МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЧИСТОГО ИЗГИБА БАЛКИ ИЗ РАЗНОМОДУЛЬНОГО АВИАЦИОННОГО МАТЕРИАЛА В УСЛОВИЯХ ПОЛЗУЧЕСТИ*

Е.Б. Кузнецов, С.С. Леонов

Кафедра 803 «Дифференциальные уравнения» Московский авиационный институт (национального исследовательского университота) (МАИ) Волоколамское шоссе, 4, Москва Россия, 125993

В статье рассматривается решение задачи чистого пъкист балки прямоугольного сечения, изготовленной из авиационного сплава AK4-1T с различными свойствами на растяжение и сжатие, при постоянной температуре, нагруженной постоянным из неающим моментом. Данная конструкция исследуется на ползучесть и длительную прочность вплогь до начала разрушения с учетом всей картины перераспределения напряжений. Чистенный расчот задачи, описываемой системой обыкновенных дифференциальных уравнений, проводится с использованием уравнений энергетического варианта теории ползучести, а также метода продолжения решения по параметру и имилучией параметризации, с применением четырех методов численного интегрирования систем обыкновенных дифференциальных уравнений: Ойлера, Эйлера—Коши, Рунге—Кутта и Адамса четвертого порядка точности. Приводится сравнение двух методов решения задачи по пезуль татам численного расчета, а также сопоставление полученных численных решений с экспериментальными данными.

Ключевые слова: ползучесть, разрушение, удельная энергия рассенния, параметр поврежденности, метод продолжения решения по параметру, наилучшая параметризация, системы дифференциальных уравнений.

Основы энергетического варианта теорни получести. Теория ползучести — это одно из направлений механики деформирусмого твердого тела, сложившаяся во второй половине XX в. и занявшая свое место наряду с такими разделами механики, как теория упругости и теория иластичности. Термином «ползучесть» при вто называть всю совокупность явлений, которые можно объяснить, допустив, что зависимость между напряжениями и деформациями содержит время явно или через посредство некоторых операторов. Свойства ползучести обнаруживают материалы различной природы: металлы, пластмассы, горные породы, бетон, естественные и искусственные камии, лед и др. [1].

Ползучесть у металлических материалов в холодном состоянии практически отсутствует. Но при повышенных температурах, например в турбинах авиационных двигателей при длительной эксплуатации, ползучесть может достигать таких значительных величин, при которых металлические материалы могут разрушиться. В связи с этим возникает необходимость расчета элементов конструкций на длительную прочность, т.е. расчета времени, в течение которого рассматриваемый элемент конструкции под действием заданных внешних нагрузок не разрушится. Общепринятая схема расчета на длительную прочность разбивается на две само-

Работа выполнена при финансовой поддержке Российского Фонда фундаментальных исследований, проект 13-08-00473.

стоятельные задачи: на базе какой-либо из теорий ползучести находят напряженно-деформированное состояние, а затем, используя один из критериев длительной прочности, определяют долговечность конструкции. В данной работе расчет ведется по уравнениям энергетического варианта теории ползучести, преимущество которого заключается в том, что две указанные задачи совмещаются [2; 3].

Основные гипотезы, на которых базируется энергетический вариант теории ползучести, следующие [2]:

— процессы ползучести и разрушения — два сопутствующих и влияющих друг на друга процесса;

— за меру интенсивности процесса ползучести при имается величина удельной мощности *W* рассеяния, которая определяется выражением

 $W=\sigma_{kl}\eta_{kl},$

За меру повреждаемости материала принимается величина удельной работы A рассеяния, определяемая выражением $\int_0^t W dt$. Разрушение материала наступает при достижении удельной работой рассеяния критического значения A_{tr} являюще-

при достижении удельной рассеяния критического значения до являющегося функцией температуры;

— предпола ается существование уравнения состояния, связывающего оба процесса ползучести и разрушения по выбранным выше мер м в виде [4]

$$W = F(\mathbf{\sigma}_i, A, T, \mathbf{\omega}_1, \mathbf{\omega}_2, \dots, \mathbf{\omega}_k), \tag{1}$$

где *T* — темнература; $\sigma_i = \sqrt{3s_{kl}s_{kl}/2}$ — интенсивность напряжений; $s_{kl} = \sigma_{kl} - \sigma_0 \delta_{kl}$ — компоненты девиатора тензора напряжений; $\sigma_0 = \sigma_{kl} \delta_{kl}/3$ — гидростатическая (шаровая) составляющая тензора напряжений; δ_{kl} — символы Кронекера; $\omega_1, \omega_2, ..., \omega_k$ отождествляются с параметрами поврежденности [1].

Здесь предполагается суммирование по повторяющимся индексам; — предполагается справедливым закон течения вплоть до разрушения в виде

$$\eta_{ij} = \lambda \frac{\partial \sigma_i}{\partial \sigma_{ij}};$$

— материал считается пластически несжимаемым вплоть до разрушения $\eta_{kl}\delta_{kl}=0.$

Далее ограничимся одним параметром поврежденности (0), кинетическое уравнение для которого запишем в виде [4]

$$\frac{d\omega}{dt} = \Psi(\sigma_i, A, T, \omega), \quad \omega(x_k, 0) = 0, \quad \omega(x_k^*, t^*) = 1.$$
(2)

Считается, что в случае неповрежденного материала параметр ω во всех точках тела равен нулю; если в какой-либо точке с координатами x_k^* в момент времени $t = t^*$ он достигает значения равного единице, то говорят, что в этой точке произошло разрушение, а время t^* называют временем начала разрушения тела.

Экспериментально показано [2], что кривые ползучести A = A(n) подобны при различных уровнях напряжений и температур. Учитывая этот факт, можно конкретизировать зависимости (1)—(2) и представить их в виде

$$\frac{dA}{dt} = \frac{F_1(\sigma_i, T)}{U_1(A)U_2(\omega)},$$
(3)
$$\frac{d\omega}{dt} = \frac{F_2(\sigma_i, T)}{U_3(A)U_4(\omega)},$$
(4)

где функциональные зависимости $F_1, F_2, V_1, ..., V_4$ определяются в экспериментах [4].

Применение уравнений в энергетической форме к решению задачи на чистый изгиб балки. Одной из простейших конструкций для численного расчета на ползучесть и длительную прочность является балка, нагруженная постоянным изгибающим моментом. Численное решение задачи исустановившейся ползучести изгибаемого бруса нолучены многими авторами для материалов с одинаковыми свойствами на растяжение и сжатие [1; 5; 6]. Для материалов с разными характеристиками ползучести на растяжение и сжатие данная задача решена в предположении установившейся ползучести и неустановившейся ползучести по теории старения [7]. Данная задача с использованием уривнений энергетического варианта теории ползучести была решена для материала с одинаковыми свойствами на растяжение и сжатие [2] и материала с различными свойствами на раст тяжение и сжатие [2; 8; 9].

Ниже рассматривается чистый из иб балки прямоугольного поперечного сечении шириной b и высотой h изготовленной из авиационного сплава АК4-1Т, при постоянной температуре, под действием постоянного изгибающего момента M [8; 9]. Расчет проводится с учетом всей картины перераспределения напряжений вплоть до начала разрушения. Под ризрушением балки будем понимать не только разделение ее на части, но и исчерпывание несущей способности, происшедшей вследствие неограниченной интенсификации процесса ползучести в некоторой ее области. В данном случае достижение в некотором волокне параметром поврежденности значения равного единице. Расчет по уравнениям энергетического варианта теории ползучести [4] сводится к решению системы трех интегро-дифференциальных уравнений.

Считая, что полная деформация в произвольной точке балки в любой момент времени складывается из упругой деформации и деформации ползучести, из уравнений равновесия

$$b \int_{-h/2}^{h/2} \sigma \xi d\xi = M, \quad \int_{-h/2}^{h/2} \sigma d\xi = 0$$
 (5)

113

с учетом гипотезы плоских сечений находим кривизну балки κ , смещение нейтральной линии δ и напряжение σ , действующее в точке на расстоянии *y* от срединной поверхности:

$$\kappa = \frac{M}{EJ} + \frac{b}{J} \int_{-h/2}^{h/2} \varepsilon \xi d\xi; \qquad (6)$$

$$\delta = -\frac{1}{\kappa h} \int_{-h/2}^{h/2} \varepsilon d\xi; \qquad (7)$$

$$\sigma = E\kappa (y - \delta) - E\varepsilon, \quad y \in [-h/2; h/2], \qquad (8)$$

где E — модуль упругости материала; $J = bh^3/12$ — осевой монент инерции сечения балки.

Подставляя выражение для напряжений (8) в уравнения ползучести и поврежденности для чистого изгиба балки (3), (4), получаем

$$\begin{cases}
\frac{dA}{dt} = \frac{B_A \left(\exp\left\{\zeta\sigma^2\right\} - 1\right)}{(1 - \omega)^m} \vartheta(\sigma) + \frac{\overline{B}_A \left(\exp\left\{\overline{\zeta}\sigma^2\right\} - 1\right)}{(1 - \omega)^{\overline{m}}} \vartheta(-\sigma), \\
\frac{d\omega}{dt} = \frac{B_\omega \left(\exp\left\{\beta\sigma^2\right\} - 1\right)}{(1 - \omega)^m} \vartheta(\sigma) + \frac{\overline{B}_\omega \left(\exp\left\{\overline{\beta}\sigma^2\right\} - 1\right)}{(1 - \omega)^{\overline{m}}} \vartheta(-\sigma), \\
\frac{d\varepsilon}{dt} = \frac{1}{\sigma} \frac{dA}{dt},
\end{cases}$$
(9)

где $\vartheta(x) = 1$ при x > 0, $\vartheta(x) = 0$ при $x \le 0$; B_A , ζ , m, B_{ω} , β — характеристики ползучести на растижение; \overline{B}_{ω} , $\overline{\zeta}$, \overline{m} , \overline{B}_{ω} , $\overline{\beta}$ — характеристики ползучести на сжатие, получим систему трех интегро-дифференциальных уравнений относительно A, ω , ε .

Разонвая сечение балки по высоте на k равных интервалов и заменяя интегралы конечными суммами по формуле Симисона [8], получим систему дифференциальных уравнений, $i = \overline{0,k}$:

$$\begin{cases} \frac{dA_i}{dt} = \frac{B_A \left(\exp\left[\zeta \sigma_i^2\right] - 1 \right)}{(1 - \omega_i)^m} \vartheta(\sigma_i) + \frac{\overline{B}_A \left(\exp\left\{\overline{\zeta} \sigma_i^2\right\} - 1 \right)}{(1 - \omega_i)^{\overline{m}}} \vartheta(-\sigma_i), \\ \frac{d\omega_i}{dt} = \frac{B_\omega \left(\exp\left\{\beta \sigma_i^2\right\} - 1 \right)}{(1 - \omega_i)^m} \vartheta(\sigma_i) + \frac{\overline{B}_\omega \left(\exp\left\{\overline{\beta} \sigma_i^2\right\} - 1 \right)}{(1 - \omega_i)^{\overline{m}}} \vartheta(-\sigma_i), \\ \frac{d\varepsilon_i}{dt} = \frac{1}{\sigma_i} \cdot \frac{dA_i}{dt}. \end{cases}$$
(10)
$$\sigma_i = Ek \left(y_i - \delta \right) - E\varepsilon_i.$$

Нижний индекс определяет точку разбиения балки по высоте. Выражение для к и δ имеют вид

$$\kappa = \frac{M}{EJ} + \frac{bd}{3J} \left(\varepsilon_0 y_0 + 4 \left(\varepsilon_1 y_1 + \dots + \varepsilon_{k-1} y_{k-1} \right) + 2 \left(\varepsilon_2 y_2 + \dots + \varepsilon_{k-2} y_{k-2} \right) + \varepsilon_k y_k \right),$$

$$\delta = -\frac{d}{3\kappa h} \left(\varepsilon_0 y_0 + 4 \left(\varepsilon_1 y_1 + \dots + \varepsilon_{k-1} y_{k-1} \right) + 2 \left(\varepsilon_2 y_2 + \dots + \varepsilon_{k-2} y_{k-2} \right) + \varepsilon_k y_k \right),$$

где *d* — длина интервала разбиения; *y_i* — значение высоты в *i*-ой точке разбиения.

Подставляя выражения для σ_i (11) в (10), получим систему 3(k + 1) обыкновенных дифференциальных уравнений первого порядка.

В качестве начальных условий для системы (10) беругся однородные:

$$t = 0: \epsilon_i = A_i = \omega_i = 0, \ 1 = 0, k.$$
 (12)

Расчет проводился для балки прямоугольного поперечного сечения длиной 200 мм (b = 10 мм, h = 20 мм) из авиа ционного сплава АК4-1Т при температуре 200 °С. Характеристики ползучески для даиного материала приведены в табл. 1. Модуль упругости E = 60 ГПа, внешний изгибающий момент $M = 1.76589 \cdot 10^{-4}$ МН \cdot м, число разбиений по высоте принималось k = 64 [9].

Характеристики ползучести

 Растяжение
 Окатие

 m
 B_A · 10⁹,
MДж/
(M³ · c)
 B_w · 10⁴,
/c

$$\zeta \cdot 10^4,$$

MПa⁻²
 $\beta \cdot 10^4,$
MПa⁻²
 $\overline{B}_A \cdot 10^9,$
MПa⁻²
 $\overline{B}_{\omega} \cdot 10^9,$
MДж/
(M³ · c)
 $\overline{\zeta} \cdot 10^4,$
MПa⁻²
 $\overline{\beta} \cdot 10^4,$
MПa⁻²

 2
 3,0
 2 014
 2,09
 1,611
 5
 8 608
 0,84575
 1,515
 1,2906

Задача (10), (12) решалась в средс Delphi 7 с использованием следующих исленных методов интегрирования систем обыкновенных дифференциальных равнений:

— метод Эйлера с переменным шагом интегрирования;

— метод Эйлера-Коши с цеременным шагом интегрирования;

— метод Рунге-Кутта четвертого порядка точности с переменным шагом интегрирования;

— метод Адамса четвертого порядка точности с постоянным шагом.

Смена шага в указанных методах производится в соответствии с принципом Рунге—Ромберга—Ричардсона. Шаг уменьшается вдвое, если главный член погрешности с таким шагом $R > \varepsilon_1$, шаг увеличивается вдвое при $R > \varepsilon_2$, где $\varepsilon_1, \varepsilon_2$ — постоянные, характеризующие точность полученных приближенных решений для каждого метода [10]. Счет прекращался при достижении параметром поврежденности на внешнем наиболее нагруженном контуре значения $\omega \approx 1$.

Вычисления проводятся на персональном компьютере Intel Core i5 — 2410M CPU 2,30 ГГц; 4,00 ГБ ОЗУ; видеокарта NVIDIA GeForce GT540M 2 ГБ; 64-разрядная операционная система Windows 7 Домашняя базовая Service Pack 1.

аблица 1

Основные данные о вычислительном процессе приведены в табл. 2, где s_1 — шаг интегрирования в начале вычислений; s_2 — шаг интегрирования в конце вычислений; j — количество шагов по независимой переменной; t^* — расчетное значение длительной прочности рассматриваемой конструкции; ε — значение деформации ползучести на верхнем слое в конце вычислений; A — значение удельной энергии рассеяния на верхнем слое в конце вычислений; ω — значение параметра поврежденности на верхнем слое в конце вычислений; ω — среднее время счета.

Таблица 2

Основные данные о решении задачи тор (12)							
<i>S</i> ₁ , ч	<i>S</i> ₂ , ч	j	<i>t</i> *, ч	° C	А, МДХ/М ³	ω	<i>t</i> ., c
Метод Эйлера (ε ₁ = 5 · 10 ⁻³ , ε ₂ = 10 ⁻¹)							
0,01778	$5,556 \cdot 10^{-4}$	19 026	319,07139	0,0353	5,88583	0,99887	73,216
Метод Эйлера-Коци ($\varepsilon_1 = 8 = 10^{-4}$, $\varepsilon_2 = 3 \cdot 10^{-4}$)							
0,01778	1,736 · 10 ⁻⁵	20 122	319,03551	0,03535	5,88683	0,99977	83,239
Метод Рунге-Кутта ($\varepsilon_1 = 10^{-4}, \varepsilon_2 = 5 \cdot 10^{-5}$)							
0,01778	$3,4722 \cdot 10^{-5}$	24 604	3 19,037 8 1	0,03533	5,88598	0,99943	105,829
Метод Адамса ($\varepsilon_1 = 3 \cdot 10^{-3}, \varepsilon_2 = 8 \cdot 10^{-4}$)							
0,01778	0,00444	71 778	319,01556	0,03526	5,88478	0,99796	304,353

Для проверки результатов численного расчета были проведены эксперименты [9] на чистый изгиб балки постоянным изгибающим мементом. В процессе эксперимента измерялся прогиб балки $\delta_0 = \delta_0(t)$ в пентре на базе $l_0 = 100$ мм, кривизна пересчитывалась по формуле $\kappa = 8 \cdot \delta_0 \cdot l_0^2$. Все эксперименты на изгиб доводищие, до разрушения.

Построение графиков производится в вычислительной системе Mathcad 14 по результатам, полученным в Delphi 7 методом Рунге-Кутта четвертого порядка точности.

На рис. 1а сплошной лицией представлены расчетные значения, полученные при решении задачи в средо Delphi 7, квадратами — расчетные значения, полученные в работе [9], точками — кспериментальные значения k = k(t) для величины изгибающего момента при максимальном напряжении в начальный момент $\delta(0)_{\text{max}} = 264,87 \text{ MII}a$ [9].

На рис. 16—1г показано распределение напряжения, удельной энергии рассеяния и деформации ползучести по высоте балки в различные моменты времени (указано в часах против соответствующей диаграммы) в эксперименте с $\delta(0)_{\text{max}} = 264,87 \text{ МПа.}$

На рис. 1д показано распределение поврежденности по высоте балки в различные моменты времени (указано в часах против соответствующей диаграммы) в эксперименте с $\delta(0)_{max} = 264,87 \text{ MI}a.$

Рис. 1. Зависимость величины изгиба балки от времени (а); распределение напряжений по высоте сечения балки (б), удельной энергии рассеяния по высоте сечения балки (в), деформации ползучести по высоте сечения балки (д) для задачи (10), (12)

Достаточно удовлетворительное совпадение расчетных и экспериментальных значений k = k(t) позволяет косвенно судить о достоверности процесса перераспределения внутренних напряжений и накопления повреждений в балке вплоть до начала разрушения.

Применение метода продолжения решения по параметру и наилучшей параметризации к решению задачи на чистый изгиб, записанной в уравнениях энергетического варианта теории ползучести. Как видно из системы уравнений (9), при приближении значения параметра поврежденности ω к единице правые части уравнений неограниченно возрастают. Это приводит к возникновению вычислительных трудностей, а именно необходимости для достижения заданной точности, уменьшения шага интегрирования до 10^{-3} и ниже ито приводит к увеличению времени счета. Этим же недостатком обладает и система уравнений (10).

Параметризуем уравнения системы (10), полагая, что неизвестные ε_i , A_i , ω_i и независимая переменная *t* являются функциями параметра λ :

$$\varepsilon_i = \varepsilon_i(\lambda), A_i = A_i(\lambda), \omega_i = \omega_i(\lambda), t = \lambda(\lambda), \quad i = 0, k.$$
(13)

В работе [11] показано, что для того, чтобы запачу Коши для нормальной системы обыкновенных дифференциальных уравнечий преобразовать в рамках метода продолжения решения по параметру к наилучшему аргументу, необходимо и достаточно в качестве λ выбрать длину дуги, от считываемую вдоль интегральной кривой этой задачи:

$$d\lambda^{2} = (dA_{1})^{2} + ... + (dA_{k})^{2} + (d\varepsilon_{1})^{2} + ... + (d\omega_{k})^{2} + ... + (d\omega_{k})^{2} + dt^{2}.$$
 (14)
Используя соотношения вистемы (10), окончательно получим

$$d\lambda^{2} = \left(1 + \frac{1}{\sigma_{1}^{2}}\right)(dA_{1})^{2} + \dots + \left(1 + \frac{1}{\sigma_{k}^{2}}\right)(dA_{k})^{2} + \dots + d\omega_{1})^{2} + \dots + (d\omega_{k})^{2} + dt^{2}$$
(15)

Используя соотношение (15) для параметра λ и выражение для σ_i (11), получим систему 3k + 4 обыкновенных дифференциальных уравнений первого порядка, $i = \overline{0, k}$:

$$\frac{dA}{d\lambda} = \pm \frac{Q_{i}}{(1-\omega_{i})^{\bar{m}}\sqrt{1+\sum_{j=0}^{k} \frac{\left(1+\frac{1}{\sigma_{j}}\right)Q_{j}+P_{j}^{2}}{(1-\omega_{j})^{2\bar{m}}}}, \\
\frac{d\omega_{i}}{d\lambda} = \pm \frac{P_{i}}{(1-\omega_{i})^{\bar{m}}\sqrt{1+\sum_{j=0}^{k} \frac{\left(1+\frac{1}{\sigma_{j}^{2}}\right)Q_{j}^{2}+P_{j}^{2}}{(1-\omega_{j})^{2\bar{m}}}}, \\
\frac{d\epsilon_{i}}{d\lambda} = \pm \frac{1}{\sigma_{i}} \cdot \frac{dA_{i}}{dt}, \\
\frac{dt}{d\lambda} = \pm \frac{1}{(1-\omega_{i})^{\bar{m}}}\sqrt{1+\sum_{j=0}^{k} \frac{\left(1+\frac{1}{\sigma_{j}^{2}}\right)Q_{j}^{2}+P_{j}^{2}}{(1-\omega_{j})^{2\bar{m}}}}, \quad (16)$$

где Q_i и P_i имеют вид

(

$$Q_{i} = B_{A} \left(\exp\left\{\zeta \sigma_{i}^{2}\right\} - 1 \right) (1 - \omega_{i})^{\overline{m} - m} \vartheta(\sigma_{i}) + \overline{B}_{A} \left(\exp\left\{\overline{\zeta} \sigma_{i}^{2}\right\} - 1 \right) \vartheta(-\sigma_{i}),$$

$$P_{i} = B_{\omega} \left(\exp\left\{\beta \sigma_{i}^{2}\right\} - 1 \right) (1 - \omega_{i})^{\overline{m} - m} \vartheta(\sigma_{i}) + \overline{B}_{\omega} \left(\exp\left\{\overline{\beta} \sigma_{i}^{2}\right\} - 1 \right) \vartheta(-\sigma_{i}).$$

Выбирая положительное направление движения вдоль интегральной кривой задачи и занося множитель $(1-\omega_i)^{\overline{m}}$ под знак корня, получим:

$$\begin{aligned} \begin{cases} \frac{dA_{i}}{d\lambda} &= \frac{Q_{i}}{\sqrt{(1-\omega_{i})^{2m} + \sum_{j=0}^{k} \left(\left(1+\frac{1}{\sigma_{j}^{2}} Q_{j}^{2} + P_{j}^{2}\right) \left(1-\frac{\omega_{i}}{D}\right)^{2m}} \\ &\frac{d\omega_{i}}{d\lambda} &= \frac{P_{i}}{\sqrt{(1-\omega_{i})^{2m} + \sum_{j=0}^{k} \left(\left(1+\frac{1}{\sigma_{j}^{2}}\right) Q_{j}^{2} + P_{j}^{2} \right) \left(\frac{1-\omega_{i}}{1-\omega_{j}}\right)^{2m}}, \\ &\frac{d\varepsilon_{i}}{d} &= \frac{1}{\sigma_{i}} \cdot \frac{dA_{i}}{dt}, \\ &\frac{dt}{d\lambda} &= \frac{1}{\sqrt{(1-\omega_{i})^{2m} + \sum_{j=0}^{k} \left(\left(1+\frac{1}{\sigma_{j}^{2}}\right) Q_{j}^{2} + P_{j}^{2} \right) \left(\frac{1-\omega_{i}}{1-\omega_{j}}\right)^{2m}}}{\sqrt{\prod_{l=0}^{k} (1-\omega_{l})^{2m} + \sum_{j=0}^{k} \left(\left(1+\frac{1}{\sigma_{j}^{2}}\right) Q_{j}^{2} + P_{j}^{2} \right) \prod_{l=0}^{k} (1-\omega_{l})^{2m}}, \\ &\frac{d\omega_{i}}{d\lambda} &= \frac{Q_{i} \prod_{l=0}^{k} \left(1-\omega_{l}\right)^{2m} + \sum_{j=0}^{k} \left(\left(1+\frac{1}{\sigma_{j}^{2}}\right) Q_{j}^{2} + P_{j}^{2} \right) \prod_{l=0}^{k} (1-\omega_{l})^{2m}, \\ &\frac{d\omega_{i}}{d\lambda} &= \frac{Q_{i} \prod_{l=0}^{k} (1-\omega_{l})^{2m} + \sum_{j=0}^{k} \left(\left(1+\frac{1}{\sigma_{j}^{2}}\right) Q_{j}^{2} + P_{j}^{2} \right) \prod_{l=0}^{k} (1-\omega_{l})^{2m}, \\ &\frac{d\omega_{i}}{d\lambda} &= \frac{Q_{i} \prod_{l=0}^{k} (1-\omega_{l})^{2m} + \sum_{j=0}^{k} \left(\left(1+\frac{1}{\sigma_{j}^{2}}\right) Q_{j}^{2} + P_{j}^{2} \right) \prod_{l=0}^{k} (1-\omega_{l})^{2m}, \\ &\frac{d\varepsilon_{i}}{d\lambda} &= \frac{1}{\sigma_{i}} \cdot \frac{dA_{i}}{dt}, \\ &\frac{dt}{d\lambda} &= \frac{\prod_{l=0}^{k} (1-\omega_{l})^{2m} + \sum_{j=0}^{k} \left(\left(1+\frac{1}{\sigma_{j}^{2}}\right) Q_{j}^{2} + P_{j}^{2} \right) \prod_{l=0}^{k} (1-\omega_{l})^{2m}, \end{aligned} \right)$$
(18)

В статье [9] показано, что у материалов с различными свойствами на растяжение-сжатие при изгибе постоянным изгибающим моментом разрушение начинается в крайнем волокне, испытывающем растяжение. Таким образом, знаменатели системы уравнений (18) не обращаются в ноль, более того, все правые части уравнений системы (18) по модулю меньше единицы.

В качестве начального напряженно-деформированного состоянии берется однородное:

$$\lambda = 0: \varepsilon_i = A_i = \omega_i = t = 0, \ i = \overline{0, k}.$$
(19)

пица З

Расчет проводится для балки прямоугольного поперечного сечения аналогичных размеров из сплава АК4-1Т. Характеристики поизучести в уравнениях системы (18) те же, что и для уравнений системы (10).

Задача (18), (19) решалась в вычислительной среде Delphi 7 с использованием тех же методов решения, что и задача (10), (12). Расчет проводился при тех же условиях, что и для непараметризованной задачи на персональном компьютере, описанном выше.

Основные данные о вычислительном процессе приведены в табл. 3. обозначения такие же, как и для табл. 2

Графические результаты не отличались от представленных выше.

Вполне удовлетворительное совпадение расчетных и экспериментальных значений для величины кривизны балки подтверждает правильность выбора определяющих уравнений в энергетической форме для описания процесса ползучести балки вплоть до разрушения.

Сравнение решений полученных с использованием уравнений энергетического варианта теории ползучести и параметризованных уравнений в энергетической форме показывает, что метод продолжения решения по параметру и наилучшая параметризация может применяться для исследования конструкций на ползучесть и длительную прочность.

По результатам вычислений, приведенных в Таблице 3 и 4, видно, что использование метода продолжения решения по параметру и наилучшей параметризации позволяет продвинуться дальше по параметру поврежденности, но сравнению с непараметризованной задачей. Однако применение метода продолжения решения по параметру усложняет исходную систему уравнений, что приводат к увеличению времени счета.

ЛИТЕРАТУРА

- [1] *Работнов Ю.Н.* Ползучесть элементов конструкций. М.: Наука, 1966. 752 с. [*Rabotnov Ju.N.* Polzuchest' jelementov konstrukcij М.: Vayka, 1966. 752 р.]
- [2] Соснин О.В. Энергетический вариант теории колучести / О.В. Соснин, Б.В. Горев, А.Ф. Никитенко. — Новосибирск: Институт ридродиламики СО АН СССР, 1986. — 95 с. [Sosnin O.V., Gorev B.V., Nikitenko A.I. Jenergeticheskij variant teorii polzuchesti. — Novosibirsk, Institut gidrodinamiki SQ AN SSSR, 1986. — 95 s.]
- [3] Горев Б.В. Энергетический вариан, теории ползучести в обработке металлов давлением / Б.В. Горев, В.А. Панамарев, В.Н. Перетятько // Изв. вузов. Черная метальургия. 2011. № 6. С. 16—14. [Gorev B.V., Panamarev V.A., Peretyat'ko V.N. Energe icheskiy variant teorii polzuchesti v obrabotke metallov davleniem // Izv. Vuzov. Cheroaya metallurgiya. 2011. N 6. S. 16—18.]
- [4] Соснин О.В. К обоснованию энергетического варианта теории получести и длительной прочности металлов / О.В. Соснин, А.Ф. Никитенко, Б.В. горев // ПМГФ. — 2010. — Т. 51. — № 4. – С. 188—197. [Sosnin O.V., Gorev B.V. Nikitenko A.F. K obosnovaniyu energetiches kogo varianta teorii polzuchesti i dlitel'noy prochnosti metallov // Prikladnaja mehanika i tehnicheskaja fizika. — 2010. — Т. 51. — N 4. — S. 188—197.]
- [5] *Качацов Л.М.* Геория ползучести / Л.М. Качанов М.: Физматгиз, 1960. 455 с. *Inachanov I.M.* Teorija polzuchesti. — М.: Fizmatgiz, 1960. — 455 р.]
- [6] Ленин Г.Ф. Ползучесть прямого бруса при изнибе бучетом повреждаемости материала / Г.Ф. Мепин, Ю.Д. Бондаренко // Пробломы прочности. — 1970. — № 7. — С. 68—70. [Lepin G.F., Bondarenko Yu.D. Polzuchest' pryamogo brusa pri izgibe s uchetom povrezhdaemosti materiala // Problemy prochnosti. — 1970. — N 7. — S. 68—70.]
- [7] Никитенко А.Ф. Изгиб балки сразными карактеристиками ползучести при растяжении и сжатии / А.Ф. Никитенко, О.В. Соснин // Проблемы прочности. — 1971. — № 6. — С. 67—70. [Nikitenko A.F. Sostin O.F. Izgib balki s raznymi kharakteristikami polzuchesti pri rastyazhenii i szhatij // Problemy prochnosti. — 1971. — N 6. — S. 67—70.]
- [8] Горев Б.В. К расчету на неустановившуюся ползучесть изгибаемого бруса из материала с разными характеристиками на растяжение и сжатие / Б.В. Горев // Динамика сплошной среды: Сб. науч. тр. — Новосибирск: Институт гидродинамики СО АН СССР, 1973. — Вып. 14. — С. 44—51. [Gorev B.V. K raschetu na neustanovivshuyusya polzuchest' izgibaemogo brusa iz materiala s raznymi kharakteristikami na rastyazhenie i szhatie // Dinamika sploshnoy sredy. — Т. 14. — S. 44—51.]
- [9] Горев Б.В. Описание процесса ползучести и разрушения при изгибе балок и кручении валов уравнениями со скалярным параметром повреждаемости / Б.В. Горев, И.Д. Клопотов // ПМТФ. 1999. Т. 40. № 6. С. 157—162. [Gorev B.V., Klopotov I.D. Opisanie protsessa polzuchesti i razrusheniya pri izgibe balok i kruchenii valov uravneniyami so skalyarnym parametrom povrezhdaemosti // Prikladnaja mehanika i tehnicheskaja fizika. 1999. Т. 40. N 6. S. 157—162.]

- [10] *Формалев В.Ф.* Численные методы / В.Ф. Формалев, Д.Л. Ревизников. М.: Физматлит, 2004. 400 с. [*Formalev V.F., Reviznikov D.L.* Chislennye metody. М.: Fizmatlit, 2004. 400 р.]
- [11] Шалашилин В.И. Метод продолжения решения и наилучшая параметризация / В.И. Шалашилин, Е.Б. Кузнецов. — М.: Эдиториал УРСС, 1999. — 224 с. [Shalashilin V.I., Kuznetsov E.B. Metod prodolzheniya resheniya i nailuchshaya parametrizatsiya. — M. Editorial URSS, 1999. — 224 p.]

MATHEMATICAL MODELING OF THE PURE BENDING FOR THE MULTIMODULUS AVIATION MATERIAL BEAM AT CREEP CONDITIONS

E.B. Kuznetsov, S.S. Leonov

803 "Differential Equations" department Moscow Aviation Institute (National Research University) (MAI) Volokolamsk Highway, 4, Moscow, Russia, 125993

The paper deals with the solution of pure bending of rectangular beam AK4-1T at constant temperature loaded constant bending moment. The research of construction for creep and long-term strength with the whole distribution pattern of the stress until the beginning of destruction considered. The numerical calculation of the problem is solved with the equations of the energy variant of the theory of creep, as well as the method of the solution continuation with respect to a parameter and the best parameterization, using four methods of numerical integration of ordinary differential equations: Euler method, Euler-Cauchy method, fourth order Runge-Kutta method and fourth-order A and method. The paper also considers comparison of two methods for the solution of the numerical result and a comparison of the numerical solutions with the experimental data as well.

Key words: creep; fracture; specific dissipation power; damage parameter; the method of solution ontinuation with respect to a parameter; the best parameterization; system of differential equations.