessed: 22.02.2020).

10. Church A. A note on the Entscheidungsproblem.
The Journal of Symbolic Logic. 2014;1(1):40–41.
https://doi.org/10.2307/2269326

11. Turing A. On computable numbers, with an ap-
plication to the Entscheidungsproblem. Proceedings of the
London Mathematical Society. 1937;s2–42(1):230–265.

12. Markov A, Nagorny N. The theory of algorithms.
Boston: Kluwer Academic Publiser; 1988.

13. Glushkov VM. Theory of algorithms. Kiev:
KVIRTU PVO; 1961. (In Russ.)

14. Malinin LI, Malinina NL. Graph isomorphism in
theorems and algorithms. Moscow: Librocom Publ.; 2009.
(In Russ.)

15. Ore O. Theory of graphs. Rhode Island: Ameri-
can Mathematical Society; 1962.

16. Berge Cl. Théorie des graphes et ses applica-
tions. Collection universitaire de Mathématiques (No. 2).
Paris: Dunod Editeur; 1958.

17. Zykov AA. The theory of finite graphs. Novo-
sibirsk: Nauka Publ.; 1969. (In Russ.)

18. Harary F, Palmer E. Graphical enumeration. London:
Academic Press; 1973. https://doi.org/10.1016/c2013-0-10826-4

19. Harary F. Graph theory. New York: Basic Books;
1972.

About the author
Natalia L. Malinina, Candidate of Physical and Mathematical Sciences, Associate Professor of the Department 604, Aero-
space Faculty, Moscow Aviation Institute (National Research University), 4 Volokolamsk Shosse, Moscow, 125993, Russian
Federation; ORCID: 0000-0003-0116-5889, eLIBRARY AuthorID: 502378; malinina806@gmail.com

