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Abstract. The article discusses the methods of a priori statistical analysis used for
predicting perturbed motion of aircraft in turbulent environments. Theoretical
approaches such as the comparative method and mathematical modeling method
are used to analyze the a priori analysis methods. The paper also utilizes statistical
methods to evaluate the effectiveness of stochastic models to account for random
perturbations caused by turbulence. Special attention is paid to the use of Bayesian
analysis, maximum likelihood method and Monte Carlo method applied for
probabilistic prediction of the aircraft trajectory. The presented models are illustrated
with formulas that describe the dynamics of vehicle motion in turbulent conditions,
including equations of motion based on Newton’s and Euler’s laws. The parameters
that determine the dynamics of the perturbed motion of the aircraft in a turbulent
environment, such as linear and angular velocities, turbulence intensity, acrodynamic
forces, moments of inertia and meteorological conditions, are studied to evaluate
the correctness of the calculations. This allows the effects of turbulence on the
control and flight trajectory of the aircraft to be taken into account. The results of
the study demonstrate the high accuracy of the proposed methods in predicting
aircraft motion deviations and emphasize the importance of further development of
computational approaches to integrate these methods into real-time control systems,
especially for application in conditions of uncertainty and complex external
influences. Further research could focus on improving the adaptability of models
for different types of aircrafts, taking into account the optimization of computational
methods to reduce computational complexity. This will make it possible to improve
the efficiency of forecasts in a shorter time and reduce resource costs.
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Bayesian analysis, Monte Carlo method, trajectory prediction
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3asiBiieHHE 0O KOH(I)JII/IKTC HHTEpPECOB

ABTOpBI 3asIBISIIOT 00 OTCYTCTBUU
KOH(IINKTa UHTEPECOB.

Bxaan aBTopoB

HepasnensHoe coaBTOpCTBO.

AHHOTanus. PaccMOTpeHBI METOIBI ATPHOPHOTO CTATHCTUYECKOTO aHa-
JU3a, UCTIONIb3yEeMBbIE I IIPOTHOZUPOBAHHS BOSMYILEHHOTO JABHKCHHUS
nerarenbHbIX ammnapatoB (JIA) B TypOyneHTHbIX cpenax. [ns anammsa
METOJIOB allPHOPHOTO aHAJN3a IPUMEHSIOTCS TEOPETHUECKUE TIOIXOBI,
TaKkhe KaK CPAaBHUTEIBHBIA METON U METOA MaTeMaTHIeCKOTO MOMIEIIH-
poBanusi. Mcronbp30BaHbl CTATUCTUYCCKUE METO/IBI, TO3BOJISIFOIIUE OIle-
HUTH 3P PEKTUBHOCTH CTOXACTHYCCKUX MOJEIICH JJIs y4eTa CIyJalHbIX
BO3MYIIICHUH, BBI3BAHHBIX TYypOyJIeHTHOCTHIO. Oco00e BHUMAaHUE yie-
JICHO HMCIOJIB30BaHUIO 0alieCOBCKOTO aHaIM3a, METOAa MAKCHMAIBHOTO
npaszononooust u meroga MoHte-Kapio, npuMeHsieMbIX IJIsl BEpOsIT-
HOCTHOTO TIPOTHO3UPOBaHUs Tpaekropuu apmkenus JIA. [Ipencrapnen-
HBIE MOJEIH WITIOCTPUPOBAHBEI (popMynaMu, KOTOPBIE ONHCHIBAIOT JH-
HAMUKy JIBHDKCHHS anmapara B TYpOYJIEHTHBIX YCIIOBMSIX, BKIIOYas
ypaBHEHUsI JBIDKCHHS, OCHOBaHHBIC Ha 3akoHax HproroHa m Dinepa.
JI71s OTIeHKH TPaBUIIBHOCTH PACUeTOB W3yUYSHBI MTapaMeTphl, OIpeaes-
IOIIHE TMHAMHKY BO3MYIICHHOTO JBIKeHuUs JIA B TypOylieHTHOH cpene,
TaKHe KaK JIMHEHHBIC U YIIIOBBIE CKOPOCTH, HHTCHCUBHOCTD TYPOYIICHT-
HOCTH, a3pPOINHAMHYECCKUE CHIIBI, MOMEHTHI HHEPIIUH U METEOPOJIOTH-
YEeCKHE YCIOBHUSA. JTO MO3BOJIET YUUTHIBATh BIUSHIE TypOYICHTHOCTH
Ha yInpasjieHHe 1 Tpaekropuio noisera JIA. Pesysnbrarsl ucciienoBaHus
JIEMOHCTPUPYIOT BBICOKYIO TOYHOCTH HPEATIOKEHHBIX METOJIOB B IIPO-
THO3HPOBAaHUH OTKJIOHCHUH IBIDKEHHS JIA M OAYepKHUBAIOT BaXKHOCTD
ﬂaﬂbHeﬁLHeFO Ppa3BUTHA BBIYMCIIUTECIBHBIX MOAXOA0B JId MHTCIpaliun
STHX METOJIOB B CHCTEMEI YIIPABJICHUS B PEATbHOM BPEMEHHU, 0COOCHHO
JUTS IPUMEHEHUS B YCIOBUSIX HEOMPEINSIEHHOCTH U CIIOKHBIX BHEITHUX
BO3EHCTBHN. JlanpHelre ccaeIoOBaHus MOTYT OBITh HAaIIPAaBJICHEI HA
IIOBBIIICHHUE aJalITUBHOCTHU MOﬂeﬂeﬂ JJIA pa3JINYHbIX TUIIOB .HA C yue-
TOM ONTHMH3AI[UM PACYETHBIX METOJOB JUISI YMCHBIICHHS BBIYHCIIH-
TEJILHOM CJIO)KHOCTH. DTO MO3BOJIUT HOBBICHTH 3((EKTUBHOCTD ITPOTHO-
30B B 0oJiee KOPOTKHE CPOKHU U CHU3UTB 3aTPAThl PECYPCOB.

KonrodeBble cjI0Ba: anpuoOpHBIA aHANN3, JIETATEIbHBIC AIIAPaThl, CTO-
XacTH4YECKHEe MOJIEIH, TYpOyIEHTHBIE Cpe/ibl, 0alileCOBCKUI aHa13, Me-
Tox Monre-Kapio, mnporao3upoBaHue TpaeKTopuu
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Introduction

Disturbed motion of aircraft in turbulent envi-
ronments is one of the key problems of aero-
dynamics, flight dynamics and control. Turbulent
flows arising in the atmosphere significantly com-
plicate the prediction of the aircraft trajectory,
causing random disturbances that can lead to a
change in its motion and deterioration in control-
lability. The problem lies not only in modeling
such motion, but also in developing analysis meth-
ods that allow one to estimate potential deviations
of motion from a given trajectory and predict them
with a high accuracy.

Understanding turbulent environments is im-
portant in the design and operation of aircraft, as it
can have a significant impact on flight safety and
the efficiency of control systems. To solve this
problem, it is important to use methods of a priori
statistical analysis, which allows one to make
probabilistic forecasts about the behavior of the
system before receiving the observed data.

The aim of this work is to study the methods
of a priori statistical analysis of the disturbed
motion of aircraft in turbulent environments and
to assess their applicability for modeling and pre-
dicting the behavior of aircraft under uncertainty.

1. Mathematical models of disturbed motion

Technical devices designed to move in the
atmosphere or outer space by creating lift or jet
propulsion are called aircrafts. They include both
manned and unmanned vehicles, such as airplanes,
helicopters, airships, rockets, spacecraft, and drones.
Depending on the flight environment and operating
principle, aircraft can use aerodynamic forces
(e.g. airplanes and helicopters) or jet propulsion
(e.g. rockets) to maintain flight and maneuver.

Turbulence is a chaotic and unpredictable
movement of air flows that occurs in the atmo-
sphere, which has a significant impact on flight
dynamics [1]. Turbulent flows are characterized
by rapid changes in wind speed and direction at
different points in space, which leads to distur-
bances in the trajectory, stability, and control-
ability of the aircraft (Figure 1).
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Figure 1. Schematic of dynamic turbulence
Source: made by A.S. Ermilov, O.A. Saltykova

Turbulence near the ground, especially in urban
environments and rough terrain, occurs due to the
interaction of air flows with various obstacles, such
as buildings, trees, and other artificial or natural
structures. These objects create zones of disturbed
flow, where the air movement becomes chaotic,
therefore vortices and sharp changes in wind speed
and direction are formed (Figure 2).

Mountain rotor Houses Tree line

o
SRtts

Figure 2. Formation of perturbed air flows near the ground
Source: made by A.S. Ermilov, O.A. Saltykova

Under conditions where an aircraft is subject
to random disturbances, its trajectory deviates from
the calculated one, which requires the develop-
ment of special methods for describing and pre-
dicting such deviations. The dynamics of an aircraft
under disturbed conditions is characterized by com-
plex nonlinear processes that require taking into
account not only traditional aerodynamic forces and
moments, but also random changes in these para-
meters under the influence of the environment [2].

To describe the motion of an aircraft under
turbulent flow conditions, mathematical models
are used that include both deterministic and sto-
chastic components. The main parameters that
determine the motion are linear and angular velo-
cities, the position of the center of mass, orientation
angles (roll, pitch, yaw) and the forces acting on
the apparatus.
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The classical model of aircraft flight dynamics
includes two types of equations: equations des-
cribing translational motion (based on Newton’s
law) and equations describing rotational motion
(based on Euler’s equations).

Translational motion is described by Newton’s
second law in vector form:

m—=F, (N

. dv .
where m — mass of an aircraft; 7 acceleration
t

vector representing the derivative of the velocity

vector ¥/ with respect to time; F — the resulting
force acting on the aircraft (including aerodynamic
force, gravity and thrust).

The rotational motion of the aircraft is described
by Euler’s equations, which relate the moment
of force to angular accelerations:

dL _ -

—=M, 2

” )
where I — angular momentum of the aircraft

. L L
relative to the center of mass; % — the derivative
t

of angular momentum with respect to time, des-

cribing the angular acceleration; M — resultant
moment of forces acting on the aircraft.

Together, these equations define a complete
dynamic model of aircraft motion that takes into
account both its translational and rotational motion.
However, in a turbulent environment, these algo-
rithms must be modified by adding stochastic per-

turbations to parameters such as drag force, lift
force, and moments of inertia [3].

Models of motion in a turbulent environment
can be divided into two types: deterministic and
stochastic.

Deterministic models describe motion based
on known initial conditions and environ-mental
parameters [4]. It is assumed that all external
influences on the aircraft, including turbulent flows,
are known and can be accurately described, which
is unlikely in real conditions.

Stochastic models, such as random process or
Gaussian disturbance models, allow the uncertainty
associated with the effects of turbulent flows to be
taken into account. For example, the von Karman
wind turbulence model and the Iver model are widely
used to describe the structure of turbulent flows
in the atmosphere [5]. They allow the statistical
characteristics of turbulence, such as the intensity
and spectrum of disturbances, to be calculated,
which is the basis for predicting the effects of
turbulence on aircraft motion.

When modeling the disturbed motion of an
aircraft in turbulent environments, it is important
to take into account many parameters that can affect
the trajectory and dynamics of the flight. They
characterize both external factors, such as atmo-
spheric turbulence and meteorological conditions,
and the internal properties of the aircraft itself,
including its aerodynamic characteristics and mass.
Correctly taking these parameters into account
allows us to create more accurate mathematical
models that predict the behavior of the apparatus
in complex conditions (Table).

Parameters determining the dynamics of perturbed motion of an aircraft in a turbulent environment

Parameter Description

Impact on Flight Dynamics

Linear velocities
forces.

Velocities along the X, Y, Z axes, affected by external | Determine the flight trajectory and rate of

position change.

Angular velocities

Rotational speeds around the X, Y, Z axes.

Influence the orientation and stability of the
aircraft.

Turbulence intensity

Amplitude and frequency of air mass disturbances,
determining the force acting on the aircraft.

Lead to deviations in trajectory and orientation.

Aerodynamic forces

Lift and drag, dependent on the angle of attack.

Affect lift and drag, influencing altitude and
flight speed.

Moments of inertia

Resistance to changes in angular velocities.

Influence rotational stability.

Mass of the aircraft

Affects inertia and susceptibility to external disturbances.

Greater mass reduces trajectory deviation but
increases inertia.

Thrust forces

Engine forces, varying under external influences.

Affect speed and trajectory.

Meteorological conditions

Pressure, temperature and air density.

Affect aerodynamics and controllability.

Source: made by A.S. Ermilov, O.A. Saltykova, data from [6; 7].
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Mathematical models of disturbed aircraft
motion are a combination of deterministic equations
of motion and stochastic models of turbulent effects.
This allows one to describe both short-term changes
in the aircraft trajectory under the influence of
random disturbances and long-term changes in the
stability and controllability of the device. To im-
prove the accuracy of mathematical models, it is
necessary to use a priori statistical analysis.

2. Basic approaches to a priori analysis

A priori analysis is a statistical method that is
based on the use of previously known data or
assumptions to construct mathematical models and
forecasts. In the context of aircraft dynamics in a
turbulent environment, a priori analysis allows for
uncertainties in motion parameters and external
influences, such as turbulent flows, to be taken into
account long before direct measurements or
experiments are carried out. This approach makes
it possible to predict the behavior of a system in
conditions where precise data have not yet been
obtained, but there is enough information to form
reasonable hypotheses.

There are several main approaches to a priori
analysis that are used to estimate the disturbed
motion of an aircraft. One of the most well-known
methods is the Bayesian approach (application of
Bayes’ theorem) to update a priori assumptions
based on the data obtained:

P(D|6)P(6)

P(6|D) “ %) (3)

where P(6|D) — posterior probability of a para-
meter 0 after receiving the data D; P(D|6) —
likelihood function describing the probability of

observing data D at a given parameter value 6 ;
P(6) — prior probability of the parameter 6

before receiving data; P(D) — normalizing

constant called the total probability of the data.

In the context of turbulence and disturbance
modeling, 6 may represent parameters describing
turbulent flows, such as intensity, frequency of
disturbances, or other physical characteristics of

352

the medium [8]. Prior distribution P(8) can be given
on the basis of previous experiments, numerical
simulations or theoretical estimates. The likeli-
hood function P(D|0) reflects the probability of
observing real data D (e.g. wind speed measure-
ments or aircraft trajectories) given known values
of the turbulence parameters. After updating the
prior distribution with data, a posterior distribution
P(0|D) is obtained, which provides a more accurate
estimate of the turbulence and disturbance para-
meters. This process can be repeated as more data
becomes available, gradually refining the model
and making the forecasts more accurate.

The Bayesian approach allows one to take into
account the initial uncertainty regarding the para-
meters of the disturbed motion and to correct them
based on incoming information, which is especially
important in conditions of complex and uncertain
external influences, such as turbulent flows.

Maximum Likelihood Estimation (MLE) is
used to estimate model parameters based on known
data and prior assumptions [9]. In this method, the
task is to find parameters 6 that maximize the
likelihood of the data D, that is, maximize the
probability that the observation data could have
been obtained with the given parameter values.
This is expressed through the likelihood function:

L(0)=P(D|0). (4)

In turbulent conditions, the maximum likelihood
method is used to estimate the parameters of the
disturbance model, such as the intensity and
frequency of turbulent flows. For example, if the
observational data D describe the deviations of the
aircraft trajectory in turbulent conditions, then 0
can represent the parameters of the turbulent
effects, such as the mean velocity and variance of
the disturbances.

Another effective tool for a priori analysis is
the Monte Carlo method, especially in the case of
complex stochastic systems [10]. In modeling the
disturbed motion of an aircraft, it allows for statis-
tical analysis of various flight trajectories in a tur-
bulent environment, assessing the probability of
various deviations from the calculated trajectories
(Figure 3).
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factor x < factor y ~" factor z

Figure 3. Scheme of the Monte Carlo method
Source: made by A.S. Ermilov, O.A. Saltykova

The factors x, y and z represent various
external parameters such as wind speed, direction
of turbulent flows and other disturbing forces.
Probability distributions are modeled for each
of these factors, which are then used to estimate
the deviation of the aircraft from the calculated
trajectory. The points on the graphs represent a set
of possible outcomes obtained using the Monte
Carlo method, which allows us to estimate the
influence of each factor on the resulting motion of
the apparatus.

Regularization is used to solve ill-conditioned
problems when there is an excessive amount of
a priori data or there is high uncertainty in the initial
parameters (Figure 4).

>
>

v

Figure 4. Regularization scheme
Source: made by A.S. Ermilov, O.A. Saltykova

In aircraft control, regularization methods
play an important role when working with data
obtained in real time from sensors, for example,
about the position and speed of the aircraft.
In conditions of turbulence or other external in-
fluences, the readings may contain significant
noise, which complicates the calculation of correct
control actions [11]. Regularization helps to smooth

out such fluctuations, making the data more reli-
able for decision-making [12].

In some cases, a priori analysis can be based
on deterministic approaches, when the a priori
values of the parameters are assumed to be known
and unchanged [13]. These methods make it possible
to significantly simplify calculations, but their use
is justified only under conditions of a low degree
of uncertainty. For example, deterministic a priori
methods can be useful for analyzing aircraft motion
in weak turbulence or in conditions when the
nature of the disturbances is well understood [14].

3. Application of a priori models
and approaches to the analysis
of aircraft dynamics

One example of the application of a priori
models is the analysis of the motion of unmanned
aerial vehicles (UAVs) in turbulent flows at low
altitudes [15]. Turbulence near the earth’s surface
can be intense and unpredictable, which complicates
control and trajectory prediction. In such situations,
a priori probability models are used to describe
the parameters of turbulent flows (for example,
the average value of wind speed and its dispersion).
These models allow calculating deviations from the
calculated trajectory and assessing the probability
of significant disturbances. The main equations
describing the dynamics of aircraft motion include
Newton’s equations for translational motion:

F A
m7:F;3p+FTyp6+E“paB ’ (5)
t
where m — mass of the device; ¥ — velocity
vector; ﬁap — aerodynamic forces; F s

disturbances caused by turbulent flows; F .. —

rpaB
gravity.
After applying Newton’s equations to analyze
the aircraft dynamics in turbulent conditions, the
influence of turbulent disturbances on the

trajectory of motion can be assessed. Value F ¢,

which is a random force caused by turbulence, can
fluctuate depending on the characteristics of the
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atmosphere and the flight altitude. This leads to the
aircraft trajectory deviating from the calculated
ones, causing additional maneuvers to stabilize
the flight. Using a priori models, it is possible to
predict the most probable deviations and adjust the
control systems in advance to minimize the effects
of turbulence. This approach improves the stability
of the aircraft and prevents abrupt changes in
trajectory, which is especially important for
unmanned systems or when flying at low altitudes,
where turbulence is more pronounced.

One of the effective methods of a priori anal-
ysis in aircraft control is the Bayesian approach,
which allows dynamically updating turbulence
forecasts as new data arrives. This method is ac-
tively used in high-altitude flight conditions, where
turbulence can suddenly occur and have a signifi-
cant impact on the trajectory.

At cruising altitude (usually above 10 km),
where aircrafts often encounter turbulence, control
is performed using a priori data on the probability
of occurrence of turbulent zones [16]. Initially,
the control system has a priori information on
turbulence obtained from meteorological models,
and it is specified as a priori probability of the
parameter 6 — the turbulence intensity.

When sensors on board detect changes in air
flows, the system updates the prior based on these
observations using Bayes’ theorem:

_P(Do)P(0)

POP)=—20y (6)

where P(6|D) — updated posterior probability of

turbulence after data acquisition D; P(D|0) —

likelihood of observed data.

The aircraft’s control system, based on updated
a posteriori data, can predict increased turbulence
and adjust flight parameters in advance [17].

For example, if the data indicates an in-
creased probability of severe turbulence ahead, the
system can reduce speed or adjust altitude to
mitigate the impact. This process ensures safe and
stable flight, even under unexpectedly changing
external conditions.
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Conclusion

Methods of a priori statistical analysis of dis-
turbed aircraft motion in turbulent environments
demonstrate high efficiency in predicting trajectory
deviations and flight dynamics. Stochastic models,
such as the Bayesian approach, maximum likelihood
method, and Monte Carlo method, allow for
uncertainty and random disturbances characteristic
of turbulent flows. These approaches make it
possible to estimate the probability of motion
deviations and improve the accuracy of forecasts
under conditions of limited information. The use
of a priori data and probabilistic models contributes
to improving the stability and controllability of
aircraft, especially when they operate in complex
external conditions. However, despite significant
progress, there remain challenges associated with
the integration of such models into real aircraft
control systems in real time. In the future, it will be
necessary to improve computational methods for
prompt processing of large volumes of data and
adaptation of models to changing flight conditions.
In addition, the development of universal approaches
remains to be an important task, that will take into
account the specifics of different types of aircraft
and the ranges of turbulence they encounter.
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