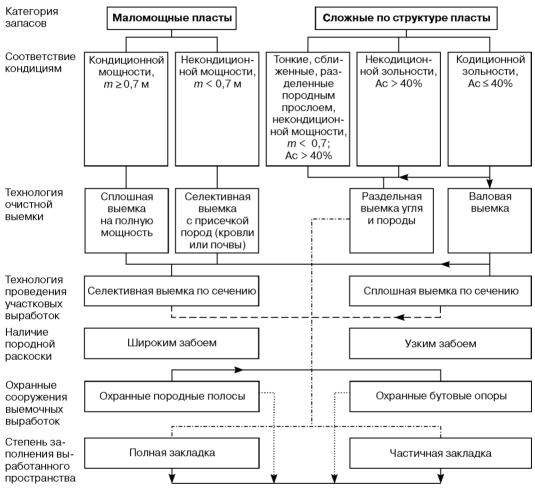
УДК 622.06:622.272 (574.3)

МЕТОДОЛОГИЯ СОЗДАНИЯ ТЕХНОЛОГИЧЕСКИХ СХЕМ ОЧИСТНОЙ ВЫЕМКИ МАЛОМОЩНЫХ И СЛОЖНОСТРУКТУРНЫХ ПЛАСТОВ С ПОЛЕЗНЫМ ИСПОЛЬЗОВАНИЕМ ШАХТНОЙ ПОРОДЫ В ПОДЗЕМНЫХ УСЛОВИЯХ

К.К. Кушеков

Кафедра нефтепромысловой геологии, горного и нефтегазового дела Инженерный факультет
Российский университет дружбы народов
Подольское шоссе, 8/5, Москва, Россия, 115093

Создана технология эффективной выемки маломощных и сложноструктурных пластов с использованием шахтной породы.


Ключевые слова: очистная выемка, маломощные пласты, валовый метод.

В современных условиях, характеризующихся возрастающей интенсификацией и концентрацией горного производства с ограниченными возможностями капитальных вложений в обновление основных фондов и реконструкцию угольных предприятий, рациональное использование имеющихся на шахтах георесурсов приобретает особую важность.

Отработка запасов Карагандинского угольного бассейна велась с момента освоения по настоящее время преимущественно из мощных и средней мощности пластов, в которых залегают малозольные коксующиеся угли. На Промышленном, Майкудукском и Саранском участках — это угольные пласты κ_7 , κ_{10} , κ_{12} , κ_{13} , κ_{14} , κ_{18} , в Шерубай-Нуринском и Тентекском угленосных районах — соответственно пласты κ_7 , κ_{10} κ_{12} , κ_{18} , λ_{10-11} , λ_6 , λ_7 и λ_8 , Дефицитные коксующиеся угли марок λ_8 , λ_8 ,

В ближайшей перспективе (в течение 10—30 лет) запасы коксующихся углей марок КЖ, К, КО и КС, залегающие в пластах средней мощности и мощных, будут отработаны и возникнет необходимость в восполнении потребности в углях этих марок посредством добычи их из маломощных и сложноструктурных пластов. К маломощным пластам нами, в отличие от известных классификаций, отнесены тонкие пласты и нижнего диапазона средней мощности (до 1,8 м). Выбор этого значения обусловлен необходимой величиной присечки боковых пород по сечению проводимых подготовительных выработок, которая в этом случае составляет

более половины попутно добываемого объема горной массы. К сложноструктурным пластам причислены пласты смешанного строения с несколькими угольными пачками, разделенные породными прослойками и по кондициям отнесенные к балансовым или забалансовым запасам при разработке их соответственно селективным либо валовым методом (рис. 1).

Рис. 1. Классификация запасов угля в маломощных, сложноструктурных пластах и технологии их выемки

Мировой опыт разработки маломощных и сложноструктурных пластов показывает, что при высокой нагрузке на лаву (до 10—15 тыс. т/сут.) порода, получаемая от проведения и поддержания горных выработок, селективной выемки сложноструктурных пластов, может выдаваться на поверхность, что обуславливает значительный экологический ущерб и затраты на ее транспортирование, отвалообразование или складирование в шахте.

Размещение породы в шахте с выкладкой ее в охранные бутовые и закладочные массивы обеспечит полноту выемки запасов угля, сгладит неравномерности проявления горного давления в очистном забое и на его сопряжениях.

В Карагандинском бассейне в тонких пластах сосредоточено около 20% всех запасов, в основном коксующихся углей, однако добыча из них (в среднем 5%) существенно отстает от объемов угля, добываемого из пластов средней мощности и мощных из-за отсутствия эффективных технологических схем и средств разработки. Общие ресурсы кондиционных углей коксовых марок в бассейне составляют 4,9 млрд т, в том числе по районам: Тентекскому — 1210,5, Шерубай-Нуринскому — 919,2 и Карагандинскому — 2767,9 млн т. Подготовлено к освоению 1490 млн т запасов коксующихся углей бассейна. Разведанные, резервные и перспективные запасы составляют 3372 млн т. По районам распределение общих промышленных запасов, в том числе по маломощным пластам в пределах шахтных полей действующих шахт следующее: Промышленный участок — 15,0 и 14,4% запасов, Саранский участок — 15,5 и 9,6% запасов, Шерубай-Нуринский район — 20,7 и 19,0% запасов и Тентекский район — 48,7 и 46,9% запасов.

В маломощных пластах сосредоточено 695,9 млн т, или 46,7% всех балансовых запасов коксующихся углей. В бассейне на действующих шахтах 16 пластов сложного строения с промышленными запасами 118 млн т. Общая величина забалансовых запасов составляет 275,5 млн т (18,5% от балансовых запасов), которые на 91,8% сосредоточены на маломощных пластах.

При нынешних темпах развития шахтного фонда коксующихся углей без маломощных пластов хватит на шахтах Промышленного участка на 10—30 лет, в том числе в пределах действующих горизонтов — 10—15 лет; на Саранском участке — на 43 и 10 лет; на Шерубай-Нуринском районе — 83 и 30 лет и на Тентекском районе — на 6—29 и 4—9 лет.

Целью исследований является создание технологии эффективной выемки маломощных и сложных по структуре пластов, оптимизации параметров их отработки с использованием шахтной породы для охраны выработок и закладки выработанного пространства очистных забоев (рис. 2).

На основе выявленных рациональных элементов синтезированы технологические схемы очистных работ [1; 2], адаптированные к условиям высокопроизводительной разработки маломощных и сложноструктурных пластов (рис. 3), сгруппированные по следующим отличительным признакам: с предварительным проведением и охраной парных выемочных выработок бутовыми полосами (A, И) или целиками угля (Б), с одиночными выработками (В) и без предварительной их проходки: с опережением (Д) или отставанием (Г) от фронта очистных работ; с комбинированной отработкой выемочных столбов (Е); с короткими лавами (Ж), в том числе с тупиковыми забоями (3); с газодренажными выработками (К) и с сооружением выработок (Л) в выработанном пространстве.

Экономико-математическое моделирование технологических схем очистных работ позволило установить их оптимальные параметры и область целесообразного применения отработки маломощных и сложноструктурных пластов в зависимости от влияющих горно-геологических и горнотехнических факторов (рис. 4). При вынимаемой мощности пласта 0,8—1,75 м, нагрузке на очистной забой — 3500—4500 т/сут., длине лавы 345—275 м и протяженности выемочного столба 2,5—3,3 км, оптимальными являются схемы с оформлением создаваемых и поддержанием пройденных выемочных выработок за лавой (рис. 5).

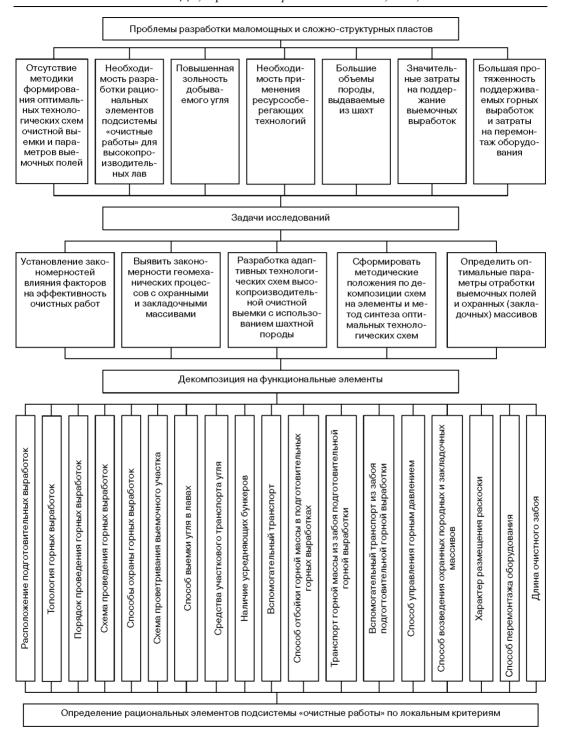
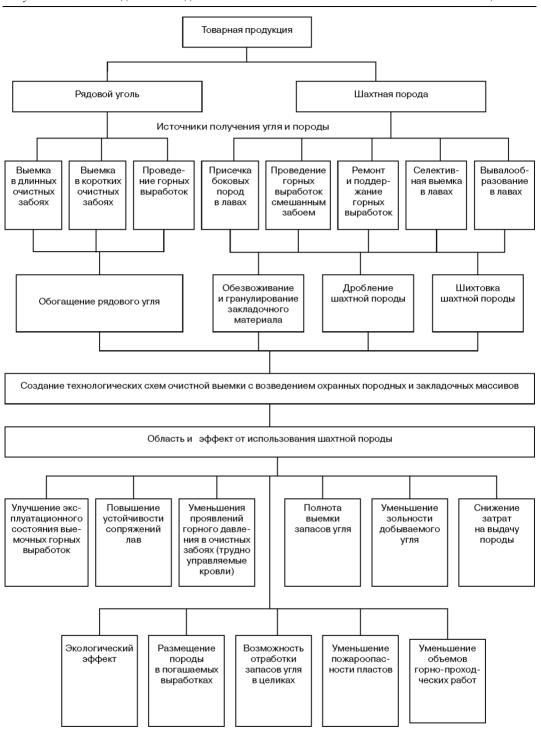



Рис. 2. Методический подход к исследованию технологии выемки маломощных

Кушеков К.К. Методология создания технологических схем очистной выемки маломощных...

и сложноструктурных пластов с использованием шахтной породы

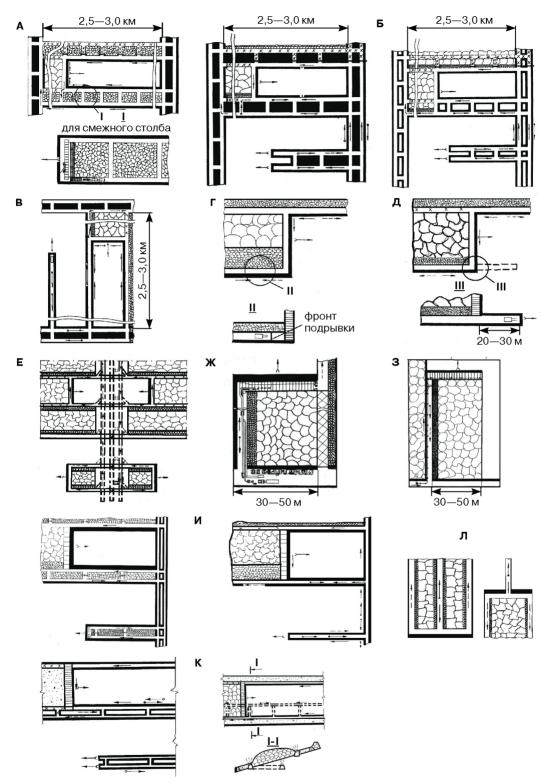
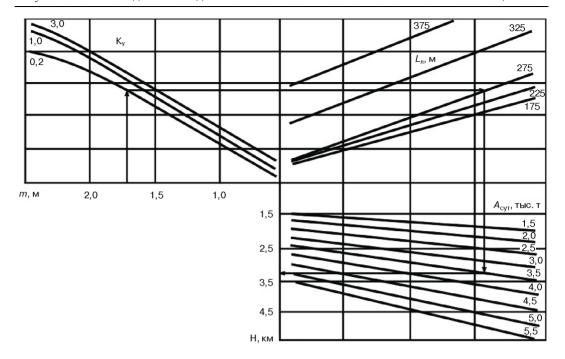
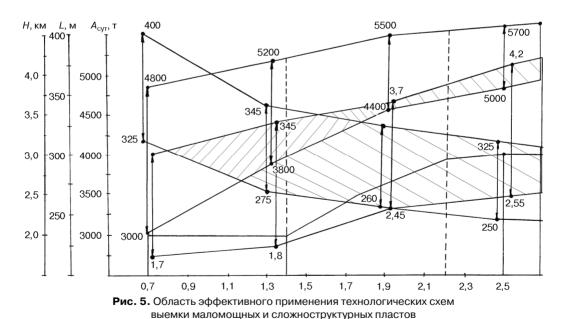




Рис. 3. Технологические схемы выемки маломощных и сложно-структурных пластов

Рис. 4. Определение оптимальных параметров технологических схем K_y — коэффициент устойчивости боковых пород; H, L_n — длина выемочного столба и лавы, км; м; $A_{\text{сут}}$ — суточная нагрузка на лаву, тыс. т

— оптимальная область применения —— возможная область применения

Применение предлагаемых технологических решений позволит повысить эффективность горных работ и вывести Карагандинский бассейн на качественно новый уровень его развития.

ЛИТЕРАТУРА

- [1] Дёмин В.Ф. Механизм создания математической модели установления оптимальной схемы технологии выемки маломощных пластов // Вестник КазНТУ им. К.И. Сатпаева. 2003. № 1. С. 75—80.
- [2] *Квон С.С., Дёмин В.Ф., Кушеков К.К. и др.* Методические положения по анализу и синтезу технологических схем очистных работ // Труды КарГТУ. 2003. № 3. С. 42—45.

THE METHODOLOGY TO CREAT PROCESS FLOW DIAGRAMS AND LOW-POWER SEWAGE EXTRACTION COMPLEX STRUCTURE OF LAYERS WITH THE USE OF BENEFICIAL SPECIES IN THE MINE UNDERGROUND

K.K. Kushekov

Department of geology, oilfield, mining and oil and gas business Engineering Faculty People's friendship university of Russia Podolsk highway, 8/5, Moskow, Russia, 115093

Development of technology of efficient getting of weak and complicated structure seams with mine rock use.

Key words: purification seizure, thin layers of, the gross method.